- updated LZMA library to version 18.05

https://www.7-zip.org/
https://www.7-zip.org/a/lzma1805.7z
This commit is contained in:
alexey.lysiuk 2018-05-04 11:24:15 +03:00
parent e0833d5005
commit 311259b0f5
8 changed files with 1810 additions and 1147 deletions

View file

@ -1,7 +1,7 @@
#define MY_VER_MAJOR 18 #define MY_VER_MAJOR 18
#define MY_VER_MINOR 01 #define MY_VER_MINOR 05
#define MY_VER_BUILD 0 #define MY_VER_BUILD 0
#define MY_VERSION_NUMBERS "18.01" #define MY_VERSION_NUMBERS "18.05"
#define MY_VERSION MY_VERSION_NUMBERS #define MY_VERSION MY_VERSION_NUMBERS
#ifdef MY_CPU_NAME #ifdef MY_CPU_NAME
@ -10,7 +10,7 @@
#define MY_VERSION_CPU MY_VERSION #define MY_VERSION_CPU MY_VERSION
#endif #endif
#define MY_DATE "2018-01-28" #define MY_DATE "2018-04-30"
#undef MY_COPYRIGHT #undef MY_COPYRIGHT
#undef MY_VERSION_COPYRIGHT_DATE #undef MY_VERSION_COPYRIGHT_DATE
#define MY_AUTHOR_NAME "Igor Pavlov" #define MY_AUTHOR_NAME "Igor Pavlov"

View file

@ -1,5 +1,5 @@
/* Bcj2.c -- BCJ2 Decoder (Converter for x86 code) /* Bcj2.c -- BCJ2 Decoder (Converter for x86 code)
2017-04-03 : Igor Pavlov : Public domain */ 2018-04-28 : Igor Pavlov : Public domain */
#include "Precomp.h" #include "Precomp.h"
@ -232,10 +232,10 @@ SRes Bcj2Dec_Decode(CBcj2Dec *p)
if (rem < 4) if (rem < 4)
{ {
SizeT i; p->temp[0] = (Byte)val; if (rem > 0) dest[0] = (Byte)val; val >>= 8;
SetUi32(p->temp, val); p->temp[1] = (Byte)val; if (rem > 1) dest[1] = (Byte)val; val >>= 8;
for (i = 0; i < rem; i++) p->temp[2] = (Byte)val; if (rem > 2) dest[2] = (Byte)val; val >>= 8;
dest[i] = p->temp[i]; p->temp[3] = (Byte)val;
p->dest = dest + rem; p->dest = dest + rem;
p->state = BCJ2_DEC_STATE_ORIG_0 + (unsigned)rem; p->state = BCJ2_DEC_STATE_ORIG_0 + (unsigned)rem;
break; break;

View file

@ -1,5 +1,5 @@
/* CpuArch.h -- CPU specific code /* CpuArch.h -- CPU specific code
2017-06-30 : Igor Pavlov : Public domain */ 2017-09-04 : Igor Pavlov : Public domain */
#ifndef __CPU_ARCH_H #ifndef __CPU_ARCH_H
#define __CPU_ARCH_H #define __CPU_ARCH_H
@ -174,7 +174,7 @@ MY_CPU_LE_UNALIGN means that CPU is LITTLE ENDIAN and CPU supports unaligned mem
#ifndef MY_CPU_NAME #ifndef MY_CPU_NAME
#ifdef MY_CPU_LE #ifdef MY_CPU_LE
#define MY_CPU_NAME "LE" #define MY_CPU_NAME "LE"
#elif MY_CPU_BE #elif defined(MY_CPU_BE)
#define MY_CPU_NAME "BE" #define MY_CPU_NAME "BE"
#else #else
/* /*

View file

@ -1,5 +1,5 @@
/* Lzma2Dec.c -- LZMA2 Decoder /* Lzma2Dec.c -- LZMA2 Decoder
2017-04-03 : Igor Pavlov : Public domain */ 2018-02-19 : Igor Pavlov : Public domain */
/* #define SHOW_DEBUG_INFO */ /* #define SHOW_DEBUG_INFO */
@ -14,28 +14,22 @@
#include "Lzma2Dec.h" #include "Lzma2Dec.h"
/* /*
00000000 - EOS 00000000 - End of data
00000001 U U - Uncompressed Reset Dic 00000001 U U - Uncompressed, reset dic, need reset state and set new prop
00000010 U U - Uncompressed No Reset 00000010 U U - Uncompressed, no reset
100uuuuu U U P P - LZMA no reset 100uuuuu U U P P - LZMA, no reset
101uuuuu U U P P - LZMA reset state 101uuuuu U U P P - LZMA, reset state
110uuuuu U U P P S - LZMA reset state + new prop 110uuuuu U U P P S - LZMA, reset state + set new prop
111uuuuu U U P P S - LZMA reset state + new prop + reset dic 111uuuuu U U P P S - LZMA, reset state + set new prop, reset dic
u, U - Unpack Size u, U - Unpack Size
P - Pack Size P - Pack Size
S - Props S - Props
*/ */
#define LZMA2_CONTROL_LZMA (1 << 7)
#define LZMA2_CONTROL_COPY_NO_RESET 2
#define LZMA2_CONTROL_COPY_RESET_DIC 1 #define LZMA2_CONTROL_COPY_RESET_DIC 1
#define LZMA2_CONTROL_EOF 0
#define LZMA2_IS_UNCOMPRESSED_STATE(p) (((p)->control & LZMA2_CONTROL_LZMA) == 0) #define LZMA2_IS_UNCOMPRESSED_STATE(p) (((p)->control & (1 << 7)) == 0)
#define LZMA2_GET_LZMA_MODE(p) (((p)->control >> 5) & 3)
#define LZMA2_IS_THERE_PROP(mode) ((mode) >= 2)
#define LZMA2_LCLP_MAX 4 #define LZMA2_LCLP_MAX 4
#define LZMA2_DIC_SIZE_FROM_PROP(p) (((UInt32)2 | ((p) & 1)) << ((p) / 2 + 11)) #define LZMA2_DIC_SIZE_FROM_PROP(p) (((UInt32)2 | ((p) & 1)) << ((p) / 2 + 11))
@ -91,9 +85,11 @@ SRes Lzma2Dec_Allocate(CLzma2Dec *p, Byte prop, ISzAllocPtr alloc)
void Lzma2Dec_Init(CLzma2Dec *p) void Lzma2Dec_Init(CLzma2Dec *p)
{ {
p->state = LZMA2_STATE_CONTROL; p->state = LZMA2_STATE_CONTROL;
p->needInitDic = True; p->needInitLevel = 0xE0;
p->needInitState = True; p->isExtraMode = False;
p->needInitProp = True; p->unpackSize = 0;
// p->decoder.dicPos = 0; // we can use it instead of full init
LzmaDec_Init(&p->decoder); LzmaDec_Init(&p->decoder);
} }
@ -102,19 +98,26 @@ static ELzma2State Lzma2Dec_UpdateState(CLzma2Dec *p, Byte b)
switch (p->state) switch (p->state)
{ {
case LZMA2_STATE_CONTROL: case LZMA2_STATE_CONTROL:
p->isExtraMode = False;
p->control = b; p->control = b;
PRF(printf("\n %4X ", (unsigned)p->decoder.dicPos)); PRF(printf("\n %8X", (unsigned)p->decoder.dicPos));
PRF(printf(" %2X", (unsigned)b)); PRF(printf(" %02X", (unsigned)b));
if (b == 0) if (b == 0)
return LZMA2_STATE_FINISHED; return LZMA2_STATE_FINISHED;
if (LZMA2_IS_UNCOMPRESSED_STATE(p)) if (LZMA2_IS_UNCOMPRESSED_STATE(p))
{ {
if (b > 2) if (b == LZMA2_CONTROL_COPY_RESET_DIC)
p->needInitLevel = 0xC0;
else if (b > 2 || p->needInitLevel == 0xE0)
return LZMA2_STATE_ERROR; return LZMA2_STATE_ERROR;
p->unpackSize = 0;
} }
else else
{
if (b < p->needInitLevel)
return LZMA2_STATE_ERROR;
p->needInitLevel = 0;
p->unpackSize = (UInt32)(b & 0x1F) << 16; p->unpackSize = (UInt32)(b & 0x1F) << 16;
}
return LZMA2_STATE_UNPACK0; return LZMA2_STATE_UNPACK0;
case LZMA2_STATE_UNPACK0: case LZMA2_STATE_UNPACK0:
@ -124,8 +127,8 @@ static ELzma2State Lzma2Dec_UpdateState(CLzma2Dec *p, Byte b)
case LZMA2_STATE_UNPACK1: case LZMA2_STATE_UNPACK1:
p->unpackSize |= (UInt32)b; p->unpackSize |= (UInt32)b;
p->unpackSize++; p->unpackSize++;
PRF(printf(" %8u", (unsigned)p->unpackSize)); PRF(printf(" %7u", (unsigned)p->unpackSize));
return (LZMA2_IS_UNCOMPRESSED_STATE(p)) ? LZMA2_STATE_DATA : LZMA2_STATE_PACK0; return LZMA2_IS_UNCOMPRESSED_STATE(p) ? LZMA2_STATE_DATA : LZMA2_STATE_PACK0;
case LZMA2_STATE_PACK0: case LZMA2_STATE_PACK0:
p->packSize = (UInt32)b << 8; p->packSize = (UInt32)b << 8;
@ -134,9 +137,9 @@ static ELzma2State Lzma2Dec_UpdateState(CLzma2Dec *p, Byte b)
case LZMA2_STATE_PACK1: case LZMA2_STATE_PACK1:
p->packSize |= (UInt32)b; p->packSize |= (UInt32)b;
p->packSize++; p->packSize++;
PRF(printf(" %8u", (unsigned)p->packSize)); // if (p->packSize < 5) return LZMA2_STATE_ERROR;
return LZMA2_IS_THERE_PROP(LZMA2_GET_LZMA_MODE(p)) ? LZMA2_STATE_PROP: PRF(printf(" %5u", (unsigned)p->packSize));
(p->needInitProp ? LZMA2_STATE_ERROR : LZMA2_STATE_DATA); return (p->control & 0x40) ? LZMA2_STATE_PROP : LZMA2_STATE_DATA;
case LZMA2_STATE_PROP: case LZMA2_STATE_PROP:
{ {
@ -145,13 +148,12 @@ static ELzma2State Lzma2Dec_UpdateState(CLzma2Dec *p, Byte b)
return LZMA2_STATE_ERROR; return LZMA2_STATE_ERROR;
lc = b % 9; lc = b % 9;
b /= 9; b /= 9;
p->decoder.prop.pb = b / 5; p->decoder.prop.pb = (Byte)(b / 5);
lp = b % 5; lp = b % 5;
if (lc + lp > LZMA2_LCLP_MAX) if (lc + lp > LZMA2_LCLP_MAX)
return LZMA2_STATE_ERROR; return LZMA2_STATE_ERROR;
p->decoder.prop.lc = lc; p->decoder.prop.lc = (Byte)lc;
p->decoder.prop.lp = lp; p->decoder.prop.lp = (Byte)lp;
p->needInitProp = False;
return LZMA2_STATE_DATA; return LZMA2_STATE_DATA;
} }
} }
@ -231,11 +233,6 @@ SRes Lzma2Dec_DecodeToDic(CLzma2Dec *p, SizeT dicLimit,
if (p->state == LZMA2_STATE_DATA) if (p->state == LZMA2_STATE_DATA)
{ {
Bool initDic = (p->control == LZMA2_CONTROL_COPY_RESET_DIC); Bool initDic = (p->control == LZMA2_CONTROL_COPY_RESET_DIC);
if (initDic)
p->needInitProp = p->needInitState = True;
else if (p->needInitDic)
break;
p->needInitDic = False;
LzmaDec_InitDicAndState(&p->decoder, initDic, False); LzmaDec_InitDicAndState(&p->decoder, initDic, False);
} }
@ -257,15 +254,9 @@ SRes Lzma2Dec_DecodeToDic(CLzma2Dec *p, SizeT dicLimit,
if (p->state == LZMA2_STATE_DATA) if (p->state == LZMA2_STATE_DATA)
{ {
unsigned mode = LZMA2_GET_LZMA_MODE(p); Bool initDic = (p->control >= 0xE0);
Bool initDic = (mode == 3); Bool initState = (p->control >= 0xA0);
Bool initState = (mode != 0);
if ((!initDic && p->needInitDic) || (!initState && p->needInitState))
break;
LzmaDec_InitDicAndState(&p->decoder, initDic, initState); LzmaDec_InitDicAndState(&p->decoder, initDic, initState);
p->needInitDic = False;
p->needInitState = False;
p->state = LZMA2_STATE_DATA_CONT; p->state = LZMA2_STATE_DATA_CONT;
} }
@ -310,6 +301,129 @@ SRes Lzma2Dec_DecodeToDic(CLzma2Dec *p, SizeT dicLimit,
} }
ELzma2ParseStatus Lzma2Dec_Parse(CLzma2Dec *p,
SizeT outSize,
const Byte *src, SizeT *srcLen,
int checkFinishBlock)
{
SizeT inSize = *srcLen;
*srcLen = 0;
while (p->state != LZMA2_STATE_ERROR)
{
if (p->state == LZMA2_STATE_FINISHED)
return LZMA_STATUS_FINISHED_WITH_MARK;
if (outSize == 0 && !checkFinishBlock)
return LZMA_STATUS_NOT_FINISHED;
if (p->state != LZMA2_STATE_DATA && p->state != LZMA2_STATE_DATA_CONT)
{
if (*srcLen == inSize)
return LZMA_STATUS_NEEDS_MORE_INPUT;
(*srcLen)++;
p->state = Lzma2Dec_UpdateState(p, *src++);
if (p->state == LZMA2_STATE_UNPACK0)
{
// if (p->decoder.dicPos != 0)
if (p->control == LZMA2_CONTROL_COPY_RESET_DIC || p->control >= 0xE0)
return LZMA2_PARSE_STATUS_NEW_BLOCK;
// if (outSize == 0) return LZMA_STATUS_NOT_FINISHED;
}
// The following code can be commented.
// It's not big problem, if we read additional input bytes.
// It will be stopped later in LZMA2_STATE_DATA / LZMA2_STATE_DATA_CONT state.
if (outSize == 0 && p->state != LZMA2_STATE_FINISHED)
{
// checkFinishBlock is true. So we expect that block must be finished,
// We can return LZMA_STATUS_NOT_SPECIFIED or LZMA_STATUS_NOT_FINISHED here
// break;
return LZMA_STATUS_NOT_FINISHED;
}
if (p->state == LZMA2_STATE_DATA)
return LZMA2_PARSE_STATUS_NEW_CHUNK;
continue;
}
if (outSize == 0)
return LZMA_STATUS_NOT_FINISHED;
{
SizeT inCur = inSize - *srcLen;
if (LZMA2_IS_UNCOMPRESSED_STATE(p))
{
if (inCur == 0)
return LZMA_STATUS_NEEDS_MORE_INPUT;
if (inCur > p->unpackSize)
inCur = p->unpackSize;
if (inCur > outSize)
inCur = outSize;
p->decoder.dicPos += inCur;
src += inCur;
*srcLen += inCur;
outSize -= inCur;
p->unpackSize -= (UInt32)inCur;
p->state = (p->unpackSize == 0) ? LZMA2_STATE_CONTROL : LZMA2_STATE_DATA_CONT;
}
else
{
p->isExtraMode = True;
if (inCur == 0)
{
if (p->packSize != 0)
return LZMA_STATUS_NEEDS_MORE_INPUT;
}
else if (p->state == LZMA2_STATE_DATA)
{
p->state = LZMA2_STATE_DATA_CONT;
if (*src != 0)
{
// first byte of lzma chunk must be Zero
*srcLen += 1;
p->packSize--;
break;
}
}
if (inCur > p->packSize)
inCur = (SizeT)p->packSize;
src += inCur;
*srcLen += inCur;
p->packSize -= (UInt32)inCur;
if (p->packSize == 0)
{
SizeT rem = outSize;
if (rem > p->unpackSize)
rem = p->unpackSize;
p->decoder.dicPos += rem;
p->unpackSize -= (UInt32)rem;
outSize -= rem;
if (p->unpackSize == 0)
p->state = LZMA2_STATE_CONTROL;
}
}
}
}
p->state = LZMA2_STATE_ERROR;
return LZMA_STATUS_NOT_SPECIFIED;
}
SRes Lzma2Dec_DecodeToBuf(CLzma2Dec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status) SRes Lzma2Dec_DecodeToBuf(CLzma2Dec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
{ {
SizeT outSize = *destLen, inSize = *srcLen; SizeT outSize = *destLen, inSize = *srcLen;

View file

@ -1,5 +1,5 @@
/* Lzma2Dec.h -- LZMA2 Decoder /* Lzma2Dec.h -- LZMA2 Decoder
2017-04-03 : Igor Pavlov : Public domain */ 2018-02-19 : Igor Pavlov : Public domain */
#ifndef __LZMA2_DEC_H #ifndef __LZMA2_DEC_H
#define __LZMA2_DEC_H #define __LZMA2_DEC_H
@ -12,25 +12,24 @@ EXTERN_C_BEGIN
typedef struct typedef struct
{ {
CLzmaDec decoder;
UInt32 packSize;
UInt32 unpackSize;
unsigned state; unsigned state;
Byte control; Byte control;
Bool needInitDic; Byte needInitLevel;
Bool needInitState; Byte isExtraMode;
Bool needInitProp; Byte _pad_;
UInt32 packSize;
UInt32 unpackSize;
CLzmaDec decoder;
} CLzma2Dec; } CLzma2Dec;
#define Lzma2Dec_Construct(p) LzmaDec_Construct(&(p)->decoder) #define Lzma2Dec_Construct(p) LzmaDec_Construct(&(p)->decoder)
#define Lzma2Dec_FreeProbs(p, alloc) LzmaDec_FreeProbs(&(p)->decoder, alloc); #define Lzma2Dec_FreeProbs(p, alloc) LzmaDec_FreeProbs(&(p)->decoder, alloc)
#define Lzma2Dec_Free(p, alloc) LzmaDec_Free(&(p)->decoder, alloc); #define Lzma2Dec_Free(p, alloc) LzmaDec_Free(&(p)->decoder, alloc)
SRes Lzma2Dec_AllocateProbs(CLzma2Dec *p, Byte prop, ISzAllocPtr alloc); SRes Lzma2Dec_AllocateProbs(CLzma2Dec *p, Byte prop, ISzAllocPtr alloc);
SRes Lzma2Dec_Allocate(CLzma2Dec *p, Byte prop, ISzAllocPtr alloc); SRes Lzma2Dec_Allocate(CLzma2Dec *p, Byte prop, ISzAllocPtr alloc);
void Lzma2Dec_Init(CLzma2Dec *p); void Lzma2Dec_Init(CLzma2Dec *p);
/* /*
finishMode: finishMode:
It has meaning only if the decoding reaches output limit (*destLen or dicLimit). It has meaning only if the decoding reaches output limit (*destLen or dicLimit).
@ -53,6 +52,47 @@ SRes Lzma2Dec_DecodeToBuf(CLzma2Dec *p, Byte *dest, SizeT *destLen,
const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status); const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
/* ---------- LZMA2 block and chunk parsing ---------- */
/*
Lzma2Dec_Parse() parses compressed data stream up to next independent block or next chunk data.
It can return LZMA_STATUS_* code or LZMA2_PARSE_STATUS_* code:
- LZMA2_PARSE_STATUS_NEW_BLOCK - there is new block, and 1 additional byte (control byte of next block header) was read from input.
- LZMA2_PARSE_STATUS_NEW_CHUNK - there is new chunk, and only lzma2 header of new chunk was read.
CLzma2Dec::unpackSize contains unpack size of that chunk
*/
typedef enum
{
/*
LZMA_STATUS_NOT_SPECIFIED // data error
LZMA_STATUS_FINISHED_WITH_MARK
LZMA_STATUS_NOT_FINISHED //
LZMA_STATUS_NEEDS_MORE_INPUT
LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK // unused
*/
LZMA2_PARSE_STATUS_NEW_BLOCK = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK + 1,
LZMA2_PARSE_STATUS_NEW_CHUNK
} ELzma2ParseStatus;
ELzma2ParseStatus Lzma2Dec_Parse(CLzma2Dec *p,
SizeT outSize, // output size
const Byte *src, SizeT *srcLen,
int checkFinishBlock // set (checkFinishBlock = 1), if it must read full input data, if decoder.dicPos reaches blockMax position.
);
/*
LZMA2 parser doesn't decode LZMA chunks, so we must read
full input LZMA chunk to decode some part of LZMA chunk.
Lzma2Dec_GetUnpackExtra() returns the value that shows
max possible number of output bytes that can be output by decoder
at current input positon.
*/
#define Lzma2Dec_GetUnpackExtra(p) ((p)->isExtraMode ? (p)->unpackSize : 0);
/* ---------- One Call Interface ---------- */ /* ---------- One Call Interface ---------- */
/* /*

View file

@ -1,8 +1,9 @@
/* LzmaDec.c -- LZMA Decoder /* LzmaDec.c -- LZMA Decoder
2017-04-03 : Igor Pavlov : Public domain */ 2018-02-28 : Igor Pavlov : Public domain */
#include "Precomp.h" #include "Precomp.h"
/* #include "CpuArch.h" */
#include "LzmaDec.h" #include "LzmaDec.h"
#include <string.h> #include <string.h>
@ -24,9 +25,16 @@
#define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \ #define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
{ UPDATE_0(p); i = (i + i); A0; } else \ { UPDATE_0(p); i = (i + i); A0; } else \
{ UPDATE_1(p); i = (i + i) + 1; A1; } { UPDATE_1(p); i = (i + i) + 1; A1; }
#define GET_BIT(p, i) GET_BIT2(p, i, ; , ;)
#define TREE_GET_BIT(probs, i) { GET_BIT((probs + i), i); } #define TREE_GET_BIT(probs, i) { GET_BIT2(probs + i, i, ;, ;); }
#define REV_BIT(p, i, A0, A1) IF_BIT_0(p + i) \
{ UPDATE_0(p + i); A0; } else \
{ UPDATE_1(p + i); A1; }
#define REV_BIT_VAR( p, i, m) REV_BIT(p, i, i += m; m += m, m += m; i += m; )
#define REV_BIT_CONST(p, i, m) REV_BIT(p, i, i += m; , i += m * 2; )
#define REV_BIT_LAST( p, i, m) REV_BIT(p, i, i -= m , ; )
#define TREE_DECODE(probs, limit, i) \ #define TREE_DECODE(probs, limit, i) \
{ i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; } { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }
@ -46,12 +54,15 @@
i -= 0x40; } i -= 0x40; }
#endif #endif
#define NORMAL_LITER_DEC GET_BIT(prob + symbol, symbol) #define NORMAL_LITER_DEC TREE_GET_BIT(prob, symbol)
#define MATCHED_LITER_DEC \ #define MATCHED_LITER_DEC \
matchByte <<= 1; \ matchByte += matchByte; \
bit = (matchByte & offs); \ bit = offs; \
probLit = prob + offs + bit + symbol; \ offs &= matchByte; \
GET_BIT2(probLit, symbol, offs &= ~bit, offs &= bit) probLit = prob + (offs + bit + symbol); \
GET_BIT2(probLit, symbol, offs ^= bit; , ;)
#define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_ERROR; range <<= 8; code = (code << 8) | (*buf++); } #define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_ERROR; range <<= 8; code = (code << 8) | (*buf++); }
@ -66,25 +77,28 @@
{ i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; } { i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; }
#define REV_BIT_CHECK(p, i, m) IF_BIT_0_CHECK(p + i) \
{ UPDATE_0_CHECK; i += m; m += m; } else \
{ UPDATE_1_CHECK; m += m; i += m; }
#define kNumPosBitsMax 4 #define kNumPosBitsMax 4
#define kNumPosStatesMax (1 << kNumPosBitsMax) #define kNumPosStatesMax (1 << kNumPosBitsMax)
#define kLenNumLowBits 3 #define kLenNumLowBits 3
#define kLenNumLowSymbols (1 << kLenNumLowBits) #define kLenNumLowSymbols (1 << kLenNumLowBits)
#define kLenNumMidBits 3
#define kLenNumMidSymbols (1 << kLenNumMidBits)
#define kLenNumHighBits 8 #define kLenNumHighBits 8
#define kLenNumHighSymbols (1 << kLenNumHighBits) #define kLenNumHighSymbols (1 << kLenNumHighBits)
#define LenChoice 0 #define LenLow 0
#define LenChoice2 (LenChoice + 1) #define LenHigh (LenLow + 2 * (kNumPosStatesMax << kLenNumLowBits))
#define LenLow (LenChoice2 + 1)
#define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
#define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
#define kNumLenProbs (LenHigh + kLenNumHighSymbols) #define kNumLenProbs (LenHigh + kLenNumHighSymbols)
#define LenChoice LenLow
#define LenChoice2 (LenLow + (1 << kLenNumLowBits))
#define kNumStates 12 #define kNumStates 12
#define kNumStates2 16
#define kNumLitStates 7 #define kNumLitStates 7
#define kStartPosModelIndex 4 #define kStartPosModelIndex 4
@ -98,54 +112,117 @@
#define kAlignTableSize (1 << kNumAlignBits) #define kAlignTableSize (1 << kNumAlignBits)
#define kMatchMinLen 2 #define kMatchMinLen 2
#define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols) #define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols * 2 + kLenNumHighSymbols)
#define IsMatch 0 /* External ASM code needs same CLzmaProb array layout. So don't change it. */
#define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
/* (probs_1664) is faster and better for code size at some platforms */
/*
#ifdef MY_CPU_X86_OR_AMD64
*/
#define kStartOffset 1664
#define GET_PROBS p->probs_1664
/*
#define GET_PROBS p->probs + kStartOffset
#else
#define kStartOffset 0
#define GET_PROBS p->probs
#endif
*/
#define SpecPos (-kStartOffset)
#define IsRep0Long (SpecPos + kNumFullDistances)
#define RepLenCoder (IsRep0Long + (kNumStates2 << kNumPosBitsMax))
#define LenCoder (RepLenCoder + kNumLenProbs)
#define IsMatch (LenCoder + kNumLenProbs)
#define Align (IsMatch + (kNumStates2 << kNumPosBitsMax))
#define IsRep (Align + kAlignTableSize)
#define IsRepG0 (IsRep + kNumStates) #define IsRepG0 (IsRep + kNumStates)
#define IsRepG1 (IsRepG0 + kNumStates) #define IsRepG1 (IsRepG0 + kNumStates)
#define IsRepG2 (IsRepG1 + kNumStates) #define IsRepG2 (IsRepG1 + kNumStates)
#define IsRep0Long (IsRepG2 + kNumStates) #define PosSlot (IsRepG2 + kNumStates)
#define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax)) #define Literal (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
#define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits)) #define NUM_BASE_PROBS (Literal + kStartOffset)
#define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
#define LenCoder (Align + kAlignTableSize)
#define RepLenCoder (LenCoder + kNumLenProbs)
#define Literal (RepLenCoder + kNumLenProbs)
#define LZMA_BASE_SIZE 1846 #if Align != 0 && kStartOffset != 0
#define LZMA_LIT_SIZE 0x300 #error Stop_Compiling_Bad_LZMA_kAlign
#if Literal != LZMA_BASE_SIZE
StopCompilingDueBUG
#endif #endif
#define LzmaProps_GetNumProbs(p) (Literal + ((UInt32)LZMA_LIT_SIZE << ((p)->lc + (p)->lp))) #if NUM_BASE_PROBS != 1984
#error Stop_Compiling_Bad_LZMA_PROBS
#endif
#define LZMA_LIT_SIZE 0x300
#define LzmaProps_GetNumProbs(p) (NUM_BASE_PROBS + ((UInt32)LZMA_LIT_SIZE << ((p)->lc + (p)->lp)))
#define CALC_POS_STATE(processedPos, pbMask) (((processedPos) & (pbMask)) << 4)
#define COMBINED_PS_STATE (posState + state)
#define GET_LEN_STATE (posState)
#define LZMA_DIC_MIN (1 << 12) #define LZMA_DIC_MIN (1 << 12)
/* First LZMA-symbol is always decoded. /*
And it decodes new LZMA-symbols while (buf < bufLimit), but "buf" is without last normalization p->remainLen : shows status of LZMA decoder:
< kMatchSpecLenStart : normal remain
= kMatchSpecLenStart : finished
= kMatchSpecLenStart + 1 : need init range coder
= kMatchSpecLenStart + 2 : need init range coder and state
*/
/* ---------- LZMA_DECODE_REAL ---------- */
/*
LzmaDec_DecodeReal_3() can be implemented in external ASM file.
3 - is the code compatibility version of that function for check at link time.
*/
#define LZMA_DECODE_REAL LzmaDec_DecodeReal_3
/*
LZMA_DECODE_REAL()
In:
RangeCoder is normalized
if (p->dicPos == limit)
{
LzmaDec_TryDummy() was called before to exclude LITERAL and MATCH-REP cases.
So first symbol can be only MATCH-NON-REP. And if that MATCH-NON-REP symbol
is not END_OF_PAYALOAD_MARKER, then function returns error code.
}
Processing:
first LZMA symbol will be decoded in any case
All checks for limits are at the end of main loop,
It will decode new LZMA-symbols while (p->buf < bufLimit && dicPos < limit),
RangeCoder is still without last normalization when (p->buf < bufLimit) is being checked.
Out: Out:
RangeCoder is normalized
Result: Result:
SZ_OK - OK SZ_OK - OK
SZ_ERROR_DATA - Error SZ_ERROR_DATA - Error
p->remainLen: p->remainLen:
< kMatchSpecLenStart : normal remain < kMatchSpecLenStart : normal remain
= kMatchSpecLenStart : finished = kMatchSpecLenStart : finished
= kMatchSpecLenStart + 1 : Flush marker (unused now)
= kMatchSpecLenStart + 2 : State Init Marker (unused now)
*/ */
static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
{
CLzmaProb *probs = p->probs;
unsigned state = p->state; #ifdef _LZMA_DEC_OPT
int MY_FAST_CALL LZMA_DECODE_REAL(CLzmaDec *p, SizeT limit, const Byte *bufLimit);
#else
static
int MY_FAST_CALL LZMA_DECODE_REAL(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
{
CLzmaProb *probs = GET_PROBS;
unsigned state = (unsigned)p->state;
UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3]; UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1; unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1;
unsigned lpMask = ((unsigned)1 << (p->prop.lp)) - 1;
unsigned lc = p->prop.lc; unsigned lc = p->prop.lc;
unsigned lpMask = ((unsigned)0x100 << p->prop.lp) - ((unsigned)0x100 >> lc);
Byte *dic = p->dic; Byte *dic = p->dic;
SizeT dicBufSize = p->dicBufSize; SizeT dicBufSize = p->dicBufSize;
@ -164,17 +241,16 @@ static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte
CLzmaProb *prob; CLzmaProb *prob;
UInt32 bound; UInt32 bound;
unsigned ttt; unsigned ttt;
unsigned posState = processedPos & pbMask; unsigned posState = CALC_POS_STATE(processedPos, pbMask);
prob = probs + IsMatch + (state << kNumPosBitsMax) + posState; prob = probs + IsMatch + COMBINED_PS_STATE;
IF_BIT_0(prob) IF_BIT_0(prob)
{ {
unsigned symbol; unsigned symbol;
UPDATE_0(prob); UPDATE_0(prob);
prob = probs + Literal; prob = probs + Literal;
if (processedPos != 0 || checkDicSize != 0) if (processedPos != 0 || checkDicSize != 0)
prob += ((UInt32)LZMA_LIT_SIZE * (((processedPos & lpMask) << lc) + prob += (UInt32)3 * ((((processedPos << 8) + dic[(dicPos == 0 ? dicBufSize : dicPos) - 1]) & lpMask) << lc);
(dic[(dicPos == 0 ? dicBufSize : dicPos) - 1] >> (8 - lc))));
processedPos++; processedPos++;
if (state < kNumLitStates) if (state < kNumLitStates)
@ -240,13 +316,16 @@ static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte
else else
{ {
UPDATE_1(prob); UPDATE_1(prob);
/*
// that case was checked before with kBadRepCode
if (checkDicSize == 0 && processedPos == 0) if (checkDicSize == 0 && processedPos == 0)
return SZ_ERROR_DATA; return SZ_ERROR_DATA;
*/
prob = probs + IsRepG0 + state; prob = probs + IsRepG0 + state;
IF_BIT_0(prob) IF_BIT_0(prob)
{ {
UPDATE_0(prob); UPDATE_0(prob);
prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState; prob = probs + IsRep0Long + COMBINED_PS_STATE;
IF_BIT_0(prob) IF_BIT_0(prob)
{ {
UPDATE_0(prob); UPDATE_0(prob);
@ -299,7 +378,7 @@ static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte
IF_BIT_0(probLen) IF_BIT_0(probLen)
{ {
UPDATE_0(probLen); UPDATE_0(probLen);
probLen = prob + LenLow + (posState << kLenNumLowBits); probLen = prob + LenLow + GET_LEN_STATE;
offset = 0; offset = 0;
lim = (1 << kLenNumLowBits); lim = (1 << kLenNumLowBits);
} }
@ -310,15 +389,15 @@ static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte
IF_BIT_0(probLen) IF_BIT_0(probLen)
{ {
UPDATE_0(probLen); UPDATE_0(probLen);
probLen = prob + LenMid + (posState << kLenNumMidBits); probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
offset = kLenNumLowSymbols; offset = kLenNumLowSymbols;
lim = (1 << kLenNumMidBits); lim = (1 << kLenNumLowBits);
} }
else else
{ {
UPDATE_1(probLen); UPDATE_1(probLen);
probLen = prob + LenHigh; probLen = prob + LenHigh;
offset = kLenNumLowSymbols + kLenNumMidSymbols; offset = kLenNumLowSymbols * 2;
lim = (1 << kLenNumHighBits); lim = (1 << kLenNumHighBits);
} }
} }
@ -331,7 +410,7 @@ static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte
IF_BIT_0(probLen) IF_BIT_0(probLen)
{ {
UPDATE_0(probLen); UPDATE_0(probLen);
probLen = prob + LenLow + (posState << kLenNumLowBits); probLen = prob + LenLow + GET_LEN_STATE;
len = 1; len = 1;
TREE_GET_BIT(probLen, len); TREE_GET_BIT(probLen, len);
TREE_GET_BIT(probLen, len); TREE_GET_BIT(probLen, len);
@ -345,7 +424,7 @@ static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte
IF_BIT_0(probLen) IF_BIT_0(probLen)
{ {
UPDATE_0(probLen); UPDATE_0(probLen);
probLen = prob + LenMid + (posState << kLenNumMidBits); probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
len = 1; len = 1;
TREE_GET_BIT(probLen, len); TREE_GET_BIT(probLen, len);
TREE_GET_BIT(probLen, len); TREE_GET_BIT(probLen, len);
@ -356,7 +435,7 @@ static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte
UPDATE_1(probLen); UPDATE_1(probLen);
probLen = prob + LenHigh; probLen = prob + LenHigh;
TREE_DECODE(probLen, (1 << kLenNumHighBits), len); TREE_DECODE(probLen, (1 << kLenNumHighBits), len);
len += kLenNumLowSymbols + kLenNumMidSymbols; len += kLenNumLowSymbols * 2;
} }
} }
} }
@ -376,16 +455,16 @@ static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte
if (posSlot < kEndPosModelIndex) if (posSlot < kEndPosModelIndex)
{ {
distance <<= numDirectBits; distance <<= numDirectBits;
prob = probs + SpecPos + distance - posSlot - 1; prob = probs + SpecPos;
{ {
UInt32 mask = 1; UInt32 m = 1;
unsigned i = 1; distance++;
do do
{ {
GET_BIT2(prob + i, i, ; , distance |= mask); REV_BIT_VAR(prob, distance, m);
mask <<= 1;
} }
while (--numDirectBits != 0); while (--numDirectBits);
distance -= m;
} }
} }
else else
@ -412,19 +491,20 @@ static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte
} }
*/ */
} }
while (--numDirectBits != 0); while (--numDirectBits);
prob = probs + Align; prob = probs + Align;
distance <<= kNumAlignBits; distance <<= kNumAlignBits;
{ {
unsigned i = 1; unsigned i = 1;
GET_BIT2(prob + i, i, ; , distance |= 1); REV_BIT_CONST(prob, i, 1);
GET_BIT2(prob + i, i, ; , distance |= 2); REV_BIT_CONST(prob, i, 2);
GET_BIT2(prob + i, i, ; , distance |= 4); REV_BIT_CONST(prob, i, 4);
GET_BIT2(prob + i, i, ; , distance |= 8); REV_BIT_LAST (prob, i, 8);
distance |= i;
} }
if (distance == (UInt32)0xFFFFFFFF) if (distance == (UInt32)0xFFFFFFFF)
{ {
len += kMatchSpecLenStart; len = kMatchSpecLenStart;
state -= kNumStates; state -= kNumStates;
break; break;
} }
@ -435,20 +515,12 @@ static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte
rep2 = rep1; rep2 = rep1;
rep1 = rep0; rep1 = rep0;
rep0 = distance + 1; rep0 = distance + 1;
if (checkDicSize == 0)
{
if (distance >= processedPos)
{
p->dicPos = dicPos;
return SZ_ERROR_DATA;
}
}
else if (distance >= checkDicSize)
{
p->dicPos = dicPos;
return SZ_ERROR_DATA;
}
state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3; state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
if (distance >= (checkDicSize == 0 ? processedPos: checkDicSize))
{
p->dicPos = dicPos;
return SZ_ERROR_DATA;
}
} }
len += kMatchMinLen; len += kMatchMinLen;
@ -511,6 +583,7 @@ static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte
return SZ_OK; return SZ_OK;
} }
#endif
static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit) static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
{ {
@ -519,7 +592,7 @@ static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
Byte *dic = p->dic; Byte *dic = p->dic;
SizeT dicPos = p->dicPos; SizeT dicPos = p->dicPos;
SizeT dicBufSize = p->dicBufSize; SizeT dicBufSize = p->dicBufSize;
unsigned len = p->remainLen; unsigned len = (unsigned)p->remainLen;
SizeT rep0 = p->reps[0]; /* we use SizeT to avoid the BUG of VC14 for AMD64 */ SizeT rep0 = p->reps[0]; /* we use SizeT to avoid the BUG of VC14 for AMD64 */
SizeT rem = limit - dicPos; SizeT rem = limit - dicPos;
if (rem < len) if (rem < len)
@ -540,6 +613,14 @@ static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
} }
} }
#define kRange0 0xFFFFFFFF
#define kBound0 ((kRange0 >> kNumBitModelTotalBits) << (kNumBitModelTotalBits - 1))
#define kBadRepCode (kBound0 + (((kRange0 - kBound0) >> kNumBitModelTotalBits) << (kNumBitModelTotalBits - 1)))
#if kBadRepCode != (0xC0000000 - 0x400)
#error Stop_Compiling_Bad_LZMA_Check
#endif
static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit) static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
{ {
do do
@ -550,9 +631,13 @@ static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte
UInt32 rem = p->prop.dicSize - p->processedPos; UInt32 rem = p->prop.dicSize - p->processedPos;
if (limit - p->dicPos > rem) if (limit - p->dicPos > rem)
limit2 = p->dicPos + rem; limit2 = p->dicPos + rem;
if (p->processedPos == 0)
if (p->code >= kBadRepCode)
return SZ_ERROR_DATA;
} }
RINOK(LzmaDec_DecodeReal(p, limit2, bufLimit)); RINOK(LZMA_DECODE_REAL(p, limit2, bufLimit));
if (p->checkDicSize == 0 && p->processedPos >= p->prop.dicSize) if (p->checkDicSize == 0 && p->processedPos >= p->prop.dicSize)
p->checkDicSize = p->prop.dicSize; p->checkDicSize = p->prop.dicSize;
@ -561,9 +646,6 @@ static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte
} }
while (p->dicPos < limit && p->buf < bufLimit && p->remainLen < kMatchSpecLenStart); while (p->dicPos < limit && p->buf < bufLimit && p->remainLen < kMatchSpecLenStart);
if (p->remainLen > kMatchSpecLenStart)
p->remainLen = kMatchSpecLenStart;
return 0; return 0;
} }
@ -580,17 +662,17 @@ static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inS
UInt32 range = p->range; UInt32 range = p->range;
UInt32 code = p->code; UInt32 code = p->code;
const Byte *bufLimit = buf + inSize; const Byte *bufLimit = buf + inSize;
const CLzmaProb *probs = p->probs; const CLzmaProb *probs = GET_PROBS;
unsigned state = p->state; unsigned state = (unsigned)p->state;
ELzmaDummy res; ELzmaDummy res;
{ {
const CLzmaProb *prob; const CLzmaProb *prob;
UInt32 bound; UInt32 bound;
unsigned ttt; unsigned ttt;
unsigned posState = (p->processedPos) & ((1 << p->prop.pb) - 1); unsigned posState = CALC_POS_STATE(p->processedPos, (1 << p->prop.pb) - 1);
prob = probs + IsMatch + (state << kNumPosBitsMax) + posState; prob = probs + IsMatch + COMBINED_PS_STATE;
IF_BIT_0_CHECK(prob) IF_BIT_0_CHECK(prob)
{ {
UPDATE_0_CHECK UPDATE_0_CHECK
@ -618,10 +700,11 @@ static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inS
{ {
unsigned bit; unsigned bit;
const CLzmaProb *probLit; const CLzmaProb *probLit;
matchByte <<= 1; matchByte += matchByte;
bit = (matchByte & offs); bit = offs;
probLit = prob + offs + bit + symbol; offs &= matchByte;
GET_BIT2_CHECK(probLit, symbol, offs &= ~bit, offs &= bit) probLit = prob + (offs + bit + symbol);
GET_BIT2_CHECK(probLit, symbol, offs ^= bit; , ; )
} }
while (symbol < 0x100); while (symbol < 0x100);
} }
@ -648,7 +731,7 @@ static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inS
IF_BIT_0_CHECK(prob) IF_BIT_0_CHECK(prob)
{ {
UPDATE_0_CHECK; UPDATE_0_CHECK;
prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState; prob = probs + IsRep0Long + COMBINED_PS_STATE;
IF_BIT_0_CHECK(prob) IF_BIT_0_CHECK(prob)
{ {
UPDATE_0_CHECK; UPDATE_0_CHECK;
@ -691,7 +774,7 @@ static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inS
IF_BIT_0_CHECK(probLen) IF_BIT_0_CHECK(probLen)
{ {
UPDATE_0_CHECK; UPDATE_0_CHECK;
probLen = prob + LenLow + (posState << kLenNumLowBits); probLen = prob + LenLow + GET_LEN_STATE;
offset = 0; offset = 0;
limit = 1 << kLenNumLowBits; limit = 1 << kLenNumLowBits;
} }
@ -702,15 +785,15 @@ static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inS
IF_BIT_0_CHECK(probLen) IF_BIT_0_CHECK(probLen)
{ {
UPDATE_0_CHECK; UPDATE_0_CHECK;
probLen = prob + LenMid + (posState << kLenNumMidBits); probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
offset = kLenNumLowSymbols; offset = kLenNumLowSymbols;
limit = 1 << kLenNumMidBits; limit = 1 << kLenNumLowBits;
} }
else else
{ {
UPDATE_1_CHECK; UPDATE_1_CHECK;
probLen = prob + LenHigh; probLen = prob + LenHigh;
offset = kLenNumLowSymbols + kLenNumMidSymbols; offset = kLenNumLowSymbols * 2;
limit = 1 << kLenNumHighBits; limit = 1 << kLenNumHighBits;
} }
} }
@ -722,7 +805,7 @@ static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inS
{ {
unsigned posSlot; unsigned posSlot;
prob = probs + PosSlot + prob = probs + PosSlot +
((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << ((len < kNumLenToPosStates - 1 ? len : kNumLenToPosStates - 1) <<
kNumPosSlotBits); kNumPosSlotBits);
TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot); TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot);
if (posSlot >= kStartPosModelIndex) if (posSlot >= kStartPosModelIndex)
@ -733,7 +816,7 @@ static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inS
if (posSlot < kEndPosModelIndex) if (posSlot < kEndPosModelIndex)
{ {
prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits) - posSlot - 1; prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits);
} }
else else
{ {
@ -745,17 +828,18 @@ static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inS
code -= range & (((code - range) >> 31) - 1); code -= range & (((code - range) >> 31) - 1);
/* if (code >= range) code -= range; */ /* if (code >= range) code -= range; */
} }
while (--numDirectBits != 0); while (--numDirectBits);
prob = probs + Align; prob = probs + Align;
numDirectBits = kNumAlignBits; numDirectBits = kNumAlignBits;
} }
{ {
unsigned i = 1; unsigned i = 1;
unsigned m = 1;
do do
{ {
GET_BIT_CHECK(prob + i, i); REV_BIT_CHECK(prob, i, m);
} }
while (--numDirectBits != 0); while (--numDirectBits);
} }
} }
} }
@ -768,18 +852,17 @@ static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inS
void LzmaDec_InitDicAndState(CLzmaDec *p, Bool initDic, Bool initState) void LzmaDec_InitDicAndState(CLzmaDec *p, Bool initDic, Bool initState)
{ {
p->needFlush = 1; p->remainLen = kMatchSpecLenStart + 1;
p->remainLen = 0;
p->tempBufSize = 0; p->tempBufSize = 0;
if (initDic) if (initDic)
{ {
p->processedPos = 0; p->processedPos = 0;
p->checkDicSize = 0; p->checkDicSize = 0;
p->needInitState = 1; p->remainLen = kMatchSpecLenStart + 2;
} }
if (initState) if (initState)
p->needInitState = 1; p->remainLen = kMatchSpecLenStart + 2;
} }
void LzmaDec_Init(CLzmaDec *p) void LzmaDec_Init(CLzmaDec *p)
@ -788,7 +871,35 @@ void LzmaDec_Init(CLzmaDec *p)
LzmaDec_InitDicAndState(p, True, True); LzmaDec_InitDicAndState(p, True, True);
} }
static void LzmaDec_InitStateReal(CLzmaDec *p)
SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
ELzmaFinishMode finishMode, ELzmaStatus *status)
{
SizeT inSize = *srcLen;
(*srcLen) = 0;
*status = LZMA_STATUS_NOT_SPECIFIED;
if (p->remainLen > kMatchSpecLenStart)
{
for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
p->tempBuf[p->tempBufSize++] = *src++;
if (p->tempBufSize != 0 && p->tempBuf[0] != 0)
return SZ_ERROR_DATA;
if (p->tempBufSize < RC_INIT_SIZE)
{
*status = LZMA_STATUS_NEEDS_MORE_INPUT;
return SZ_OK;
}
p->code =
((UInt32)p->tempBuf[1] << 24)
| ((UInt32)p->tempBuf[2] << 16)
| ((UInt32)p->tempBuf[3] << 8)
| ((UInt32)p->tempBuf[4]);
p->range = 0xFFFFFFFF;
p->tempBufSize = 0;
if (p->remainLen > kMatchSpecLenStart + 1)
{ {
SizeT numProbs = LzmaProps_GetNumProbs(&p->prop); SizeT numProbs = LzmaProps_GetNumProbs(&p->prop);
SizeT i; SizeT i;
@ -797,44 +908,17 @@ static void LzmaDec_InitStateReal(CLzmaDec *p)
probs[i] = kBitModelTotal >> 1; probs[i] = kBitModelTotal >> 1;
p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1; p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
p->state = 0; p->state = 0;
p->needInitState = 0;
} }
SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen, p->remainLen = 0;
ELzmaFinishMode finishMode, ELzmaStatus *status) }
{
SizeT inSize = *srcLen;
(*srcLen) = 0;
LzmaDec_WriteRem(p, dicLimit);
*status = LZMA_STATUS_NOT_SPECIFIED; LzmaDec_WriteRem(p, dicLimit);
while (p->remainLen != kMatchSpecLenStart) while (p->remainLen != kMatchSpecLenStart)
{ {
int checkEndMarkNow; int checkEndMarkNow = 0;
if (p->needFlush)
{
for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
p->tempBuf[p->tempBufSize++] = *src++;
if (p->tempBufSize < RC_INIT_SIZE)
{
*status = LZMA_STATUS_NEEDS_MORE_INPUT;
return SZ_OK;
}
if (p->tempBuf[0] != 0)
return SZ_ERROR_DATA;
p->code =
((UInt32)p->tempBuf[1] << 24)
| ((UInt32)p->tempBuf[2] << 16)
| ((UInt32)p->tempBuf[3] << 8)
| ((UInt32)p->tempBuf[4]);
p->range = 0xFFFFFFFF;
p->needFlush = 0;
p->tempBufSize = 0;
}
checkEndMarkNow = 0;
if (p->dicPos >= dicLimit) if (p->dicPos >= dicLimit)
{ {
if (p->remainLen == 0 && p->code == 0) if (p->remainLen == 0 && p->code == 0)
@ -855,9 +939,6 @@ SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *sr
checkEndMarkNow = 1; checkEndMarkNow = 1;
} }
if (p->needInitState)
LzmaDec_InitStateReal(p);
if (p->tempBufSize == 0) if (p->tempBufSize == 0)
{ {
SizeT processed; SizeT processed;
@ -930,11 +1011,14 @@ SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *sr
p->tempBufSize = 0; p->tempBufSize = 0;
} }
} }
if (p->code == 0)
if (p->code != 0)
return SZ_ERROR_DATA;
*status = LZMA_STATUS_FINISHED_WITH_MARK; *status = LZMA_STATUS_FINISHED_WITH_MARK;
return (p->code == 0) ? SZ_OK : SZ_ERROR_DATA; return SZ_OK;
} }
SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status) SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
{ {
SizeT outSize = *destLen; SizeT outSize = *destLen;
@ -1011,10 +1095,10 @@ SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size)
if (d >= (9 * 5 * 5)) if (d >= (9 * 5 * 5))
return SZ_ERROR_UNSUPPORTED; return SZ_ERROR_UNSUPPORTED;
p->lc = d % 9; p->lc = (Byte)(d % 9);
d /= 9; d /= 9;
p->pb = d / 5; p->pb = (Byte)(d / 5);
p->lp = d % 5; p->lp = (Byte)(d % 5);
return SZ_OK; return SZ_OK;
} }
@ -1026,9 +1110,10 @@ static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAl
{ {
LzmaDec_FreeProbs(p, alloc); LzmaDec_FreeProbs(p, alloc);
p->probs = (CLzmaProb *)ISzAlloc_Alloc(alloc, numProbs * sizeof(CLzmaProb)); p->probs = (CLzmaProb *)ISzAlloc_Alloc(alloc, numProbs * sizeof(CLzmaProb));
p->numProbs = numProbs;
if (!p->probs) if (!p->probs)
return SZ_ERROR_MEM; return SZ_ERROR_MEM;
p->probs_1664 = p->probs + 1664;
p->numProbs = numProbs;
} }
return SZ_OK; return SZ_OK;
} }

View file

@ -1,5 +1,5 @@
/* LzmaDec.h -- LZMA Decoder /* LzmaDec.h -- LZMA Decoder
2017-04-03 : Igor Pavlov : Public domain */ 2018-04-21 : Igor Pavlov : Public domain */
#ifndef __LZMA_DEC_H #ifndef __LZMA_DEC_H
#define __LZMA_DEC_H #define __LZMA_DEC_H
@ -12,11 +12,13 @@ EXTERN_C_BEGIN
/* _LZMA_PROB32 can increase the speed on some CPUs, /* _LZMA_PROB32 can increase the speed on some CPUs,
but memory usage for CLzmaDec::probs will be doubled in that case */ but memory usage for CLzmaDec::probs will be doubled in that case */
typedef
#ifdef _LZMA_PROB32 #ifdef _LZMA_PROB32
#define CLzmaProb UInt32 UInt32
#else #else
#define CLzmaProb UInt16 UInt16
#endif #endif
CLzmaProb;
/* ---------- LZMA Properties ---------- */ /* ---------- LZMA Properties ---------- */
@ -25,7 +27,10 @@ EXTERN_C_BEGIN
typedef struct _CLzmaProps typedef struct _CLzmaProps
{ {
unsigned lc, lp, pb; Byte lc;
Byte lp;
Byte pb;
Byte _pad_;
UInt32 dicSize; UInt32 dicSize;
} CLzmaProps; } CLzmaProps;
@ -47,32 +52,34 @@ SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size);
typedef struct typedef struct
{ {
/* Don't change this structure. ASM code can use it. */
CLzmaProps prop; CLzmaProps prop;
CLzmaProb *probs; CLzmaProb *probs;
CLzmaProb *probs_1664;
Byte *dic; Byte *dic;
const Byte *buf;
UInt32 range, code;
SizeT dicPos;
SizeT dicBufSize; SizeT dicBufSize;
SizeT dicPos;
const Byte *buf;
UInt32 range;
UInt32 code;
UInt32 processedPos; UInt32 processedPos;
UInt32 checkDicSize; UInt32 checkDicSize;
unsigned state;
UInt32 reps[4]; UInt32 reps[4];
unsigned remainLen; UInt32 state;
int needFlush; UInt32 remainLen;
int needInitState;
UInt32 numProbs; UInt32 numProbs;
unsigned tempBufSize; unsigned tempBufSize;
Byte tempBuf[LZMA_REQUIRED_INPUT_MAX]; Byte tempBuf[LZMA_REQUIRED_INPUT_MAX];
} CLzmaDec; } CLzmaDec;
#define LzmaDec_Construct(p) { (p)->dic = 0; (p)->probs = 0; } #define LzmaDec_Construct(p) { (p)->dic = NULL; (p)->probs = NULL; }
void LzmaDec_Init(CLzmaDec *p); void LzmaDec_Init(CLzmaDec *p);
/* There are two types of LZMA streams: /* There are two types of LZMA streams:
0) Stream with end mark. That end mark adds about 6 bytes to compressed size. - Stream with end mark. That end mark adds about 6 bytes to compressed size.
1) Stream without end mark. You must know exact uncompressed size to decompress such stream. */ - Stream without end mark. You must know exact uncompressed size to decompress such stream. */
typedef enum typedef enum
{ {
@ -132,8 +139,8 @@ LzmaDec_Allocate* can return:
SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc); SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc);
void LzmaDec_FreeProbs(CLzmaDec *p, ISzAllocPtr alloc); void LzmaDec_FreeProbs(CLzmaDec *p, ISzAllocPtr alloc);
SRes LzmaDec_Allocate(CLzmaDec *state, const Byte *prop, unsigned propsSize, ISzAllocPtr alloc); SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc);
void LzmaDec_Free(CLzmaDec *state, ISzAllocPtr alloc); void LzmaDec_Free(CLzmaDec *p, ISzAllocPtr alloc);
/* ---------- Dictionary Interface ---------- */ /* ---------- Dictionary Interface ---------- */
@ -142,7 +149,7 @@ void LzmaDec_Free(CLzmaDec *state, ISzAllocPtr alloc);
You must work with CLzmaDec variables directly in this interface. You must work with CLzmaDec variables directly in this interface.
STEPS: STEPS:
LzmaDec_Constr() LzmaDec_Construct()
LzmaDec_Allocate() LzmaDec_Allocate()
for (each new stream) for (each new stream)
{ {

File diff suppressed because it is too large Load diff