mirror of
https://github.com/ZDoom/gzdoom.git
synced 2025-01-20 08:31:11 +00:00
Deleted remnants of old software backend
This commit is contained in:
parent
220d923e65
commit
75129f54b4
6 changed files with 0 additions and 1377 deletions
|
@ -1228,8 +1228,6 @@ set (PCH_SOURCES
|
|||
sound/wildmidi/wildmidi_lib.cpp
|
||||
sound/wildmidi/wm_error.cpp
|
||||
events.cpp
|
||||
GuillotineBinPack.cpp
|
||||
SkylineBinPack.cpp
|
||||
)
|
||||
|
||||
enable_precompiled_headers( g_pch.h PCH_SOURCES )
|
||||
|
|
|
@ -1,643 +0,0 @@
|
|||
/** @file GuillotineBinPack.cpp
|
||||
@author Jukka Jylänki
|
||||
|
||||
@brief Implements different bin packer algorithms that use the GUILLOTINE data structure.
|
||||
|
||||
This work is released to Public Domain, do whatever you want with it.
|
||||
*/
|
||||
|
||||
#include <cassert>
|
||||
#include <limits.h>
|
||||
#include "templates.h"
|
||||
#include "GuillotineBinPack.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
GuillotineBinPack::GuillotineBinPack()
|
||||
:binWidth(0),
|
||||
binHeight(0)
|
||||
{
|
||||
}
|
||||
|
||||
GuillotineBinPack::GuillotineBinPack(int width, int height)
|
||||
{
|
||||
Init(width, height);
|
||||
}
|
||||
|
||||
void GuillotineBinPack::Init(int width, int height)
|
||||
{
|
||||
binWidth = width;
|
||||
binHeight = height;
|
||||
|
||||
#ifdef _DEBUG
|
||||
disjointRects.Clear();
|
||||
#endif
|
||||
|
||||
// Clear any memory of previously packed rectangles.
|
||||
usedRectangles.Clear();
|
||||
|
||||
// We start with a single big free rectangle that spans the whole bin.
|
||||
Rect n;
|
||||
n.x = 0;
|
||||
n.y = 0;
|
||||
n.width = width;
|
||||
n.height = height;
|
||||
|
||||
freeRectangles.Clear();
|
||||
freeRectangles.Push(n);
|
||||
}
|
||||
|
||||
void GuillotineBinPack::Insert(TArray<RectSize> &rects, TArray<Rect> &dst, bool merge,
|
||||
FreeRectChoiceHeuristic rectChoice, GuillotineSplitHeuristic splitMethod)
|
||||
{
|
||||
dst.Clear();
|
||||
|
||||
// Remember variables about the best packing choice we have made so far during the iteration process.
|
||||
int bestFreeRect = 0;
|
||||
int bestRect = 0;
|
||||
bool bestFlipped = false;
|
||||
|
||||
// Pack rectangles one at a time until we have cleared the rects array of all rectangles.
|
||||
// rects will get destroyed in the process.
|
||||
while(rects.Size() > 0)
|
||||
{
|
||||
// Stores the penalty score of the best rectangle placement - bigger=worse, smaller=better.
|
||||
int bestScore = INT_MAX;
|
||||
|
||||
for(unsigned i = 0; i < freeRectangles.Size(); ++i)
|
||||
{
|
||||
for(unsigned j = 0; j < rects.Size(); ++j)
|
||||
{
|
||||
// If this rectangle is a perfect match, we pick it instantly.
|
||||
if (rects[j].width == freeRectangles[i].width && rects[j].height == freeRectangles[i].height)
|
||||
{
|
||||
bestFreeRect = i;
|
||||
bestRect = j;
|
||||
bestFlipped = false;
|
||||
bestScore = INT_MIN;
|
||||
i = freeRectangles.Size(); // Force a jump out of the outer loop as well - we got an instant fit.
|
||||
break;
|
||||
}
|
||||
// If flipping this rectangle is a perfect match, pick that then.
|
||||
else if (rects[j].height == freeRectangles[i].width && rects[j].width == freeRectangles[i].height)
|
||||
{
|
||||
bestFreeRect = i;
|
||||
bestRect = j;
|
||||
bestFlipped = true;
|
||||
bestScore = INT_MIN;
|
||||
i = freeRectangles.Size(); // Force a jump out of the outer loop as well - we got an instant fit.
|
||||
break;
|
||||
}
|
||||
// Try if we can fit the rectangle upright.
|
||||
else if (rects[j].width <= freeRectangles[i].width && rects[j].height <= freeRectangles[i].height)
|
||||
{
|
||||
int score = ScoreByHeuristic(rects[j].width, rects[j].height, freeRectangles[i], rectChoice);
|
||||
if (score < bestScore)
|
||||
{
|
||||
bestFreeRect = i;
|
||||
bestRect = j;
|
||||
bestFlipped = false;
|
||||
bestScore = score;
|
||||
}
|
||||
}
|
||||
// If not, then perhaps flipping sideways will make it fit?
|
||||
else if (rects[j].height <= freeRectangles[i].width && rects[j].width <= freeRectangles[i].height)
|
||||
{
|
||||
int score = ScoreByHeuristic(rects[j].height, rects[j].width, freeRectangles[i], rectChoice);
|
||||
if (score < bestScore)
|
||||
{
|
||||
bestFreeRect = i;
|
||||
bestRect = j;
|
||||
bestFlipped = true;
|
||||
bestScore = score;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If we didn't manage to find any rectangle to pack, abort.
|
||||
if (bestScore == INT_MAX)
|
||||
return;
|
||||
|
||||
// Otherwise, we're good to go and do the actual packing.
|
||||
Rect newNode;
|
||||
newNode.x = freeRectangles[bestFreeRect].x;
|
||||
newNode.y = freeRectangles[bestFreeRect].y;
|
||||
newNode.width = rects[bestRect].width;
|
||||
newNode.height = rects[bestRect].height;
|
||||
|
||||
if (bestFlipped)
|
||||
std::swap(newNode.width, newNode.height);
|
||||
|
||||
// Remove the free space we lost in the bin.
|
||||
SplitFreeRectByHeuristic(freeRectangles[bestFreeRect], newNode, splitMethod);
|
||||
freeRectangles.Delete(bestFreeRect);
|
||||
|
||||
// Remove the rectangle we just packed from the input list.
|
||||
rects.Delete(bestRect);
|
||||
|
||||
// Perform a Rectangle Merge step if desired.
|
||||
if (merge)
|
||||
MergeFreeList();
|
||||
|
||||
// Remember the new used rectangle.
|
||||
usedRectangles.Push(newNode);
|
||||
|
||||
// Check that we're really producing correct packings here.
|
||||
#ifdef _DEBUG
|
||||
assert(disjointRects.Add(newNode) == true);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
/// @return True if r fits inside freeRect (possibly rotated).
|
||||
bool Fits(const RectSize &r, const Rect &freeRect)
|
||||
{
|
||||
return (r.width <= freeRect.width && r.height <= freeRect.height) ||
|
||||
(r.height <= freeRect.width && r.width <= freeRect.height);
|
||||
}
|
||||
|
||||
/// @return True if r fits perfectly inside freeRect, i.e. the leftover area is 0.
|
||||
bool FitsPerfectly(const RectSize &r, const Rect &freeRect)
|
||||
{
|
||||
return (r.width == freeRect.width && r.height == freeRect.height) ||
|
||||
(r.height == freeRect.width && r.width == freeRect.height);
|
||||
}
|
||||
|
||||
/*
|
||||
// A helper function for GUILLOTINE-MAXFITTING. Counts how many rectangles fit into the given rectangle
|
||||
// after it has been split.
|
||||
void CountNumFitting(const Rect &freeRect, int width, int height, const TArray<RectSize> &rects,
|
||||
int usedRectIndex, bool splitHorizontal, int &score1, int &score2)
|
||||
{
|
||||
const int w = freeRect.width - width;
|
||||
const int h = freeRect.height - height;
|
||||
|
||||
Rect bottom;
|
||||
bottom.x = freeRect.x;
|
||||
bottom.y = freeRect.y + height;
|
||||
bottom.height = h;
|
||||
|
||||
Rect right;
|
||||
right.x = freeRect.x + width;
|
||||
right.y = freeRect.y;
|
||||
right.width = w;
|
||||
|
||||
if (splitHorizontal)
|
||||
{
|
||||
bottom.width = freeRect.width;
|
||||
right.height = height;
|
||||
}
|
||||
else // Split vertically
|
||||
{
|
||||
bottom.width = width;
|
||||
right.height = freeRect.height;
|
||||
}
|
||||
|
||||
int fitBottom = 0;
|
||||
int fitRight = 0;
|
||||
for(size_t i = 0; i < rects.size(); ++i)
|
||||
if (i != usedRectIndex)
|
||||
{
|
||||
if (FitsPerfectly(rects[i], bottom))
|
||||
fitBottom |= 0x10000000;
|
||||
if (FitsPerfectly(rects[i], right))
|
||||
fitRight |= 0x10000000;
|
||||
|
||||
if (Fits(rects[i], bottom))
|
||||
++fitBottom;
|
||||
if (Fits(rects[i], right))
|
||||
++fitRight;
|
||||
}
|
||||
|
||||
score1 = min(fitBottom, fitRight);
|
||||
score2 = max(fitBottom, fitRight);
|
||||
}
|
||||
*/
|
||||
/*
|
||||
// Implements GUILLOTINE-MAXFITTING, an experimental heuristic that's really cool but didn't quite work in practice.
|
||||
void GuillotineBinPack::InsertMaxFitting(TArray<RectSize> &rects, TArray<Rect> &dst, bool merge,
|
||||
FreeRectChoiceHeuristic rectChoice, GuillotineSplitHeuristic splitMethod)
|
||||
{
|
||||
dst.clear();
|
||||
int bestRect = 0;
|
||||
bool bestFlipped = false;
|
||||
bool bestSplitHorizontal = false;
|
||||
|
||||
// Pick rectangles one at a time and pack the one that leaves the most choices still open.
|
||||
while(rects.size() > 0 && freeRectangles.size() > 0)
|
||||
{
|
||||
int bestScore1 = -1;
|
||||
int bestScore2 = -1;
|
||||
|
||||
///\todo Different sort predicates.
|
||||
clb::sort::QuickSort(&freeRectangles[0], freeRectangles.size(), CompareRectShortSide);
|
||||
|
||||
Rect &freeRect = freeRectangles[0];
|
||||
|
||||
for(size_t j = 0; j < rects.size(); ++j)
|
||||
{
|
||||
int score1;
|
||||
int score2;
|
||||
|
||||
if (rects[j].width == freeRect.width && rects[j].height == freeRect.height)
|
||||
{
|
||||
bestRect = j;
|
||||
bestFlipped = false;
|
||||
bestScore1 = bestScore2 = std::numeric_limits<int>::max();
|
||||
break;
|
||||
}
|
||||
else if (rects[j].width <= freeRect.width && rects[j].height <= freeRect.height)
|
||||
{
|
||||
CountNumFitting(freeRect, rects[j].width, rects[j].height, rects, j, false, score1, score2);
|
||||
|
||||
if (score1 > bestScore1 || (score1 == bestScore1 && score2 > bestScore2))
|
||||
{
|
||||
bestRect = j;
|
||||
bestScore1 = score1;
|
||||
bestScore2 = score2;
|
||||
bestFlipped = false;
|
||||
bestSplitHorizontal = false;
|
||||
}
|
||||
|
||||
CountNumFitting(freeRect, rects[j].width, rects[j].height, rects, j, true, score1, score2);
|
||||
|
||||
if (score1 > bestScore1 || (score1 == bestScore1 && score2 > bestScore2))
|
||||
{
|
||||
bestRect = j;
|
||||
bestScore1 = score1;
|
||||
bestScore2 = score2;
|
||||
bestFlipped = false;
|
||||
bestSplitHorizontal = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (rects[j].height == freeRect.width && rects[j].width == freeRect.height)
|
||||
{
|
||||
bestRect = j;
|
||||
bestFlipped = true;
|
||||
bestScore1 = bestScore2 = std::numeric_limits<int>::max();
|
||||
break;
|
||||
}
|
||||
else if (rects[j].height <= freeRect.width && rects[j].width <= freeRect.height)
|
||||
{
|
||||
CountNumFitting(freeRect, rects[j].height, rects[j].width, rects, j, false, score1, score2);
|
||||
|
||||
if (score1 > bestScore1 || (score1 == bestScore1 && score2 > bestScore2))
|
||||
{
|
||||
bestRect = j;
|
||||
bestScore1 = score1;
|
||||
bestScore2 = score2;
|
||||
bestFlipped = true;
|
||||
bestSplitHorizontal = false;
|
||||
}
|
||||
|
||||
CountNumFitting(freeRect, rects[j].height, rects[j].width, rects, j, true, score1, score2);
|
||||
|
||||
if (score1 > bestScore1 || (score1 == bestScore1 && score2 > bestScore2))
|
||||
{
|
||||
bestRect = j;
|
||||
bestScore1 = score1;
|
||||
bestScore2 = score2;
|
||||
bestFlipped = true;
|
||||
bestSplitHorizontal = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (bestScore1 >= 0)
|
||||
{
|
||||
Rect newNode;
|
||||
newNode.x = freeRect.x;
|
||||
newNode.y = freeRect.y;
|
||||
newNode.width = rects[bestRect].width;
|
||||
newNode.height = rects[bestRect].height;
|
||||
if (bestFlipped)
|
||||
std::swap(newNode.width, newNode.height);
|
||||
|
||||
assert(disjointRects.Disjoint(newNode));
|
||||
SplitFreeRectAlongAxis(freeRect, newNode, bestSplitHorizontal);
|
||||
|
||||
rects.erase(rects.begin() + bestRect);
|
||||
|
||||
if (merge)
|
||||
MergeFreeList();
|
||||
|
||||
usedRectangles.push_back(newNode);
|
||||
#ifdef _DEBUG
|
||||
disjointRects.Add(newNode);
|
||||
#endif
|
||||
}
|
||||
|
||||
freeRectangles.erase(freeRectangles.begin());
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
Rect GuillotineBinPack::Insert(int width, int height, bool merge, FreeRectChoiceHeuristic rectChoice,
|
||||
GuillotineSplitHeuristic splitMethod)
|
||||
{
|
||||
// Find where to put the new rectangle.
|
||||
int freeNodeIndex = 0;
|
||||
Rect newRect = FindPositionForNewNode(width, height, rectChoice, &freeNodeIndex);
|
||||
|
||||
// Abort if we didn't have enough space in the bin.
|
||||
if (newRect.height == 0)
|
||||
return newRect;
|
||||
|
||||
// Remove the space that was just consumed by the new rectangle.
|
||||
SplitFreeRectByHeuristic(freeRectangles[freeNodeIndex], newRect, splitMethod);
|
||||
freeRectangles.Delete(freeNodeIndex);
|
||||
|
||||
// Perform a Rectangle Merge step if desired.
|
||||
if (merge)
|
||||
MergeFreeList();
|
||||
|
||||
// Remember the new used rectangle.
|
||||
usedRectangles.Push(newRect);
|
||||
|
||||
// Check that we're really producing correct packings here.
|
||||
#ifdef _DEBUG
|
||||
assert(disjointRects.Add(newRect) == true);
|
||||
#endif
|
||||
return newRect;
|
||||
}
|
||||
|
||||
/// Computes the ratio of used surface area to the total bin area.
|
||||
float GuillotineBinPack::Occupancy() const
|
||||
{
|
||||
///\todo The occupancy rate could be cached/tracked incrementally instead
|
||||
/// of looping through the list of packed rectangles here.
|
||||
unsigned long usedSurfaceArea = 0;
|
||||
for(unsigned i = 0; i < usedRectangles.Size(); ++i)
|
||||
usedSurfaceArea += usedRectangles[i].width * usedRectangles[i].height;
|
||||
|
||||
return (float)usedSurfaceArea / (binWidth * binHeight);
|
||||
}
|
||||
|
||||
/// Returns the heuristic score value for placing a rectangle of size width*height into freeRect. Does not try to rotate.
|
||||
int GuillotineBinPack::ScoreByHeuristic(int width, int height, const Rect &freeRect, FreeRectChoiceHeuristic rectChoice)
|
||||
{
|
||||
switch(rectChoice)
|
||||
{
|
||||
case RectBestAreaFit: return ScoreBestAreaFit(width, height, freeRect);
|
||||
case RectBestShortSideFit: return ScoreBestShortSideFit(width, height, freeRect);
|
||||
case RectBestLongSideFit: return ScoreBestLongSideFit(width, height, freeRect);
|
||||
case RectWorstAreaFit: return ScoreWorstAreaFit(width, height, freeRect);
|
||||
case RectWorstShortSideFit: return ScoreWorstShortSideFit(width, height, freeRect);
|
||||
case RectWorstLongSideFit: return ScoreWorstLongSideFit(width, height, freeRect);
|
||||
default: assert(false); return INT_MAX;
|
||||
}
|
||||
}
|
||||
|
||||
int GuillotineBinPack::ScoreBestAreaFit(int width, int height, const Rect &freeRect)
|
||||
{
|
||||
return freeRect.width * freeRect.height - width * height;
|
||||
}
|
||||
|
||||
int GuillotineBinPack::ScoreBestShortSideFit(int width, int height, const Rect &freeRect)
|
||||
{
|
||||
int leftoverHoriz = abs(freeRect.width - width);
|
||||
int leftoverVert = abs(freeRect.height - height);
|
||||
int leftover = MIN(leftoverHoriz, leftoverVert);
|
||||
return leftover;
|
||||
}
|
||||
|
||||
int GuillotineBinPack::ScoreBestLongSideFit(int width, int height, const Rect &freeRect)
|
||||
{
|
||||
int leftoverHoriz = abs(freeRect.width - width);
|
||||
int leftoverVert = abs(freeRect.height - height);
|
||||
int leftover = MAX(leftoverHoriz, leftoverVert);
|
||||
return leftover;
|
||||
}
|
||||
|
||||
int GuillotineBinPack::ScoreWorstAreaFit(int width, int height, const Rect &freeRect)
|
||||
{
|
||||
return -ScoreBestAreaFit(width, height, freeRect);
|
||||
}
|
||||
|
||||
int GuillotineBinPack::ScoreWorstShortSideFit(int width, int height, const Rect &freeRect)
|
||||
{
|
||||
return -ScoreBestShortSideFit(width, height, freeRect);
|
||||
}
|
||||
|
||||
int GuillotineBinPack::ScoreWorstLongSideFit(int width, int height, const Rect &freeRect)
|
||||
{
|
||||
return -ScoreBestLongSideFit(width, height, freeRect);
|
||||
}
|
||||
|
||||
Rect GuillotineBinPack::FindPositionForNewNode(int width, int height, FreeRectChoiceHeuristic rectChoice, int *nodeIndex)
|
||||
{
|
||||
Rect bestNode;
|
||||
memset(&bestNode, 0, sizeof(Rect));
|
||||
|
||||
int bestScore = INT_MAX;
|
||||
|
||||
/// Try each free rectangle to find the best one for placement.
|
||||
for(unsigned i = 0; i < freeRectangles.Size(); ++i)
|
||||
{
|
||||
// If this is a perfect fit upright, choose it immediately.
|
||||
if (width == freeRectangles[i].width && height == freeRectangles[i].height)
|
||||
{
|
||||
bestNode.x = freeRectangles[i].x;
|
||||
bestNode.y = freeRectangles[i].y;
|
||||
bestNode.width = width;
|
||||
bestNode.height = height;
|
||||
bestScore = INT_MIN;
|
||||
*nodeIndex = i;
|
||||
#ifdef _DEBUG
|
||||
assert(disjointRects.Disjoint(bestNode));
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
// If this is a perfect fit sideways, choose it.
|
||||
/* else if (height == freeRectangles[i].width && width == freeRectangles[i].height)
|
||||
{
|
||||
bestNode.x = freeRectangles[i].x;
|
||||
bestNode.y = freeRectangles[i].y;
|
||||
bestNode.width = height;
|
||||
bestNode.height = width;
|
||||
bestScore = INT_MIN;
|
||||
*nodeIndex = i;
|
||||
assert(disjointRects.Disjoint(bestNode));
|
||||
break;
|
||||
}
|
||||
*/ // Does the rectangle fit upright?
|
||||
else if (width <= freeRectangles[i].width && height <= freeRectangles[i].height)
|
||||
{
|
||||
int score = ScoreByHeuristic(width, height, freeRectangles[i], rectChoice);
|
||||
|
||||
if (score < bestScore)
|
||||
{
|
||||
bestNode.x = freeRectangles[i].x;
|
||||
bestNode.y = freeRectangles[i].y;
|
||||
bestNode.width = width;
|
||||
bestNode.height = height;
|
||||
bestScore = score;
|
||||
*nodeIndex = i;
|
||||
#ifdef _DEBUG
|
||||
assert(disjointRects.Disjoint(bestNode));
|
||||
#endif
|
||||
}
|
||||
}
|
||||
// Does the rectangle fit sideways?
|
||||
/* else if (height <= freeRectangles[i].width && width <= freeRectangles[i].height)
|
||||
{
|
||||
int score = ScoreByHeuristic(height, width, freeRectangles[i], rectChoice);
|
||||
|
||||
if (score < bestScore)
|
||||
{
|
||||
bestNode.x = freeRectangles[i].x;
|
||||
bestNode.y = freeRectangles[i].y;
|
||||
bestNode.width = height;
|
||||
bestNode.height = width;
|
||||
bestScore = score;
|
||||
*nodeIndex = i;
|
||||
assert(disjointRects.Disjoint(bestNode));
|
||||
}
|
||||
}
|
||||
*/ }
|
||||
return bestNode;
|
||||
}
|
||||
|
||||
void GuillotineBinPack::SplitFreeRectByHeuristic(const Rect &freeRect, const Rect &placedRect, GuillotineSplitHeuristic method)
|
||||
{
|
||||
// Compute the lengths of the leftover area.
|
||||
const int w = freeRect.width - placedRect.width;
|
||||
const int h = freeRect.height - placedRect.height;
|
||||
|
||||
// Placing placedRect into freeRect results in an L-shaped free area, which must be split into
|
||||
// two disjoint rectangles. This can be achieved with by splitting the L-shape using a single line.
|
||||
// We have two choices: horizontal or vertical.
|
||||
|
||||
// Use the given heuristic to decide which choice to make.
|
||||
|
||||
bool splitHorizontal;
|
||||
switch(method)
|
||||
{
|
||||
case SplitShorterLeftoverAxis:
|
||||
// Split along the shorter leftover axis.
|
||||
splitHorizontal = (w <= h);
|
||||
break;
|
||||
case SplitLongerLeftoverAxis:
|
||||
// Split along the longer leftover axis.
|
||||
splitHorizontal = (w > h);
|
||||
break;
|
||||
case SplitMinimizeArea:
|
||||
// Maximize the larger area == minimize the smaller area.
|
||||
// Tries to make the single bigger rectangle.
|
||||
splitHorizontal = (placedRect.width * h > w * placedRect.height);
|
||||
break;
|
||||
case SplitMaximizeArea:
|
||||
// Maximize the smaller area == minimize the larger area.
|
||||
// Tries to make the rectangles more even-sized.
|
||||
splitHorizontal = (placedRect.width * h <= w * placedRect.height);
|
||||
break;
|
||||
case SplitShorterAxis:
|
||||
// Split along the shorter total axis.
|
||||
splitHorizontal = (freeRect.width <= freeRect.height);
|
||||
break;
|
||||
case SplitLongerAxis:
|
||||
// Split along the longer total axis.
|
||||
splitHorizontal = (freeRect.width > freeRect.height);
|
||||
break;
|
||||
default:
|
||||
splitHorizontal = true;
|
||||
assert(false);
|
||||
}
|
||||
|
||||
// Perform the actual split.
|
||||
SplitFreeRectAlongAxis(freeRect, placedRect, splitHorizontal);
|
||||
}
|
||||
|
||||
/// This function will add the two generated rectangles into the freeRectangles array. The caller is expected to
|
||||
/// remove the original rectangle from the freeRectangles array after that.
|
||||
void GuillotineBinPack::SplitFreeRectAlongAxis(const Rect &freeRect, const Rect &placedRect, bool splitHorizontal)
|
||||
{
|
||||
// Form the two new rectangles.
|
||||
Rect bottom;
|
||||
bottom.x = freeRect.x;
|
||||
bottom.y = freeRect.y + placedRect.height;
|
||||
bottom.height = freeRect.height - placedRect.height;
|
||||
|
||||
Rect right;
|
||||
right.x = freeRect.x + placedRect.width;
|
||||
right.y = freeRect.y;
|
||||
right.width = freeRect.width - placedRect.width;
|
||||
|
||||
if (splitHorizontal)
|
||||
{
|
||||
bottom.width = freeRect.width;
|
||||
right.height = placedRect.height;
|
||||
}
|
||||
else // Split vertically
|
||||
{
|
||||
bottom.width = placedRect.width;
|
||||
right.height = freeRect.height;
|
||||
}
|
||||
|
||||
// Add the new rectangles into the free rectangle pool if they weren't degenerate.
|
||||
if (bottom.width > 0 && bottom.height > 0)
|
||||
freeRectangles.Push(bottom);
|
||||
if (right.width > 0 && right.height > 0)
|
||||
freeRectangles.Push(right);
|
||||
|
||||
#ifdef _DEBUG
|
||||
assert(disjointRects.Disjoint(bottom));
|
||||
assert(disjointRects.Disjoint(right));
|
||||
#endif
|
||||
}
|
||||
|
||||
void GuillotineBinPack::MergeFreeList()
|
||||
{
|
||||
#ifdef _DEBUG
|
||||
DisjointRectCollection test;
|
||||
for(unsigned i = 0; i < freeRectangles.Size(); ++i)
|
||||
assert(test.Add(freeRectangles[i]) == true);
|
||||
#endif
|
||||
|
||||
// Do a Theta(n^2) loop to see if any pair of free rectangles could me merged into one.
|
||||
// Note that we miss any opportunities to merge three rectangles into one. (should call this function again to detect that)
|
||||
for(unsigned i = 0; i < freeRectangles.Size(); ++i)
|
||||
for(unsigned j = i+1; j < freeRectangles.Size(); ++j)
|
||||
{
|
||||
if (freeRectangles[i].width == freeRectangles[j].width && freeRectangles[i].x == freeRectangles[j].x)
|
||||
{
|
||||
if (freeRectangles[i].y == freeRectangles[j].y + freeRectangles[j].height)
|
||||
{
|
||||
freeRectangles[i].y -= freeRectangles[j].height;
|
||||
freeRectangles[i].height += freeRectangles[j].height;
|
||||
freeRectangles.Delete(j);
|
||||
--j;
|
||||
}
|
||||
else if (freeRectangles[i].y + freeRectangles[i].height == freeRectangles[j].y)
|
||||
{
|
||||
freeRectangles[i].height += freeRectangles[j].height;
|
||||
freeRectangles.Delete(j);
|
||||
--j;
|
||||
}
|
||||
}
|
||||
else if (freeRectangles[i].height == freeRectangles[j].height && freeRectangles[i].y == freeRectangles[j].y)
|
||||
{
|
||||
if (freeRectangles[i].x == freeRectangles[j].x + freeRectangles[j].width)
|
||||
{
|
||||
freeRectangles[i].x -= freeRectangles[j].width;
|
||||
freeRectangles[i].width += freeRectangles[j].width;
|
||||
freeRectangles.Delete(j);
|
||||
--j;
|
||||
}
|
||||
else if (freeRectangles[i].x + freeRectangles[i].width == freeRectangles[j].x)
|
||||
{
|
||||
freeRectangles[i].width += freeRectangles[j].width;
|
||||
freeRectangles.Delete(j);
|
||||
--j;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef _DEBUG
|
||||
test.Clear();
|
||||
for(unsigned i = 0; i < freeRectangles.Size(); ++i)
|
||||
assert(test.Add(freeRectangles[i]) == true);
|
||||
#endif
|
||||
}
|
|
@ -1,135 +0,0 @@
|
|||
/** @file GuillotineBinPack.h
|
||||
@author Jukka Jylänki
|
||||
|
||||
@brief Implements different bin packer algorithms that use the GUILLOTINE data structure.
|
||||
|
||||
This work is released to Public Domain, do whatever you want with it.
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include "tarray.h"
|
||||
|
||||
#include "Rect.h"
|
||||
|
||||
/** GuillotineBinPack implements different variants of bin packer algorithms that use the GUILLOTINE data structure
|
||||
to keep track of the free space of the bin where rectangles may be placed. */
|
||||
class GuillotineBinPack
|
||||
{
|
||||
public:
|
||||
/// The initial bin size will be (0,0). Call Init to set the bin size.
|
||||
GuillotineBinPack();
|
||||
|
||||
/// Initializes a new bin of the given size.
|
||||
GuillotineBinPack(int width, int height);
|
||||
|
||||
/// (Re)initializes the packer to an empty bin of width x height units. Call whenever
|
||||
/// you need to restart with a new bin.
|
||||
void Init(int width, int height);
|
||||
|
||||
/// Specifies the different choice heuristics that can be used when deciding which of the free subrectangles
|
||||
/// to place the to-be-packed rectangle into.
|
||||
enum FreeRectChoiceHeuristic
|
||||
{
|
||||
RectBestAreaFit, ///< -BAF
|
||||
RectBestShortSideFit, ///< -BSSF
|
||||
RectBestLongSideFit, ///< -BLSF
|
||||
RectWorstAreaFit, ///< -WAF
|
||||
RectWorstShortSideFit, ///< -WSSF
|
||||
RectWorstLongSideFit ///< -WLSF
|
||||
};
|
||||
|
||||
/// Specifies the different choice heuristics that can be used when the packer needs to decide whether to
|
||||
/// subdivide the remaining free space in horizontal or vertical direction.
|
||||
enum GuillotineSplitHeuristic
|
||||
{
|
||||
SplitShorterLeftoverAxis, ///< -SLAS
|
||||
SplitLongerLeftoverAxis, ///< -LLAS
|
||||
SplitMinimizeArea, ///< -MINAS, Try to make a single big rectangle at the expense of making the other small.
|
||||
SplitMaximizeArea, ///< -MAXAS, Try to make both remaining rectangles as even-sized as possible.
|
||||
SplitShorterAxis, ///< -SAS
|
||||
SplitLongerAxis ///< -LAS
|
||||
};
|
||||
|
||||
/// Inserts a single rectangle into the bin. The packer might rotate the rectangle, in which case the returned
|
||||
/// struct will have the width and height values swapped.
|
||||
/// @param merge If true, performs free Rectangle Merge procedure after packing the new rectangle. This procedure
|
||||
/// tries to defragment the list of disjoint free rectangles to improve packing performance, but also takes up
|
||||
/// some extra time.
|
||||
/// @param rectChoice The free rectangle choice heuristic rule to use.
|
||||
/// @param splitMethod The free rectangle split heuristic rule to use.
|
||||
Rect Insert(int width, int height, bool merge, FreeRectChoiceHeuristic rectChoice, GuillotineSplitHeuristic splitMethod);
|
||||
|
||||
/// Inserts a list of rectangles into the bin.
|
||||
/// @param rects The list of rectangles to add. This list will be destroyed in the packing process.
|
||||
/// @param dst The outputted list of rectangles. Note that the indices will not correspond to the input indices.
|
||||
/// @param merge If true, performs Rectangle Merge operations during the packing process.
|
||||
/// @param rectChoice The free rectangle choice heuristic rule to use.
|
||||
/// @param splitMethod The free rectangle split heuristic rule to use.
|
||||
void Insert(TArray<RectSize> &rects, TArray<Rect> &dst, bool merge,
|
||||
FreeRectChoiceHeuristic rectChoice, GuillotineSplitHeuristic splitMethod);
|
||||
|
||||
// Implements GUILLOTINE-MAXFITTING, an experimental heuristic that's really cool but didn't quite work in practice.
|
||||
// void InsertMaxFitting(TArray<RectSize> &rects, TArray<Rect> &dst, bool merge,
|
||||
// FreeRectChoiceHeuristic rectChoice, GuillotineSplitHeuristic splitMethod);
|
||||
|
||||
/// Computes the ratio of used/total surface area. 0.00 means no space is yet used, 1.00 means the whole bin is used.
|
||||
float Occupancy() const;
|
||||
|
||||
/// Returns the internal list of disjoint rectangles that track the free area of the bin. You may alter this vector
|
||||
/// any way desired, as long as the end result still is a list of disjoint rectangles.
|
||||
TArray<Rect> &GetFreeRectangles() { return freeRectangles; }
|
||||
|
||||
/// Returns the list of packed rectangles. You may alter this vector at will, for example, you can move a Rect from
|
||||
/// this list to the Free Rectangles list to free up space on-the-fly, but notice that this causes fragmentation.
|
||||
TArray<Rect> &GetUsedRectangles() { return usedRectangles; }
|
||||
|
||||
/// Performs a Rectangle Merge operation. This procedure looks for adjacent free rectangles and merges them if they
|
||||
/// can be represented with a single rectangle. Takes up Theta(|freeRectangles|^2) time.
|
||||
void MergeFreeList();
|
||||
|
||||
#ifdef _DEBUG
|
||||
void DelDisjoint(const Rect &r) { disjointRects.Del(r); }
|
||||
#endif
|
||||
|
||||
private:
|
||||
int binWidth;
|
||||
int binHeight;
|
||||
|
||||
/// Stores a list of all the rectangles that we have packed so far. This is used only to compute the Occupancy ratio,
|
||||
/// so if you want to have the packer consume less memory, this can be removed.
|
||||
TArray<Rect> usedRectangles;
|
||||
|
||||
/// Stores a list of rectangles that represents the free area of the bin. This rectangles in this list are disjoint.
|
||||
TArray<Rect> freeRectangles;
|
||||
|
||||
#ifdef _DEBUG
|
||||
/// Used to track that the packer produces proper packings.
|
||||
DisjointRectCollection disjointRects;
|
||||
#endif
|
||||
|
||||
/// Goes through the list of free rectangles and finds the best one to place a rectangle of given size into.
|
||||
/// Running time is Theta(|freeRectangles|).
|
||||
/// @param nodeIndex [out] The index of the free rectangle in the freeRectangles array into which the new
|
||||
/// rect was placed.
|
||||
/// @return A Rect structure that represents the placement of the new rect into the best free rectangle.
|
||||
Rect FindPositionForNewNode(int width, int height, FreeRectChoiceHeuristic rectChoice, int *nodeIndex);
|
||||
|
||||
static int ScoreByHeuristic(int width, int height, const Rect &freeRect, FreeRectChoiceHeuristic rectChoice);
|
||||
// The following functions compute (penalty) score values if a rect of the given size was placed into the
|
||||
// given free rectangle. In these score values, smaller is better.
|
||||
|
||||
static int ScoreBestAreaFit(int width, int height, const Rect &freeRect);
|
||||
static int ScoreBestShortSideFit(int width, int height, const Rect &freeRect);
|
||||
static int ScoreBestLongSideFit(int width, int height, const Rect &freeRect);
|
||||
|
||||
static int ScoreWorstAreaFit(int width, int height, const Rect &freeRect);
|
||||
static int ScoreWorstShortSideFit(int width, int height, const Rect &freeRect);
|
||||
static int ScoreWorstLongSideFit(int width, int height, const Rect &freeRect);
|
||||
|
||||
/// Splits the given L-shaped free rectangle into two new free rectangles after placedRect has been placed into it.
|
||||
/// Determines the split axis by using the given heuristic.
|
||||
void SplitFreeRectByHeuristic(const Rect &freeRect, const Rect &placedRect, GuillotineSplitHeuristic method);
|
||||
|
||||
/// Splits the given L-shaped free rectangle into two new free rectangles along the given fixed split axis.
|
||||
void SplitFreeRectAlongAxis(const Rect &freeRect, const Rect &placedRect, bool splitHorizontal);
|
||||
};
|
94
src/Rect.h
94
src/Rect.h
|
@ -1,94 +0,0 @@
|
|||
/** @file Rect.h
|
||||
@author Jukka Jylänki
|
||||
|
||||
This work is released to Public Domain, do whatever you want with it.
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
|
||||
struct RectSize
|
||||
{
|
||||
int width;
|
||||
int height;
|
||||
};
|
||||
|
||||
struct Rect
|
||||
{
|
||||
int x;
|
||||
int y;
|
||||
int width;
|
||||
int height;
|
||||
};
|
||||
|
||||
/// Performs a lexicographic compare on (rect short side, rect long side).
|
||||
/// @return -1 if the smaller side of a is shorter than the smaller side of b, 1 if the other way around.
|
||||
/// If they are equal, the larger side length is used as a tie-breaker.
|
||||
/// If the rectangles are of same size, returns 0.
|
||||
int CompareRectShortSide(const Rect &a, const Rect &b);
|
||||
|
||||
/// Performs a lexicographic compare on (x, y, width, height).
|
||||
int NodeSortCmp(const Rect &a, const Rect &b);
|
||||
|
||||
/// Returns true if a is contained in b.
|
||||
bool IsContainedIn(const Rect &a, const Rect &b);
|
||||
|
||||
#ifdef _DEBUG
|
||||
class DisjointRectCollection
|
||||
{
|
||||
public:
|
||||
TArray<Rect> rects;
|
||||
|
||||
bool Add(const Rect &r)
|
||||
{
|
||||
// Degenerate rectangles are ignored.
|
||||
if (r.width == 0 || r.height == 0)
|
||||
return true;
|
||||
|
||||
if (!Disjoint(r))
|
||||
return false;
|
||||
rects.Push(r);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Del(const Rect &r)
|
||||
{
|
||||
for(unsigned i = 0; i < rects.Size(); ++i)
|
||||
{
|
||||
if(r.x == rects[i].x && r.y == rects[i].y && r.width == rects[i].width && r.height == rects[i].height)
|
||||
{
|
||||
rects.Delete(i);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void Clear()
|
||||
{
|
||||
rects.Clear();
|
||||
}
|
||||
|
||||
bool Disjoint(const Rect &r) const
|
||||
{
|
||||
// Degenerate rectangles are ignored.
|
||||
if (r.width == 0 || r.height == 0)
|
||||
return true;
|
||||
|
||||
for(unsigned i = 0; i < rects.Size(); ++i)
|
||||
if (!Disjoint(rects[i], r))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool Disjoint(const Rect &a, const Rect &b)
|
||||
{
|
||||
if (a.x + a.width <= b.x ||
|
||||
b.x + b.width <= a.x ||
|
||||
a.y + a.height <= b.y ||
|
||||
b.y + b.height <= a.y)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
};
|
||||
#endif
|
|
@ -1,412 +0,0 @@
|
|||
/** @file SkylineBinPack.cpp
|
||||
@author Jukka Jylänki
|
||||
|
||||
@brief Implements different bin packer algorithms that use the SKYLINE data structure.
|
||||
|
||||
This work is released to Public Domain, do whatever you want with it.
|
||||
*/
|
||||
|
||||
#include <cassert>
|
||||
#include <limits.h>
|
||||
#include "templates.h"
|
||||
|
||||
#include "SkylineBinPack.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
SkylineBinPack::SkylineBinPack()
|
||||
:binWidth(0),
|
||||
binHeight(0)
|
||||
{
|
||||
}
|
||||
|
||||
SkylineBinPack::SkylineBinPack(int width, int height, bool useWasteMap)
|
||||
{
|
||||
Init(width, height, useWasteMap);
|
||||
}
|
||||
|
||||
void SkylineBinPack::Init(int width, int height, bool useWasteMap_)
|
||||
{
|
||||
binWidth = width;
|
||||
binHeight = height;
|
||||
|
||||
useWasteMap = useWasteMap_;
|
||||
|
||||
#ifdef _DEBUG
|
||||
disjointRects.Clear();
|
||||
#endif
|
||||
|
||||
usedSurfaceArea = 0;
|
||||
skyLine.Clear();
|
||||
SkylineNode node;
|
||||
node.x = 0;
|
||||
node.y = 0;
|
||||
node.width = binWidth;
|
||||
skyLine.Push(node);
|
||||
|
||||
if (useWasteMap)
|
||||
{
|
||||
wasteMap.Init(width, height);
|
||||
wasteMap.GetFreeRectangles().Clear();
|
||||
}
|
||||
}
|
||||
|
||||
void SkylineBinPack::Insert(TArray<RectSize> &rects, TArray<Rect> &dst)
|
||||
{
|
||||
dst.Clear();
|
||||
|
||||
while(rects.Size() > 0)
|
||||
{
|
||||
Rect bestNode;
|
||||
int bestScore1 = INT_MAX;
|
||||
int bestScore2 = INT_MAX;
|
||||
int bestSkylineIndex = -1;
|
||||
int bestRectIndex = -1;
|
||||
for(unsigned i = 0; i < rects.Size(); ++i)
|
||||
{
|
||||
Rect newNode;
|
||||
int score1;
|
||||
int score2;
|
||||
int index;
|
||||
newNode = FindPositionForNewNodeMinWaste(rects[i].width, rects[i].height, score2, score1, index);
|
||||
#ifdef _DEBUG
|
||||
assert(disjointRects.Disjoint(newNode));
|
||||
#endif
|
||||
if (newNode.height != 0)
|
||||
{
|
||||
if (score1 < bestScore1 || (score1 == bestScore1 && score2 < bestScore2))
|
||||
{
|
||||
bestNode = newNode;
|
||||
bestScore1 = score1;
|
||||
bestScore2 = score2;
|
||||
bestSkylineIndex = index;
|
||||
bestRectIndex = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (bestRectIndex == -1)
|
||||
return;
|
||||
|
||||
// Perform the actual packing.
|
||||
#ifdef _DEBUG
|
||||
assert(disjointRects.Disjoint(bestNode));
|
||||
disjointRects.Add(bestNode);
|
||||
#endif
|
||||
AddSkylineLevel(bestSkylineIndex, bestNode);
|
||||
usedSurfaceArea += rects[bestRectIndex].width * rects[bestRectIndex].height;
|
||||
rects.Delete(bestRectIndex);
|
||||
dst.Push(bestNode);
|
||||
}
|
||||
}
|
||||
|
||||
Rect SkylineBinPack::Insert(int width, int height)
|
||||
{
|
||||
// First try to pack this rectangle into the waste map, if it fits.
|
||||
Rect node = wasteMap.Insert(width, height, true, GuillotineBinPack::RectBestShortSideFit,
|
||||
GuillotineBinPack::SplitMaximizeArea);
|
||||
#ifdef _DEBUG
|
||||
assert(disjointRects.Disjoint(node));
|
||||
#endif
|
||||
|
||||
if (node.height != 0)
|
||||
{
|
||||
Rect newNode;
|
||||
newNode.x = node.x;
|
||||
newNode.y = node.y;
|
||||
newNode.width = node.width;
|
||||
newNode.height = node.height;
|
||||
usedSurfaceArea += width * height;
|
||||
#ifdef _DEBUG
|
||||
assert(disjointRects.Disjoint(newNode));
|
||||
disjointRects.Add(newNode);
|
||||
#endif
|
||||
return newNode;
|
||||
}
|
||||
|
||||
return InsertBottomLeft(width, height);
|
||||
}
|
||||
|
||||
bool SkylineBinPack::RectangleFits(int skylineNodeIndex, int width, int height, int &y) const
|
||||
{
|
||||
int x = skyLine[skylineNodeIndex].x;
|
||||
if (x + width > binWidth)
|
||||
return false;
|
||||
int widthLeft = width;
|
||||
int i = skylineNodeIndex;
|
||||
y = skyLine[skylineNodeIndex].y;
|
||||
while(widthLeft > 0)
|
||||
{
|
||||
y = MAX(y, skyLine[i].y);
|
||||
if (y + height > binHeight)
|
||||
return false;
|
||||
widthLeft -= skyLine[i].width;
|
||||
++i;
|
||||
assert(i < (int)skyLine.Size() || widthLeft <= 0);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
int SkylineBinPack::ComputeWastedArea(int skylineNodeIndex, int width, int height, int y) const
|
||||
{
|
||||
int wastedArea = 0;
|
||||
const int rectLeft = skyLine[skylineNodeIndex].x;
|
||||
const int rectRight = rectLeft + width;
|
||||
for(; skylineNodeIndex < (int)skyLine.Size() && skyLine[skylineNodeIndex].x < rectRight; ++skylineNodeIndex)
|
||||
{
|
||||
if (skyLine[skylineNodeIndex].x >= rectRight || skyLine[skylineNodeIndex].x + skyLine[skylineNodeIndex].width <= rectLeft)
|
||||
break;
|
||||
|
||||
int leftSide = skyLine[skylineNodeIndex].x;
|
||||
int rightSide = MIN(rectRight, leftSide + skyLine[skylineNodeIndex].width);
|
||||
assert(y >= skyLine[skylineNodeIndex].y);
|
||||
wastedArea += (rightSide - leftSide) * (y - skyLine[skylineNodeIndex].y);
|
||||
}
|
||||
return wastedArea;
|
||||
}
|
||||
|
||||
bool SkylineBinPack::RectangleFits(int skylineNodeIndex, int width, int height, int &y, int &wastedArea) const
|
||||
{
|
||||
bool fits = RectangleFits(skylineNodeIndex, width, height, y);
|
||||
if (fits)
|
||||
wastedArea = ComputeWastedArea(skylineNodeIndex, width, height, y);
|
||||
|
||||
return fits;
|
||||
}
|
||||
|
||||
void SkylineBinPack::AddWasteMapArea(int skylineNodeIndex, int width, int height, int y)
|
||||
{
|
||||
int wastedArea = 0;
|
||||
const int rectLeft = skyLine[skylineNodeIndex].x;
|
||||
const int rectRight = rectLeft + width;
|
||||
for(; skylineNodeIndex < (int)skyLine.Size() && skyLine[skylineNodeIndex].x < rectRight; ++skylineNodeIndex)
|
||||
{
|
||||
if (skyLine[skylineNodeIndex].x >= rectRight || skyLine[skylineNodeIndex].x + skyLine[skylineNodeIndex].width <= rectLeft)
|
||||
break;
|
||||
|
||||
int leftSide = skyLine[skylineNodeIndex].x;
|
||||
int rightSide = MIN(rectRight, leftSide + skyLine[skylineNodeIndex].width);
|
||||
assert(y >= skyLine[skylineNodeIndex].y);
|
||||
|
||||
Rect waste;
|
||||
waste.x = leftSide;
|
||||
waste.y = skyLine[skylineNodeIndex].y;
|
||||
waste.width = rightSide - leftSide;
|
||||
waste.height = y - skyLine[skylineNodeIndex].y;
|
||||
|
||||
#ifdef _DEBUG
|
||||
assert(disjointRects.Disjoint(waste));
|
||||
#endif
|
||||
wasteMap.GetFreeRectangles().Push(waste);
|
||||
}
|
||||
}
|
||||
|
||||
void SkylineBinPack::AddWaste(const Rect &waste)
|
||||
{
|
||||
wasteMap.GetFreeRectangles().Push(waste);
|
||||
#ifdef _DEBUG
|
||||
disjointRects.Del(waste);
|
||||
wasteMap.DelDisjoint(waste);
|
||||
#endif
|
||||
}
|
||||
|
||||
void SkylineBinPack::AddSkylineLevel(int skylineNodeIndex, const Rect &rect)
|
||||
{
|
||||
// First track all wasted areas and mark them into the waste map if we're using one.
|
||||
if (useWasteMap)
|
||||
AddWasteMapArea(skylineNodeIndex, rect.width, rect.height, rect.y);
|
||||
|
||||
SkylineNode newNode;
|
||||
newNode.x = rect.x;
|
||||
newNode.y = rect.y + rect.height;
|
||||
newNode.width = rect.width;
|
||||
skyLine.Insert(skylineNodeIndex, newNode);
|
||||
|
||||
assert(newNode.x + newNode.width <= binWidth);
|
||||
assert(newNode.y <= binHeight);
|
||||
|
||||
for(unsigned i = skylineNodeIndex+1; i < skyLine.Size(); ++i)
|
||||
{
|
||||
assert(skyLine[i-1].x <= skyLine[i].x);
|
||||
|
||||
if (skyLine[i].x < skyLine[i-1].x + skyLine[i-1].width)
|
||||
{
|
||||
int shrink = skyLine[i-1].x + skyLine[i-1].width - skyLine[i].x;
|
||||
|
||||
skyLine[i].x += shrink;
|
||||
skyLine[i].width -= shrink;
|
||||
|
||||
if (skyLine[i].width <= 0)
|
||||
{
|
||||
skyLine.Delete(i);
|
||||
--i;
|
||||
}
|
||||
else
|
||||
break;
|
||||
}
|
||||
else
|
||||
break;
|
||||
}
|
||||
MergeSkylines();
|
||||
}
|
||||
|
||||
void SkylineBinPack::MergeSkylines()
|
||||
{
|
||||
for(unsigned i = 0; i < skyLine.Size()-1; ++i)
|
||||
if (skyLine[i].y == skyLine[i+1].y)
|
||||
{
|
||||
skyLine[i].width += skyLine[i+1].width;
|
||||
skyLine.Delete(i+1);
|
||||
--i;
|
||||
}
|
||||
}
|
||||
|
||||
Rect SkylineBinPack::InsertBottomLeft(int width, int height)
|
||||
{
|
||||
int bestHeight;
|
||||
int bestWidth;
|
||||
int bestIndex;
|
||||
Rect newNode = FindPositionForNewNodeBottomLeft(width, height, bestHeight, bestWidth, bestIndex);
|
||||
|
||||
if (bestIndex != -1)
|
||||
{
|
||||
#ifdef _DEBUG
|
||||
assert(disjointRects.Disjoint(newNode));
|
||||
#endif
|
||||
// Perform the actual packing.
|
||||
AddSkylineLevel(bestIndex, newNode);
|
||||
|
||||
usedSurfaceArea += width * height;
|
||||
#ifdef _DEBUG
|
||||
disjointRects.Add(newNode);
|
||||
#endif
|
||||
}
|
||||
else
|
||||
memset(&newNode, 0, sizeof(Rect));
|
||||
|
||||
return newNode;
|
||||
}
|
||||
|
||||
Rect SkylineBinPack::FindPositionForNewNodeBottomLeft(int width, int height, int &bestHeight, int &bestWidth, int &bestIndex) const
|
||||
{
|
||||
bestHeight = INT_MAX;
|
||||
bestIndex = -1;
|
||||
// Used to break ties if there are nodes at the same level. Then pick the narrowest one.
|
||||
bestWidth = INT_MAX;
|
||||
Rect newNode = { 0, 0, 0, 0 };
|
||||
for(unsigned i = 0; i < skyLine.Size(); ++i)
|
||||
{
|
||||
int y;
|
||||
if (RectangleFits(i, width, height, y))
|
||||
{
|
||||
if (y + height < bestHeight || (y + height == bestHeight && skyLine[i].width < bestWidth))
|
||||
{
|
||||
bestHeight = y + height;
|
||||
bestIndex = i;
|
||||
bestWidth = skyLine[i].width;
|
||||
newNode.x = skyLine[i].x;
|
||||
newNode.y = y;
|
||||
newNode.width = width;
|
||||
newNode.height = height;
|
||||
#ifdef _DEBUG
|
||||
assert(disjointRects.Disjoint(newNode));
|
||||
#endif
|
||||
}
|
||||
}
|
||||
/* if (RectangleFits(i, height, width, y))
|
||||
{
|
||||
if (y + width < bestHeight || (y + width == bestHeight && skyLine[i].width < bestWidth))
|
||||
{
|
||||
bestHeight = y + width;
|
||||
bestIndex = i;
|
||||
bestWidth = skyLine[i].width;
|
||||
newNode.x = skyLine[i].x;
|
||||
newNode.y = y;
|
||||
newNode.width = height;
|
||||
newNode.height = width;
|
||||
assert(disjointRects.Disjoint(newNode));
|
||||
}
|
||||
}
|
||||
*/ }
|
||||
|
||||
return newNode;
|
||||
}
|
||||
|
||||
Rect SkylineBinPack::InsertMinWaste(int width, int height)
|
||||
{
|
||||
int bestHeight;
|
||||
int bestWastedArea;
|
||||
int bestIndex;
|
||||
Rect newNode = FindPositionForNewNodeMinWaste(width, height, bestHeight, bestWastedArea, bestIndex);
|
||||
|
||||
if (bestIndex != -1)
|
||||
{
|
||||
#ifdef _DEBUG
|
||||
assert(disjointRects.Disjoint(newNode));
|
||||
#endif
|
||||
// Perform the actual packing.
|
||||
AddSkylineLevel(bestIndex, newNode);
|
||||
|
||||
usedSurfaceArea += width * height;
|
||||
#ifdef _DEBUG
|
||||
disjointRects.Add(newNode);
|
||||
#endif
|
||||
}
|
||||
else
|
||||
memset(&newNode, 0, sizeof(newNode));
|
||||
|
||||
return newNode;
|
||||
}
|
||||
|
||||
Rect SkylineBinPack::FindPositionForNewNodeMinWaste(int width, int height, int &bestHeight, int &bestWastedArea, int &bestIndex) const
|
||||
{
|
||||
bestHeight = INT_MAX;
|
||||
bestWastedArea = INT_MAX;
|
||||
bestIndex = -1;
|
||||
Rect newNode;
|
||||
memset(&newNode, 0, sizeof(newNode));
|
||||
for(unsigned i = 0; i < skyLine.Size(); ++i)
|
||||
{
|
||||
int y;
|
||||
int wastedArea;
|
||||
|
||||
if (RectangleFits(i, width, height, y, wastedArea))
|
||||
{
|
||||
if (wastedArea < bestWastedArea || (wastedArea == bestWastedArea && y + height < bestHeight))
|
||||
{
|
||||
bestHeight = y + height;
|
||||
bestWastedArea = wastedArea;
|
||||
bestIndex = i;
|
||||
newNode.x = skyLine[i].x;
|
||||
newNode.y = y;
|
||||
newNode.width = width;
|
||||
newNode.height = height;
|
||||
#ifdef _DEBUG
|
||||
assert(disjointRects.Disjoint(newNode));
|
||||
#endif
|
||||
}
|
||||
}
|
||||
/* if (RectangleFits(i, height, width, y, wastedArea))
|
||||
{
|
||||
if (wastedArea < bestWastedArea || (wastedArea == bestWastedArea && y + width < bestHeight))
|
||||
{
|
||||
bestHeight = y + width;
|
||||
bestWastedArea = wastedArea;
|
||||
bestIndex = i;
|
||||
newNode.x = skyLine[i].x;
|
||||
newNode.y = y;
|
||||
newNode.width = height;
|
||||
newNode.height = width;
|
||||
assert(disjointRects.Disjoint(newNode));
|
||||
}
|
||||
}*/
|
||||
}
|
||||
|
||||
return newNode;
|
||||
}
|
||||
|
||||
/// Computes the ratio of used surface area.
|
||||
float SkylineBinPack::Occupancy() const
|
||||
{
|
||||
return (float)usedSurfaceArea / (binWidth * binHeight);
|
||||
}
|
|
@ -1,91 +0,0 @@
|
|||
/** @file SkylineBinPack.h
|
||||
@author Jukka Jylänki
|
||||
|
||||
@brief Implements different bin packer algorithms that use the SKYLINE data structure.
|
||||
|
||||
This work is released to Public Domain, do whatever you want with it.
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include "tarray.h"
|
||||
|
||||
#include "Rect.h"
|
||||
#include "GuillotineBinPack.h"
|
||||
|
||||
/** Implements bin packing algorithms that use the SKYLINE data structure to store the bin contents. Uses
|
||||
GuillotineBinPack as the waste map. */
|
||||
class SkylineBinPack
|
||||
{
|
||||
public:
|
||||
/// Instantiates a bin of size (0,0). Call Init to create a new bin.
|
||||
SkylineBinPack();
|
||||
|
||||
/// Instantiates a bin of the given size.
|
||||
SkylineBinPack(int binWidth, int binHeight, bool useWasteMap);
|
||||
|
||||
/// (Re)initializes the packer to an empty bin of width x height units. Call whenever
|
||||
/// you need to restart with a new bin.
|
||||
void Init(int binWidth, int binHeight, bool useWasteMap);
|
||||
|
||||
/// Inserts the given list of rectangles in an offline/batch mode, possibly rotated.
|
||||
/// @param rects The list of rectangles to insert. This vector will be destroyed in the process.
|
||||
/// @param dst [out] This list will contain the packed rectangles. The indices will not correspond to that of rects.
|
||||
/// @param method The rectangle placement rule to use when packing.
|
||||
void Insert(TArray<RectSize> &rects, TArray<Rect> &dst);
|
||||
|
||||
/// Inserts a single rectangle into the bin, possibly rotated.
|
||||
Rect Insert(int width, int height);
|
||||
|
||||
/// Adds a rectangle to the waste list. It must have been previously returned by
|
||||
/// Insert or the results are undefined.
|
||||
void AddWaste(const Rect &rect);
|
||||
|
||||
/// Computes the ratio of used surface area to the total bin area.
|
||||
float Occupancy() const;
|
||||
|
||||
private:
|
||||
int binWidth;
|
||||
int binHeight;
|
||||
|
||||
#ifdef _DEBUG
|
||||
DisjointRectCollection disjointRects;
|
||||
#endif
|
||||
|
||||
/// Represents a single level (a horizontal line) of the skyline/horizon/envelope.
|
||||
struct SkylineNode
|
||||
{
|
||||
/// The starting x-coordinate (leftmost).
|
||||
int x;
|
||||
|
||||
/// The y-coordinate of the skyline level line.
|
||||
int y;
|
||||
|
||||
/// The line width. The ending coordinate (inclusive) will be x+width-1.
|
||||
int width;
|
||||
};
|
||||
|
||||
TArray<SkylineNode> skyLine;
|
||||
|
||||
unsigned long usedSurfaceArea;
|
||||
|
||||
/// If true, we use the GuillotineBinPack structure to recover wasted areas into a waste map.
|
||||
bool useWasteMap;
|
||||
GuillotineBinPack wasteMap;
|
||||
|
||||
Rect InsertBottomLeft(int width, int height);
|
||||
Rect InsertMinWaste(int width, int height);
|
||||
|
||||
Rect FindPositionForNewNodeBottomLeft(int width, int height, int &bestHeight, int &bestWidth, int &bestIndex) const;
|
||||
Rect FindPositionForNewNodeMinWaste(int width, int height, int &bestHeight, int &bestWastedArea, int &bestIndex) const;
|
||||
|
||||
bool RectangleFits(int skylineNodeIndex, int width, int height, int &y) const;
|
||||
bool RectangleFits(int skylineNodeIndex, int width, int height, int &y, int &wastedArea) const;
|
||||
int ComputeWastedArea(int skylineNodeIndex, int width, int height, int y) const;
|
||||
|
||||
void AddWasteMapArea(int skylineNodeIndex, int width, int height, int y);
|
||||
|
||||
void AddSkylineLevel(int skylineNodeIndex, const Rect &rect);
|
||||
|
||||
/// Merges all skyline nodes that are at the same level.
|
||||
void MergeSkylines();
|
||||
};
|
Loading…
Reference in a new issue