gzdoom/libraries/game-music-emu/gme/Sap_Cpu.cpp

1004 lines
19 KiB
C++

// Game_Music_Emu https://bitbucket.org/mpyne/game-music-emu/
#include "Sap_Cpu.h"
#include <limits.h>
#include "blargg_endian.h"
//#include "nes_cpu_log.h"
/* Copyright (C) 2003-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#define FLUSH_TIME() (void) (s.time = s_time)
#define CACHE_TIME() (void) (s_time = s.time)
#include "sap_cpu_io.h"
#ifndef CPU_DONE
#define CPU_DONE( cpu, time, result_out ) { result_out = -1; }
#endif
#include "blargg_source.h"
int const st_n = 0x80;
int const st_v = 0x40;
int const st_r = 0x20;
int const st_b = 0x10;
int const st_d = 0x08;
int const st_i = 0x04;
int const st_z = 0x02;
int const st_c = 0x01;
void Sap_Cpu::reset( void* new_mem )
{
check( state == &state_ );
state = &state_;
mem = (uint8_t*) new_mem;
r.status = st_i;
r.sp = 0xFF;
r.pc = 0;
r.a = 0;
r.x = 0;
r.y = 0;
state_.time = 0;
state_.base = 0;
irq_time_ = future_sap_time;
end_time_ = future_sap_time;
blargg_verify_byte_order();
}
#define TIME (s_time + s.base)
#define READ( addr ) CPU_READ( this, (addr), TIME )
#define WRITE( addr, data ) {CPU_WRITE( this, (addr), (data), TIME );}
#define READ_LOW( addr ) (mem [int (addr)])
#define WRITE_LOW( addr, data ) (void) (READ_LOW( addr ) = (data))
#define READ_PROG( addr ) (READ_LOW( addr ))
#define SET_SP( v ) (sp = ((v) + 1) | 0x100)
#define GET_SP() ((sp - 1) & 0xFF)
#define PUSH( v ) ((sp = (sp - 1) | 0x100), WRITE_LOW( sp, v ))
bool Sap_Cpu::run( sap_time_t end_time )
{
bool illegal_encountered = false;
set_end_time( end_time );
state_t s = this->state_;
this->state = &s;
int32_t s_time = s.time;
uint8_t* const mem = this->mem; // cache
// registers
uint16_t pc = r.pc;
uint8_t a = r.a;
uint8_t x = r.x;
uint8_t y = r.y;
uint16_t sp;
SET_SP( r.sp );
// status flags
#define IS_NEG (nz & 0x8080)
#define CALC_STATUS( out ) do {\
out = status & (st_v | st_d | st_i);\
out |= ((nz >> 8) | nz) & st_n;\
out |= c >> 8 & st_c;\
if ( !(nz & 0xFF) ) out |= st_z;\
} while ( 0 )
#define SET_STATUS( in ) do {\
status = in & (st_v | st_d | st_i);\
nz = in << 8;\
c = nz;\
nz |= ~in & st_z;\
} while ( 0 )
uint8_t status;
uint16_t c; // carry set if (c & 0x100) != 0
uint16_t nz; // Z set if (nz & 0xFF) == 0, N set if (nz & 0x8080) != 0
{
uint8_t temp = r.status;
SET_STATUS( temp );
}
goto loop;
dec_clock_loop:
s_time--;
loop:
#ifndef NDEBUG
{
sap_time_t correct = end_time_;
if ( !(status & st_i) && correct > irq_time_ )
correct = irq_time_;
check( s.base == correct );
}
#endif
check( (unsigned) GET_SP() < 0x100 );
check( (unsigned) a < 0x100 );
check( (unsigned) x < 0x100 );
check( (unsigned) y < 0x100 );
uint8_t opcode = mem [pc];
pc++;
uint8_t const* instr = mem + pc;
static uint8_t const clock_table [256] =
{// 0 1 2 3 4 5 6 7 8 9 A B C D E F
0,6,2,8,3,3,5,5,3,2,2,2,4,4,6,6,// 0
3,5,2,8,4,4,6,6,2,4,2,7,4,4,7,7,// 1
6,6,2,8,3,3,5,5,4,2,2,2,4,4,6,6,// 2
3,5,2,8,4,4,6,6,2,4,2,7,4,4,7,7,// 3
6,6,2,8,3,3,5,5,3,2,2,2,3,4,6,6,// 4
3,5,2,8,4,4,6,6,2,4,2,7,4,4,7,7,// 5
6,6,2,8,3,3,5,5,4,2,2,2,5,4,6,6,// 6
3,5,2,8,4,4,6,6,2,4,2,7,4,4,7,7,// 7
2,6,2,6,3,3,3,3,2,2,2,2,4,4,4,4,// 8
3,6,2,6,4,4,4,4,2,5,2,5,5,5,5,5,// 9
2,6,2,6,3,3,3,3,2,2,2,2,4,4,4,4,// A
3,5,2,5,4,4,4,4,2,4,2,4,4,4,4,4,// B
2,6,2,8,3,3,5,5,2,2,2,2,4,4,6,6,// C
3,5,2,8,4,4,6,6,2,4,2,7,4,4,7,7,// D
2,6,2,8,3,3,5,5,2,2,2,2,4,4,6,6,// E
3,5,2,8,4,4,6,6,2,4,2,7,4,4,7,7 // F
}; // 0x00 was 7
uint16_t data;
data = clock_table [opcode];
if ( (s_time += data) >= 0 )
goto possibly_out_of_time;
almost_out_of_time:
data = *instr;
#ifdef NES_CPU_LOG_H
nes_cpu_log( "cpu_log", pc - 1, opcode, instr [0], instr [1] );
#endif
switch ( opcode )
{
possibly_out_of_time:
if ( s_time < (int) data )
goto almost_out_of_time;
s_time -= data;
goto out_of_time;
// Macros
#define GET_MSB() (instr [1])
#define ADD_PAGE() (pc++, data += 0x100 * GET_MSB())
#define GET_ADDR() GET_LE16( instr )
#define NO_PAGE_CROSSING( lsb )
#define HANDLE_PAGE_CROSSING( lsb ) s_time += (lsb) >> 8;
#define INC_DEC_XY( reg, n ) reg = uint8_t (nz = reg + n); goto loop;
#define IND_Y( cross, out ) {\
uint16_t temp = READ_LOW( data ) + y;\
out = temp + 0x100 * READ_LOW( uint8_t (data + 1) );\
cross( temp );\
}
#define IND_X( out ) {\
uint16_t temp = data + x;\
out = 0x100 * READ_LOW( uint8_t (temp + 1) ) + READ_LOW( uint8_t (temp) );\
}
#define ARITH_ADDR_MODES( op )\
case op - 0x04: /* (ind,x) */\
IND_X( data )\
goto ptr##op;\
case op + 0x0C: /* (ind),y */\
IND_Y( HANDLE_PAGE_CROSSING, data )\
goto ptr##op;\
case op + 0x10: /* zp,X */\
data = uint8_t (data + x);\
case op + 0x00: /* zp */\
data = READ_LOW( data );\
goto imm##op;\
case op + 0x14: /* abs,Y */\
data += y;\
goto ind##op;\
case op + 0x18: /* abs,X */\
data += x;\
ind##op:\
HANDLE_PAGE_CROSSING( data );\
case op + 0x08: /* abs */\
ADD_PAGE();\
ptr##op:\
FLUSH_TIME();\
data = READ( data );\
CACHE_TIME();\
case op + 0x04: /* imm */\
imm##op:
// TODO: more efficient way to handle negative branch that wraps PC around
#define BRANCH( cond )\
{\
int16_t offset = (int8_t) data;\
uint16_t extra_clock = (++pc & 0xFF) + offset;\
if ( !(cond) ) goto dec_clock_loop;\
pc += offset;\
s_time += extra_clock >> 8 & 1;\
goto loop;\
}
// Often-Used
case 0xB5: // LDA zp,x
a = nz = READ_LOW( uint8_t (data + x) );
pc++;
goto loop;
case 0xA5: // LDA zp
a = nz = READ_LOW( data );
pc++;
goto loop;
case 0xD0: // BNE
BRANCH( (uint8_t) nz );
case 0x20: { // JSR
uint16_t temp = pc + 1;
pc = GET_ADDR();
WRITE_LOW( 0x100 | (sp - 1), temp >> 8 );
sp = (sp - 2) | 0x100;
WRITE_LOW( sp, temp );
goto loop;
}
case 0x4C: // JMP abs
pc = GET_ADDR();
goto loop;
case 0xE8: // INX
INC_DEC_XY( x, 1 )
case 0x10: // BPL
BRANCH( !IS_NEG )
ARITH_ADDR_MODES( 0xC5 ) // CMP
nz = a - data;
pc++;
c = ~nz;
nz &= 0xFF;
goto loop;
case 0x30: // BMI
BRANCH( IS_NEG )
case 0xF0: // BEQ
BRANCH( !(uint8_t) nz );
case 0x95: // STA zp,x
data = uint8_t (data + x);
case 0x85: // STA zp
pc++;
WRITE_LOW( data, a );
goto loop;
case 0xC8: // INY
INC_DEC_XY( y, 1 )
case 0xA8: // TAY
y = a;
nz = a;
goto loop;
case 0x98: // TYA
a = y;
nz = y;
goto loop;
case 0xAD:{// LDA abs
unsigned addr = GET_ADDR();
pc += 2;
nz = READ( addr );
a = nz;
goto loop;
}
case 0x60: // RTS
pc = 1 + READ_LOW( sp );
pc += 0x100 * READ_LOW( 0x100 | (sp - 0xFF) );
sp = (sp - 0xFE) | 0x100;
goto loop;
{
uint16_t addr;
case 0x99: // STA abs,Y
addr = y + GET_ADDR();
pc += 2;
if ( addr <= 0x7FF )
{
WRITE_LOW( addr, a );
goto loop;
}
goto sta_ptr;
case 0x8D: // STA abs
addr = GET_ADDR();
pc += 2;
if ( addr <= 0x7FF )
{
WRITE_LOW( addr, a );
goto loop;
}
goto sta_ptr;
case 0x9D: // STA abs,X (slightly more common than STA abs)
addr = x + GET_ADDR();
pc += 2;
if ( addr <= 0x7FF )
{
WRITE_LOW( addr, a );
goto loop;
}
sta_ptr:
FLUSH_TIME();
WRITE( addr, a );
CACHE_TIME();
goto loop;
case 0x91: // STA (ind),Y
IND_Y( NO_PAGE_CROSSING, addr )
pc++;
goto sta_ptr;
case 0x81: // STA (ind,X)
IND_X( addr )
pc++;
goto sta_ptr;
}
case 0xA9: // LDA #imm
pc++;
a = data;
nz = data;
goto loop;
// common read instructions
{
uint16_t addr;
case 0xA1: // LDA (ind,X)
IND_X( addr )
pc++;
goto a_nz_read_addr;
case 0xB1:// LDA (ind),Y
addr = READ_LOW( data ) + y;
HANDLE_PAGE_CROSSING( addr );
addr += 0x100 * READ_LOW( (uint8_t) (data + 1) );
pc++;
a = nz = READ_PROG( addr );
if ( (addr ^ 0x8000) <= 0x9FFF )
goto loop;
goto a_nz_read_addr;
case 0xB9: // LDA abs,Y
HANDLE_PAGE_CROSSING( data + y );
addr = GET_ADDR() + y;
pc += 2;
a = nz = READ_PROG( addr );
if ( (addr ^ 0x8000) <= 0x9FFF )
goto loop;
goto a_nz_read_addr;
case 0xBD: // LDA abs,X
HANDLE_PAGE_CROSSING( data + x );
addr = GET_ADDR() + x;
pc += 2;
a = nz = READ_PROG( addr );
if ( (addr ^ 0x8000) <= 0x9FFF )
goto loop;
a_nz_read_addr:
FLUSH_TIME();
a = nz = READ( addr );
CACHE_TIME();
goto loop;
}
// Branch
case 0x50: // BVC
BRANCH( !(status & st_v) )
case 0x70: // BVS
BRANCH( status & st_v )
case 0xB0: // BCS
BRANCH( c & 0x100 )
case 0x90: // BCC
BRANCH( !(c & 0x100) )
// Load/store
case 0x94: // STY zp,x
data = uint8_t (data + x);
case 0x84: // STY zp
pc++;
WRITE_LOW( data, y );
goto loop;
case 0x96: // STX zp,y
data = uint8_t (data + y);
case 0x86: // STX zp
pc++;
WRITE_LOW( data, x );
goto loop;
case 0xB6: // LDX zp,y
data = uint8_t (data + y);
case 0xA6: // LDX zp
data = READ_LOW( data );
case 0xA2: // LDX #imm
pc++;
x = data;
nz = data;
goto loop;
case 0xB4: // LDY zp,x
data = uint8_t (data + x);
case 0xA4: // LDY zp
data = READ_LOW( data );
case 0xA0: // LDY #imm
pc++;
y = data;
nz = data;
goto loop;
case 0xBC: // LDY abs,X
data += x;
HANDLE_PAGE_CROSSING( data );
case 0xAC:{// LDY abs
unsigned addr = data + 0x100 * GET_MSB();
pc += 2;
FLUSH_TIME();
y = nz = READ( addr );
CACHE_TIME();
goto loop;
}
case 0xBE: // LDX abs,y
data += y;
HANDLE_PAGE_CROSSING( data );
case 0xAE:{// LDX abs
unsigned addr = data + 0x100 * GET_MSB();
pc += 2;
FLUSH_TIME();
x = nz = READ( addr );
CACHE_TIME();
goto loop;
}
{
uint8_t temp;
case 0x8C: // STY abs
temp = y;
goto store_abs;
case 0x8E: // STX abs
temp = x;
store_abs:
unsigned addr = GET_ADDR();
pc += 2;
if ( addr <= 0x7FF )
{
WRITE_LOW( addr, temp );
goto loop;
}
FLUSH_TIME();
WRITE( addr, temp );
CACHE_TIME();
goto loop;
}
// Compare
case 0xEC:{// CPX abs
unsigned addr = GET_ADDR();
pc++;
FLUSH_TIME();
data = READ( addr );
CACHE_TIME();
goto cpx_data;
}
case 0xE4: // CPX zp
data = READ_LOW( data );
case 0xE0: // CPX #imm
cpx_data:
nz = x - data;
pc++;
c = ~nz;
nz &= 0xFF;
goto loop;
case 0xCC:{// CPY abs
unsigned addr = GET_ADDR();
pc++;
FLUSH_TIME();
data = READ( addr );
CACHE_TIME();
goto cpy_data;
}
case 0xC4: // CPY zp
data = READ_LOW( data );
case 0xC0: // CPY #imm
cpy_data:
nz = y - data;
pc++;
c = ~nz;
nz &= 0xFF;
goto loop;
// Logical
ARITH_ADDR_MODES( 0x25 ) // AND
nz = (a &= data);
pc++;
goto loop;
ARITH_ADDR_MODES( 0x45 ) // EOR
nz = (a ^= data);
pc++;
goto loop;
ARITH_ADDR_MODES( 0x05 ) // ORA
nz = (a |= data);
pc++;
goto loop;
case 0x2C:{// BIT abs
unsigned addr = GET_ADDR();
pc += 2;
status &= ~st_v;
nz = READ( addr );
status |= nz & st_v;
if ( a & nz )
goto loop;
nz <<= 8; // result must be zero, even if N bit is set
goto loop;
}
case 0x24: // BIT zp
nz = READ_LOW( data );
pc++;
status &= ~st_v;
status |= nz & st_v;
if ( a & nz )
goto loop;
nz <<= 8; // result must be zero, even if N bit is set
goto loop;
// Add/subtract
ARITH_ADDR_MODES( 0xE5 ) // SBC
case 0xEB: // unofficial equivalent
data ^= 0xFF;
goto adc_imm;
ARITH_ADDR_MODES( 0x65 ) // ADC
adc_imm: {
check( !(status & st_d) );
int16_t carry = c >> 8 & 1;
int16_t ov = (a ^ 0x80) + carry + (int8_t) data; // sign-extend
status &= ~st_v;
status |= ov >> 2 & 0x40;
c = nz = a + data + carry;
pc++;
a = (uint8_t) nz;
goto loop;
}
// Shift/rotate
case 0x4A: // LSR A
c = 0;
case 0x6A: // ROR A
nz = c >> 1 & 0x80;
c = a << 8;
nz |= a >> 1;
a = nz;
goto loop;
case 0x0A: // ASL A
nz = a << 1;
c = nz;
a = (uint8_t) nz;
goto loop;
case 0x2A: { // ROL A
nz = a << 1;
int16_t temp = c >> 8 & 1;
c = nz;
nz |= temp;
a = (uint8_t) nz;
goto loop;
}
case 0x5E: // LSR abs,X
data += x;
case 0x4E: // LSR abs
c = 0;
case 0x6E: // ROR abs
ror_abs: {
ADD_PAGE();
FLUSH_TIME();
int temp = READ( data );
nz = (c >> 1 & 0x80) | (temp >> 1);
c = temp << 8;
goto rotate_common;
}
case 0x3E: // ROL abs,X
data += x;
goto rol_abs;
case 0x1E: // ASL abs,X
data += x;
case 0x0E: // ASL abs
c = 0;
case 0x2E: // ROL abs
rol_abs:
ADD_PAGE();
nz = c >> 8 & 1;
FLUSH_TIME();
nz |= (c = READ( data ) << 1);
rotate_common:
pc++;
WRITE( data, (uint8_t) nz );
CACHE_TIME();
goto loop;
case 0x7E: // ROR abs,X
data += x;
goto ror_abs;
case 0x76: // ROR zp,x
data = uint8_t (data + x);
goto ror_zp;
case 0x56: // LSR zp,x
data = uint8_t (data + x);
case 0x46: // LSR zp
c = 0;
case 0x66: // ROR zp
ror_zp: {
int temp = READ_LOW( data );
nz = (c >> 1 & 0x80) | (temp >> 1);
c = temp << 8;
goto write_nz_zp;
}
case 0x36: // ROL zp,x
data = uint8_t (data + x);
goto rol_zp;
case 0x16: // ASL zp,x
data = uint8_t (data + x);
case 0x06: // ASL zp
c = 0;
case 0x26: // ROL zp
rol_zp:
nz = c >> 8 & 1;
nz |= (c = READ_LOW( data ) << 1);
goto write_nz_zp;
// Increment/decrement
case 0xCA: // DEX
INC_DEC_XY( x, -1 )
case 0x88: // DEY
INC_DEC_XY( y, -1 )
case 0xF6: // INC zp,x
data = uint8_t (data + x);
case 0xE6: // INC zp
nz = 1;
goto add_nz_zp;
case 0xD6: // DEC zp,x
data = uint8_t (data + x);
case 0xC6: // DEC zp
nz = (uint16_t) -1;
add_nz_zp:
nz += READ_LOW( data );
write_nz_zp:
pc++;
WRITE_LOW( data, nz );
goto loop;
case 0xFE: // INC abs,x
data = x + GET_ADDR();
goto inc_ptr;
case 0xEE: // INC abs
data = GET_ADDR();
inc_ptr:
nz = 1;
goto inc_common;
case 0xDE: // DEC abs,x
data = x + GET_ADDR();
goto dec_ptr;
case 0xCE: // DEC abs
data = GET_ADDR();
dec_ptr:
nz = (uint16_t) -1;
inc_common:
FLUSH_TIME();
nz += READ( data );
pc += 2;
WRITE( data, (uint8_t) nz );
CACHE_TIME();
goto loop;
// Transfer
case 0xAA: // TAX
x = a;
nz = a;
goto loop;
case 0x8A: // TXA
a = x;
nz = x;
goto loop;
case 0x9A: // TXS
SET_SP( x ); // verified (no flag change)
goto loop;
case 0xBA: // TSX
x = nz = GET_SP();
goto loop;
// Stack
case 0x48: // PHA
PUSH( a ); // verified
goto loop;
case 0x68: // PLA
a = nz = READ_LOW( sp );
sp = (sp - 0xFF) | 0x100;
goto loop;
case 0x40:{// RTI
uint8_t temp = READ_LOW( sp );
pc = READ_LOW( 0x100 | (sp - 0xFF) );
pc |= READ_LOW( 0x100 | (sp - 0xFE) ) * 0x100;
sp = (sp - 0xFD) | 0x100;
data = status;
SET_STATUS( temp );
this->r.status = status; // update externally-visible I flag
if ( (data ^ status) & st_i )
{
sap_time_t new_time = end_time_;
if ( !(status & st_i) && new_time > irq_time_ )
new_time = irq_time_;
blargg_long delta = s.base - new_time;
s.base = new_time;
s_time += delta;
}
goto loop;
}
case 0x28:{// PLP
uint8_t temp = READ_LOW( sp );
sp = (sp - 0xFF) | 0x100;
uint8_t changed = status ^ temp;
SET_STATUS( temp );
if ( !(changed & st_i) )
goto loop; // I flag didn't change
if ( status & st_i )
goto handle_sei;
goto handle_cli;
}
case 0x08: { // PHP
uint8_t temp;
CALC_STATUS( temp );
PUSH( temp | (st_b | st_r) );
goto loop;
}
case 0x6C:{// JMP (ind)
data = GET_ADDR();
pc = READ_PROG( data );
data = (data & 0xFF00) | ((data + 1) & 0xFF);
pc |= 0x100 * READ_PROG( data );
goto loop;
}
case 0x00: // BRK
goto handle_brk;
// Flags
case 0x38: // SEC
c = (uint16_t) ~0;
goto loop;
case 0x18: // CLC
c = 0;
goto loop;
case 0xB8: // CLV
status &= ~st_v;
goto loop;
case 0xD8: // CLD
status &= ~st_d;
goto loop;
case 0xF8: // SED
status |= st_d;
goto loop;
case 0x58: // CLI
if ( !(status & st_i) )
goto loop;
status &= ~st_i;
handle_cli: {
this->r.status = status; // update externally-visible I flag
blargg_long delta = s.base - irq_time_;
if ( delta <= 0 )
{
if ( TIME < irq_time_ )
goto loop;
goto delayed_cli;
}
s.base = irq_time_;
s_time += delta;
if ( s_time < 0 )
goto loop;
if ( delta >= s_time + 1 )
{
// delayed irq until after next instruction
s.base += s_time + 1;
s_time = -1;
irq_time_ = s.base; // TODO: remove, as only to satisfy debug check in loop
goto loop;
}
delayed_cli:
debug_printf( "Delayed CLI not emulated\n" );
goto loop;
}
case 0x78: // SEI
if ( status & st_i )
goto loop;
status |= st_i;
handle_sei: {
this->r.status = status; // update externally-visible I flag
blargg_long delta = s.base - end_time_;
s.base = end_time_;
s_time += delta;
if ( s_time < 0 )
goto loop;
debug_printf( "Delayed SEI not emulated\n" );
goto loop;
}
// Unofficial
// SKW - Skip word
case 0x1C: case 0x3C: case 0x5C: case 0x7C: case 0xDC: case 0xFC:
HANDLE_PAGE_CROSSING( data + x );
case 0x0C:
pc++;
// SKB - Skip byte
case 0x74: case 0x04: case 0x14: case 0x34: case 0x44: case 0x54: case 0x64:
case 0x80: case 0x82: case 0x89: case 0xC2: case 0xD4: case 0xE2: case 0xF4:
pc++;
goto loop;
// NOP
case 0xEA: case 0x1A: case 0x3A: case 0x5A: case 0x7A: case 0xDA: case 0xFA:
goto loop;
// Unimplemented
// halt
//case 0x02: case 0x12: case 0x22: case 0x32: case 0x42: case 0x52:
//case 0x62: case 0x72: case 0x92: case 0xB2: case 0xD2: case 0xF2:
default:
illegal_encountered = true;
pc--;
goto stop;
}
assert( false );
int result_;
handle_brk:
if ( (pc - 1) >= idle_addr )
goto idle_done;
pc++;
result_ = 4;
debug_printf( "BRK executed\n" );
interrupt:
{
s_time += 7;
WRITE_LOW( 0x100 | (sp - 1), pc >> 8 );
WRITE_LOW( 0x100 | (sp - 2), pc );
pc = GET_LE16( &READ_PROG( 0xFFFA ) + result_ );
sp = (sp - 3) | 0x100;
uint8_t temp;
CALC_STATUS( temp );
temp |= st_r;
if ( result_ )
temp |= st_b; // TODO: incorrectly sets B flag for IRQ
WRITE_LOW( sp, temp );
status &= ~st_d;
status |= st_i;
this->r.status = status; // update externally-visible I flag
blargg_long delta = s.base - end_time_;
s.base = end_time_;
s_time += delta;
goto loop;
}
idle_done:
//s_time = 0;
pc--;
goto stop;
out_of_time:
pc--;
FLUSH_TIME();
CPU_DONE( this, TIME, result_ );
CACHE_TIME();
if ( result_ >= 0 )
goto interrupt;
if ( s_time < 0 )
goto loop;
stop:
s.time = s_time;
r.pc = pc;
r.sp = GET_SP();
r.a = a;
r.x = x;
r.y = y;
{
uint8_t temp;
CALC_STATUS( temp );
r.status = temp;
}
this->state_ = s;
this->state = &this->state_;
return illegal_encountered;
}