mirror of
https://github.com/ZDoom/gzdoom-gles.git
synced 2025-01-22 00:11:38 +00:00
449 lines
No EOL
12 KiB
Text
449 lines
No EOL
12 KiB
Text
/*
|
|
** XLAT grammar
|
|
**
|
|
**---------------------------------------------------------------------------
|
|
** Copyright 1999-2016 Randy Heit
|
|
** Copyright 2005-2016 Christoph Oelckers
|
|
** All rights reserved.
|
|
**
|
|
** Redistribution and use in source and binary forms, with or without
|
|
** modification, are permitted provided that the following conditions
|
|
** are met:
|
|
**
|
|
** 1. Redistributions of source code must retain the above copyright
|
|
** notice, this list of conditions and the following disclaimer.
|
|
** 2. Redistributions in binary form must reproduce the above copyright
|
|
** notice, this list of conditions and the following disclaimer in the
|
|
** documentation and/or other materials provided with the distribution.
|
|
** 3. The name of the author may not be used to endorse or promote products
|
|
** derived from this software without specific prior written permission.
|
|
**
|
|
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
**---------------------------------------------------------------------------
|
|
**
|
|
*/
|
|
|
|
%token_prefix XLAT_
|
|
%token_type {FParseToken}
|
|
%token_destructor {} // just to avoid a compiler warning
|
|
%name XlatParse
|
|
%extra_argument { FParseContext *context }
|
|
%syntax_error { context->PrintError("syntax error");}
|
|
|
|
|
|
main ::= translation_unit.
|
|
|
|
translation_unit ::= . /* empty */
|
|
translation_unit ::= translation_unit external_declaration.
|
|
|
|
external_declaration ::= define_statement.
|
|
external_declaration ::= enum_statement.
|
|
external_declaration ::= linetype_declaration.
|
|
external_declaration ::= boom_declaration.
|
|
external_declaration ::= sector_declaration.
|
|
external_declaration ::= lineflag_declaration.
|
|
external_declaration ::= sector_bitmask.
|
|
external_declaration ::= maxlinespecial_def.
|
|
external_declaration ::= NOP.
|
|
|
|
|
|
%left OR.
|
|
%left XOR.
|
|
%left AND.
|
|
%left MINUS PLUS.
|
|
%left MULTIPLY DIVIDE MODULUS.
|
|
%left NEG.
|
|
|
|
%type expr {int}
|
|
expr(A) ::= NUM(B). { A = B.val; }
|
|
expr(A) ::= expr(B) PLUS expr(C). { A = B + C; }
|
|
expr(A) ::= expr(B) MINUS expr(C). { A = B - C; }
|
|
expr(A) ::= expr(B) MULTIPLY expr(C). { A = B * C; }
|
|
expr(A) ::= expr(B) DIVIDE expr(C). { if (C != 0) A = B / C; else context->PrintError("Division by zero"); }
|
|
expr(A) ::= expr(B) MODULUS expr(C). { if (C != 0) A = B % C; else context->PrintError("Division by zero"); }
|
|
expr(A) ::= expr(B) OR expr(C). { A = B | C; }
|
|
expr(A) ::= expr(B) AND expr(C). { A = B & C; }
|
|
expr(A) ::= expr(B) XOR expr(C). { A = B ^ C; }
|
|
expr(A) ::= MINUS expr(B). [NEG] { A = -B; }
|
|
expr(A) ::= LPAREN expr(B) RPAREN. { A = B; }
|
|
|
|
|
|
//==========================================================================
|
|
//
|
|
// define
|
|
//
|
|
//==========================================================================
|
|
|
|
define_statement ::= DEFINE SYM(A) LPAREN expr(B) RPAREN.
|
|
{
|
|
context->AddSym (A.sym, B);
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// enum
|
|
//
|
|
//==========================================================================
|
|
|
|
enum_statement ::= enum_open enum_list RBRACE.
|
|
|
|
enum_open ::= ENUM LBRACE.
|
|
{
|
|
context->EnumVal = 0;
|
|
}
|
|
|
|
enum_list ::= . /* empty */
|
|
enum_list ::= single_enum.
|
|
enum_list ::= enum_list COMMA single_enum.
|
|
|
|
single_enum ::= SYM(A).
|
|
{
|
|
context->AddSym (A.sym, context->EnumVal++);
|
|
}
|
|
|
|
single_enum ::= SYM(A) EQUALS expr(B).
|
|
{
|
|
context->AddSym (A.sym, B);
|
|
context->EnumVal = B+1;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// standard linetype
|
|
//
|
|
//==========================================================================
|
|
|
|
%type linetype_exp {int}
|
|
linetype_exp(Z) ::= expr(A).
|
|
{
|
|
Z = static_cast<XlatParseContext *>(context)->DefiningLineType = A;
|
|
}
|
|
|
|
linetype_declaration ::= linetype_exp(linetype) EQUALS expr(flags) COMMA expr(special) LPAREN special_args(arg) RPAREN.
|
|
{
|
|
SimpleLineTranslations.SetVal(linetype,
|
|
FLineTrans(special&0xffff, flags+arg.addflags, arg.args[0], arg.args[1], arg.args[2], arg.args[3], arg.args[4]));
|
|
static_cast<XlatParseContext *>(context)->DefiningLineType = -1;
|
|
}
|
|
|
|
linetype_declaration ::= linetype_exp EQUALS expr COMMA SYM(S) LPAREN special_args RPAREN.
|
|
{
|
|
Printf ("%s, line %d: %s is undefined\n", context->SourceFile, context->SourceLine, S.sym);
|
|
static_cast<XlatParseContext *>(context)->DefiningLineType = -1;
|
|
}
|
|
|
|
%type exp_with_tag {int}
|
|
exp_with_tag(A) ::= NUM(B). { XlatExpressions.Push(B.val); A = XlatExpressions.Push(XEXP_Const); }
|
|
exp_with_tag(A) ::= TAG. { A = XlatExpressions.Push(XEXP_Tag); }
|
|
exp_with_tag(A) ::= exp_with_tag PLUS exp_with_tag. { A = XlatExpressions.Push(XEXP_Add); }
|
|
exp_with_tag(A) ::= exp_with_tag MINUS exp_with_tag. { A = XlatExpressions.Push(XEXP_Sub); }
|
|
exp_with_tag(A) ::= exp_with_tag MULTIPLY exp_with_tag. { A = XlatExpressions.Push(XEXP_Mul); }
|
|
exp_with_tag(A) ::= exp_with_tag DIVIDE exp_with_tag. { A = XlatExpressions.Push(XEXP_Div); }
|
|
exp_with_tag(A) ::= exp_with_tag MODULUS exp_with_tag. { A = XlatExpressions.Push(XEXP_Mod); }
|
|
exp_with_tag(A) ::= exp_with_tag OR exp_with_tag. { A = XlatExpressions.Push(XEXP_Or); }
|
|
exp_with_tag(A) ::= exp_with_tag AND exp_with_tag. { A = XlatExpressions.Push(XEXP_And); }
|
|
exp_with_tag(A) ::= exp_with_tag XOR exp_with_tag. { A = XlatExpressions.Push(XEXP_Xor); }
|
|
exp_with_tag(A) ::= MINUS exp_with_tag. [NEG] { A = XlatExpressions.Push(XEXP_Neg); }
|
|
exp_with_tag(A) ::= LPAREN exp_with_tag(B) RPAREN. { A = B; }
|
|
|
|
|
|
%type special_arg {SpecialArg}
|
|
|
|
special_arg(Z) ::= exp_with_tag(A).
|
|
{
|
|
if (XlatExpressions[A] == XEXP_Tag)
|
|
{ // Store tags directly
|
|
Z.arg = 0;
|
|
Z.argop = ARGOP_Tag;
|
|
XlatExpressions.Delete(A);
|
|
}
|
|
else
|
|
{ // Try and evaluate it. If it's a constant, store it and erase the
|
|
// expression. Otherwise, store the index to the expression. We make
|
|
// no attempt to simplify non-constant expressions.
|
|
FXlatExprState state;
|
|
int val;
|
|
const int *endpt;
|
|
int *xnode;
|
|
|
|
state.linetype = static_cast<XlatParseContext *>(context)->DefiningLineType;
|
|
state.tag = 0;
|
|
state.bIsConstant = true;
|
|
xnode = &XlatExpressions[A];
|
|
endpt = XlatExprEval[*xnode](&val, xnode, &state);
|
|
if (state.bIsConstant)
|
|
{
|
|
Z.arg = val;
|
|
Z.argop = ARGOP_Const;
|
|
endpt++;
|
|
assert(endpt >= &XlatExpressions[0]);
|
|
XlatExpressions.Resize((unsigned)(endpt - &XlatExpressions[0]));
|
|
}
|
|
else
|
|
{
|
|
Z.arg = A;
|
|
Z.argop = ARGOP_Expr;
|
|
}
|
|
}
|
|
}
|
|
|
|
%type multi_special_arg {SpecialArgs}
|
|
|
|
multi_special_arg(Z) ::= special_arg(A).
|
|
{
|
|
Z.addflags = A.argop << LINETRANS_TAGSHIFT;
|
|
Z.argcount = 1;
|
|
Z.args[0] = A.arg;
|
|
Z.args[1] = 0;
|
|
Z.args[2] = 0;
|
|
Z.args[3] = 0;
|
|
Z.args[4] = 0;
|
|
}
|
|
multi_special_arg(Z) ::= multi_special_arg(A) COMMA special_arg(B).
|
|
{
|
|
Z = A;
|
|
if (Z.argcount < LINETRANS_MAXARGS)
|
|
{
|
|
Z.addflags |= B.argop << (LINETRANS_TAGSHIFT + Z.argcount * TAGOP_NUMBITS);
|
|
Z.args[Z.argcount] = B.arg;
|
|
Z.argcount++;
|
|
}
|
|
else if (Z.argcount++ == LINETRANS_MAXARGS)
|
|
{
|
|
context->PrintError("Line special has too many arguments\n");
|
|
}
|
|
}
|
|
|
|
%type special_args {SpecialArgs}
|
|
|
|
special_args(Z) ::= . /* empty */
|
|
{
|
|
Z.addflags = 0;
|
|
Z.argcount = 0;
|
|
Z.args[0] = 0;
|
|
Z.args[1] = 0;
|
|
Z.args[2] = 0;
|
|
Z.args[3] = 0;
|
|
Z.args[4] = 0;
|
|
}
|
|
special_args(Z) ::= multi_special_arg(Z).
|
|
|
|
//==========================================================================
|
|
//
|
|
// boom generalized linetypes
|
|
//
|
|
//==========================================================================
|
|
|
|
%type list_val {ListFilter}
|
|
%type arg_list {MoreFilters *}
|
|
%type boom_args {ParseBoomArg}
|
|
%type boom_op {int}
|
|
%type boom_selector {int}
|
|
%type boom_line {FBoomArg}
|
|
%type boom_body {MoreLines *}
|
|
|
|
|
|
boom_declaration ::= LBRACKET expr(special) RBRACKET LPAREN expr(firsttype) COMMA expr(lasttype) RPAREN LBRACE boom_body(stores) RBRACE.
|
|
{
|
|
int i;
|
|
MoreLines *probe;
|
|
|
|
if (NumBoomish == MAX_BOOMISH)
|
|
{
|
|
MoreLines *probe = stores;
|
|
|
|
while (probe != NULL)
|
|
{
|
|
MoreLines *next = probe->next;
|
|
delete probe;
|
|
probe = next;
|
|
}
|
|
Printf ("%s, line %d: Too many BOOM translators\n", context->SourceFile, context->SourceLine);
|
|
}
|
|
else
|
|
{
|
|
Boomish[NumBoomish].FirstLinetype = firsttype;
|
|
Boomish[NumBoomish].LastLinetype = lasttype;
|
|
Boomish[NumBoomish].NewSpecial = special;
|
|
|
|
for (i = 0, probe = stores; probe != NULL; i++)
|
|
{
|
|
MoreLines *next = probe->next;
|
|
Boomish[NumBoomish].Args.Push(probe->arg);
|
|
delete probe;
|
|
probe = next;
|
|
}
|
|
NumBoomish++;
|
|
}
|
|
}
|
|
|
|
boom_body(A) ::= . /* empty */
|
|
{
|
|
A = NULL;
|
|
}
|
|
boom_body(A) ::= boom_line(B) boom_body(C).
|
|
{
|
|
A = new MoreLines;
|
|
A->next = C;
|
|
A->arg = B;
|
|
}
|
|
|
|
boom_line(A) ::= boom_selector(sel) boom_op(op) boom_args(args).
|
|
{
|
|
A.bOrExisting = (op == OR_EQUAL);
|
|
A.bUseConstant = (args.filters == NULL);
|
|
A.ListSize = 0;
|
|
A.ArgNum = sel;
|
|
A.ConstantValue = args.constant;
|
|
A.AndValue = args.mask;
|
|
|
|
if (args.filters != NULL)
|
|
{
|
|
int i;
|
|
MoreFilters *probe;
|
|
|
|
for (i = 0, probe = args.filters; probe != NULL; i++)
|
|
{
|
|
MoreFilters *next = probe->next;
|
|
if (i < 15)
|
|
{
|
|
A.ResultFilter[i] = probe->filter.filter;
|
|
A.ResultValue[i] = probe->filter.value;
|
|
}
|
|
else if (i == 15)
|
|
{
|
|
context->PrintError ("Lists can only have 15 elements");
|
|
}
|
|
delete probe;
|
|
probe = next;
|
|
}
|
|
A.ListSize = i > 15 ? 15 : i;
|
|
}
|
|
}
|
|
|
|
boom_selector(A) ::= FLAGS. { A = 4; }
|
|
boom_selector(A) ::= ARG2. { A = 0; }
|
|
boom_selector(A) ::= ARG3. { A = 1; }
|
|
boom_selector(A) ::= ARG4. { A = 2; }
|
|
boom_selector(A) ::= ARG5. { A = 3; }
|
|
|
|
boom_op(A) ::= EQUALS. { A = '='; }
|
|
boom_op(A) ::= OR_EQUAL. { A = OR_EQUAL; }
|
|
|
|
boom_args(A) ::= expr(B).
|
|
{
|
|
A.constant = B;
|
|
A.filters = NULL;
|
|
}
|
|
boom_args(A) ::= expr(B) LBRACKET arg_list(C) RBRACKET.
|
|
{
|
|
A.mask = B;
|
|
A.filters = C;
|
|
}
|
|
|
|
arg_list(A) ::= list_val(B).
|
|
{
|
|
A = new MoreFilters;
|
|
A->next = NULL;
|
|
A->filter = B;
|
|
}
|
|
arg_list(A) ::= list_val(B) COMMA arg_list(C).
|
|
{
|
|
A = new MoreFilters;
|
|
A->next = C;
|
|
A->filter = B;
|
|
}
|
|
|
|
list_val(A) ::= expr(B) COLON expr(C).
|
|
{
|
|
A.filter = B;
|
|
A.value = C;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// max line special
|
|
//
|
|
//==========================================================================
|
|
|
|
maxlinespecial_def ::= MAXLINESPECIAL EQUALS expr(mx) SEMICOLON.
|
|
{
|
|
// Just kill all specials higher than the max.
|
|
// If the translator wants to redefine some later, just let it.
|
|
SimpleLineTranslations.Resize(mx+1);
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// sector types
|
|
//
|
|
//==========================================================================
|
|
|
|
%type sector_op {int}
|
|
|
|
sector_declaration ::= SECTOR expr(from) EQUALS expr(to) SEMICOLON.
|
|
{
|
|
FSectorTrans tr(to, true);
|
|
SectorTranslations.SetVal(from, tr);
|
|
}
|
|
|
|
sector_declaration ::= SECTOR expr EQUALS SYM(sy) SEMICOLON.
|
|
{
|
|
Printf("Unknown constant '%s'\n", sy.sym);
|
|
}
|
|
|
|
sector_declaration ::= SECTOR expr(from) EQUALS expr(to) NOBITMASK SEMICOLON.
|
|
{
|
|
FSectorTrans tr(to, false);
|
|
SectorTranslations.SetVal(from, tr);
|
|
}
|
|
|
|
sector_bitmask ::= SECTOR BITMASK expr(mask) sector_op(op) expr(shift) SEMICOLON.
|
|
{
|
|
FSectorMask sm = { mask, op, shift};
|
|
SectorMasks.Push(sm);
|
|
}
|
|
|
|
sector_bitmask ::= SECTOR BITMASK expr(mask) SEMICOLON.
|
|
{
|
|
FSectorMask sm = { mask, 0, 0};
|
|
SectorMasks.Push(sm);
|
|
}
|
|
|
|
sector_bitmask ::= SECTOR BITMASK expr(mask) CLEAR SEMICOLON.
|
|
{
|
|
FSectorMask sm = { mask, 0, 1};
|
|
SectorMasks.Push(sm);
|
|
}
|
|
|
|
sector_op(A) ::= LSHASSIGN. { A = 1; }
|
|
sector_op(A) ::= RSHASSIGN. { A = -1; }
|
|
|
|
%type lineflag_op {int}
|
|
|
|
lineflag_declaration ::= LINEFLAG expr(from) EQUALS expr(to) SEMICOLON.
|
|
{
|
|
if (from >= 0 && from < 16)
|
|
{
|
|
LineFlagTranslations[from].newvalue = to;
|
|
LineFlagTranslations[from].ismask = false;
|
|
}
|
|
}
|
|
|
|
lineflag_declaration ::= LINEFLAG expr(from) AND expr(mask) SEMICOLON.
|
|
{
|
|
if (from >= 0 && from < 16)
|
|
{
|
|
LineFlagTranslations[from].newvalue = mask;
|
|
LineFlagTranslations[from].ismask = true;
|
|
}
|
|
} |