gzdoom-gles/src/g_shared/a_dynlight.cpp

851 lines
22 KiB
C++

//
//---------------------------------------------------------------------------
//
// Copyright(C) 2004-2016 Christoph Oelckers
// All rights reserved.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program. If not, see http://www.gnu.org/licenses/
//
//--------------------------------------------------------------------------
//
/*
** a_dynlight.cpp
** Implements actors representing dynamic lights (hardware independent)
**
**
** all functions marked with [TS] are licensed under
**---------------------------------------------------------------------------
** Copyright 2003 Timothy Stump
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#include "c_dispatch.h"
#include "thingdef.h"
#include "r_utility.h"
#include "doomstat.h"
#include "serializer.h"
#include "g_levellocals.h"
#include "a_dynlight.h"
#include "actorinlines.h"
#include "memarena.h"
static FMemArena DynLightArena(sizeof(FDynamicLight) * 200);
static TArray<FDynamicLight*> FreeList;
static FRandom randLight;
extern TArray<FLightDefaults *> StateLights;
//==========================================================================
//
//
//
//==========================================================================
static FDynamicLight *GetLight(FLevelLocals *Level)
{
FDynamicLight *ret;
if (FreeList.Size())
{
FreeList.Pop(ret);
}
else ret = (FDynamicLight*)DynLightArena.Alloc(sizeof(FDynamicLight));
memset(ret, 0, sizeof(*ret));
ret->next = Level->lights;
Level->lights = ret;
if (ret->next) ret->next->prev = ret;
ret->visibletoplayer = true;
ret->mShadowmapIndex = 1024;
ret->Level = Level;
ret->Pos.X = -10000000; // not a valid coordinate.
return ret;
}
//==========================================================================
//
// Attaches a dynamic light descriptor to a dynamic light actor.
// Owned lights do not use this function.
//
//==========================================================================
void AttachLight(AActor *self)
{
auto light = GetLight(self->Level);
light->pSpotInnerAngle = &self->AngleVar(NAME_SpotInnerAngle);
light->pSpotOuterAngle = &self->AngleVar(NAME_SpotOuterAngle);
light->pPitch = &self->Angles.Pitch;
light->pLightFlags = (LightFlags*)&self->IntVar(NAME_lightflags);
light->pArgs = self->args;
light->specialf1 = DAngle(double(self->SpawnAngle)).Normalized360().Degrees;
light->Sector = self->Sector;
light->target = self;
light->mShadowmapIndex = 1024;
light->m_active = false;
light->visibletoplayer = true;
light->lighttype = (uint8_t)self->IntVar(NAME_lighttype);
self->AttachedLights.Push(light);
}
DEFINE_ACTION_FUNCTION_NATIVE(ADynamicLight, AttachLight, AttachLight)
{
PARAM_SELF_PROLOGUE(AActor);
AttachLight(self);
return 0;
}
//==========================================================================
//
//
//
//==========================================================================
void ActivateLight(AActor *self)
{
for (auto l : self->AttachedLights) l->Activate();
}
DEFINE_ACTION_FUNCTION_NATIVE(ADynamicLight, ActivateLight, ActivateLight)
{
PARAM_SELF_PROLOGUE(AActor);
ActivateLight(self);
return 0;
}
//==========================================================================
//
//
//
//==========================================================================
void DeactivateLight(AActor *self)
{
for (auto l : self->AttachedLights) l->Deactivate();
}
DEFINE_ACTION_FUNCTION_NATIVE(ADynamicLight, DeactivateLight, DeactivateLight)
{
PARAM_SELF_PROLOGUE(AActor);
DeactivateLight(self);
return 0;
}
//==========================================================================
//
//
//
//==========================================================================
static void SetOffset(AActor *self, double x, double y, double z)
{
for (auto l : self->AttachedLights)
{
l->SetOffset(DVector3(x, y, z));
}
}
DEFINE_ACTION_FUNCTION_NATIVE(ADynamicLight, SetOffset, SetOffset)
{
PARAM_SELF_PROLOGUE(AActor);
PARAM_FLOAT(x);
PARAM_FLOAT(y);
PARAM_FLOAT(z);
SetOffset(self, x, y, z);
return 0;
}
//==========================================================================
//
//
//
//==========================================================================
void FDynamicLight::ReleaseLight()
{
assert(prev != nullptr || this == Level->lights);
if (prev != nullptr) prev->next = next;
else Level->lights = next;
if (next != nullptr) next->prev = prev;
next = prev = nullptr;
FreeList.Push(this);
}
//==========================================================================
//
// [TS]
//
//==========================================================================
void FDynamicLight::Activate()
{
m_active = true;
m_currentRadius = float(GetIntensity());
m_tickCount = 0;
if (lighttype == PulseLight)
{
float pulseTime = float(specialf1 / TICRATE);
m_lastUpdate = Level->maptime;
if (!swapped) m_cycler.SetParams(float(GetSecondaryIntensity()), float(GetIntensity()), pulseTime);
else m_cycler.SetParams(float(GetIntensity()), float(GetSecondaryIntensity()), pulseTime);
m_cycler.ShouldCycle(true);
m_cycler.SetCycleType(CYCLE_Sin);
m_currentRadius = float(m_cycler.GetVal());
}
if (m_currentRadius <= 0) m_currentRadius = 1;
}
//==========================================================================
//
// [TS]
//
//==========================================================================
void FDynamicLight::Tick()
{
if (!target)
{
// How did we get here? :?
ReleaseLight();
return;
}
if (owned)
{
if (!target->state)
{
Deactivate();
return;
}
if (target->flags & MF_UNMORPHED)
{
m_active = false;
return;
}
visibletoplayer = target->IsVisibleToPlayer(); // cache this value for the renderer to speed up calculations.
}
// Don't bother if the light won't be shown
if (!IsActive()) return;
// I am doing this with a type field so that I can dynamically alter the type of light
// without having to create or maintain multiple objects.
switch(lighttype)
{
case PulseLight:
{
float diff = (Level->maptime - m_lastUpdate) / (float)TICRATE;
m_lastUpdate = Level->maptime;
m_cycler.Update(diff);
m_currentRadius = float(m_cycler.GetVal());
break;
}
case FlickerLight:
{
int rnd = randLight(360);
m_currentRadius = float((rnd < int(specialf1))? GetIntensity() : GetSecondaryIntensity());
break;
}
case RandomFlickerLight:
{
int flickerRange = GetSecondaryIntensity() - GetIntensity();
float amt = randLight() / 255.f;
if (m_tickCount > specialf1)
{
m_tickCount = 0;
}
if (m_tickCount++ == 0 || m_currentRadius > GetSecondaryIntensity())
{
m_currentRadius = float(GetIntensity() + (amt * flickerRange));
}
break;
}
#if 0
// These need some more work elsewhere
case ColorFlickerLight:
{
int rnd = randLight();
float pct = specialf1/360.f;
m_currentRadius = m_Radius[rnd >= pct * 255];
break;
}
case RandomColorFlickerLight:
{
int flickerRange = GetSecondaryIntensity() - GetIntensity();
float amt = randLight() / 255.f;
m_tickCount++;
if (m_tickCount > specialf1)
{
m_currentRadius = GetIntensity() + (amt * flickerRange);
m_tickCount = 0;
}
break;
}
#endif
case SectorLight:
{
float intensity;
float scale = GetIntensity() / 8.f;
if (scale == 0.f) scale = 1.f;
intensity = Sector->lightlevel * scale;
intensity = clamp<float>(intensity, 0.f, 255.f);
m_currentRadius = intensity;
break;
}
case PointLight:
m_currentRadius = float(GetIntensity());
break;
}
if (m_currentRadius <= 0) m_currentRadius = 1;
UpdateLocation();
}
//==========================================================================
//
//
//
//==========================================================================
void FDynamicLight::UpdateLocation()
{
double oldx= X();
double oldy= Y();
float oldradius = radius;
if (IsActive())
{
AActor *target = this->target; // perform the read barrier only once.
// Offset is calculated in relation to the owning actor.
DAngle angle = target->Angles.Yaw;
double s = angle.Sin();
double c = angle.Cos();
Pos = target->Vec3Offset(m_off.X * c + m_off.Y * s, m_off.X * s - m_off.Y * c, m_off.Z + target->GetBobOffset());
Sector = target->subsector->sector; // Get the render sector. target->Sector is the sector according to play logic.
// Some z-coordinate fudging to prevent the light from getting too close to the floor or ceiling planes. With proper attenuation this would render them invisible.
// A distance of 5 is needed so that the light's effect doesn't become too small.
if (Z() < target->floorz + 5.) Pos.Z = target->floorz + 5.;
else if (Z() > target->ceilingz - 5.) Pos.Z = target->ceilingz - 5.;
// The radius being used here is always the maximum possible with the
// current settings. This avoids constant relinking of flickering lights
float intensity;
if (lighttype == FlickerLight || lighttype == RandomFlickerLight || lighttype == PulseLight)
{
intensity = float(MAX(GetIntensity(), GetSecondaryIntensity()));
}
else
{
intensity = m_currentRadius;
}
radius = intensity * 2.0f;
if (radius < m_currentRadius * 2) radius = m_currentRadius * 2;
if (X() != oldx || Y() != oldy || radius != oldradius)
{
//Update the light lists
LinkLight();
}
}
}
//=============================================================================
//
// These have been copied from the secnode code and modified for the light links
//
// P_AddSecnode() searches the current list to see if this sector is
// already there. If not, it adds a sector node at the head of the list of
// sectors this object appears in. This is called when creating a list of
// nodes that will get linked in later. Returns a pointer to the new node.
//
//=============================================================================
FLightNode * AddLightNode(FLightNode ** thread, void * linkto, FDynamicLight * light, FLightNode *& nextnode)
{
FLightNode * node;
node = nextnode;
while (node)
{
if (node->targ==linkto) // Already have a node for this sector?
{
node->lightsource = light; // Yes. Setting m_thing says 'keep it'.
return(nextnode);
}
node = node->nextTarget;
}
// Couldn't find an existing node for this sector. Add one at the head
// of the list.
node = new FLightNode;
node->targ = linkto;
node->lightsource = light;
node->prevTarget = &nextnode;
node->nextTarget = nextnode;
if (nextnode) nextnode->prevTarget = &node->nextTarget;
// Add new node at head of sector thread starting at s->touching_thinglist
node->prevLight = thread;
node->nextLight = *thread;
if (node->nextLight) node->nextLight->prevLight=&node->nextLight;
*thread = node;
return(node);
}
//=============================================================================
//
// P_DelSecnode() deletes a sector node from the list of
// sectors this object appears in. Returns a pointer to the next node
// on the linked list, or nullptr.
//
//=============================================================================
static FLightNode * DeleteLightNode(FLightNode * node)
{
FLightNode * tn; // next node on thing thread
if (node)
{
*node->prevTarget = node->nextTarget;
if (node->nextTarget) node->nextTarget->prevTarget=node->prevTarget;
*node->prevLight = node->nextLight;
if (node->nextLight) node->nextLight->prevLight=node->prevLight;
// Return this node to the freelist
tn=node->nextTarget;
delete node;
return(tn);
}
return(nullptr);
}
//==========================================================================
//
// Gets the light's distance to a line
//
//==========================================================================
double FDynamicLight::DistToSeg(const DVector3 &pos, vertex_t *start, vertex_t *end)
{
double u, px, py;
double seg_dx = end->fX() - start->fX();
double seg_dy = end->fY() - start->fY();
double seg_length_sq = seg_dx * seg_dx + seg_dy * seg_dy;
u = (((pos.X - start->fX()) * seg_dx) + (pos.Y - start->fY()) * seg_dy) / seg_length_sq;
if (u < 0.) u = 0.; // clamp the test point to the line segment
else if (u > 1.) u = 1.;
px = start->fX() + (u * seg_dx);
py = start->fY() + (u * seg_dy);
px -= pos.X;
py -= pos.Y;
return (px*px) + (py*py);
}
//==========================================================================
//
// Collect all touched sidedefs and subsectors
// to sidedefs and sector parts.
//
//==========================================================================
struct LightLinkEntry
{
FSection *sect;
DVector3 pos;
};
static TArray<LightLinkEntry> collected_ss;
void FDynamicLight::CollectWithinRadius(const DVector3 &opos, FSection *section, float radius)
{
if (!section) return;
collected_ss.Clear();
collected_ss.Push({ section, opos });
section->validcount = dl_validcount;
bool hitonesidedback = false;
for (unsigned i = 0; i < collected_ss.Size(); i++)
{
auto &pos = collected_ss[i].pos;
section = collected_ss[i].sect;
touching_sector = AddLightNode(&section->lighthead, section, this, touching_sector);
auto processSide = [&](side_t *sidedef, const vertex_t *v1, const vertex_t *v2)
{
auto linedef = sidedef->linedef;
if (linedef && linedef->validcount != ::validcount)
{
// light is in front of the seg
if ((pos.Y - v1->fY()) * (v2->fX() - v1->fX()) + (v1->fX() - pos.X) * (v2->fY() - v1->fY()) <= 0)
{
linedef->validcount = ::validcount;
touching_sides = AddLightNode(&sidedef->lighthead, sidedef, this, touching_sides);
}
else if (linedef->sidedef[0] == sidedef && linedef->sidedef[1] == nullptr)
{
hitonesidedback = true;
}
}
if (linedef)
{
FLinePortal *port = linedef->getPortal();
if (port && port->mType == PORTT_LINKED)
{
line_t *other = port->mDestination;
if (other->validcount != ::validcount)
{
subsector_t *othersub = Level->PointInRenderSubsector(other->v1->fPos() + other->Delta() / 2);
FSection *othersect = othersub->section;
if (othersect->validcount != ::validcount)
{
othersect->validcount = ::validcount;
collected_ss.Push({ othersect, PosRelative(other->frontsector->PortalGroup) });
}
}
}
}
};
for (auto &segment : section->segments)
{
// check distance from x/y to seg and if within radius add this seg and, if present the opposing subsector (lather/rinse/repeat)
// If out of range we do not need to bother with this seg.
if (DistToSeg(pos, segment.start, segment.end) <= radius)
{
auto sidedef = segment.sidedef;
if (sidedef)
{
processSide(sidedef, segment.start, segment.end);
}
auto partner = segment.partner;
if (partner)
{
FSection *sect = partner->section;
if (sect != nullptr && sect->validcount != dl_validcount)
{
sect->validcount = dl_validcount;
collected_ss.Push({ sect, pos });
}
}
}
}
for (auto side : section->sides)
{
auto v1 = side->V1(), v2 = side->V2();
if (DistToSeg(pos, v1, v2) <= radius)
{
processSide(side, v1, v2);
}
}
sector_t *sec = section->sector;
if (!sec->PortalBlocksSight(sector_t::ceiling))
{
line_t *other = section->segments[0].sidedef->linedef;
if (sec->GetPortalPlaneZ(sector_t::ceiling) < Z() + radius)
{
DVector2 refpos = other->v1->fPos() + other->Delta() / 2 + sec->GetPortalDisplacement(sector_t::ceiling);
subsector_t *othersub = Level->PointInRenderSubsector(refpos);
FSection *othersect = othersub->section;
if (othersect->validcount != dl_validcount)
{
othersect->validcount = dl_validcount;
collected_ss.Push({ othersect, PosRelative(othersub->sector->PortalGroup) });
}
}
}
if (!sec->PortalBlocksSight(sector_t::floor))
{
line_t *other = section->segments[0].sidedef->linedef;
if (sec->GetPortalPlaneZ(sector_t::floor) > Z() - radius)
{
DVector2 refpos = other->v1->fPos() + other->Delta() / 2 + sec->GetPortalDisplacement(sector_t::floor);
subsector_t *othersub = Level->PointInRenderSubsector(refpos);
FSection *othersect = othersub->section;
if (othersect->validcount != dl_validcount)
{
othersect->validcount = dl_validcount;
collected_ss.Push({ othersect, PosRelative(othersub->sector->PortalGroup) });
}
}
}
}
shadowmapped = hitonesidedback && !DontShadowmap();
}
//==========================================================================
//
// Link the light into the world
//
//==========================================================================
void FDynamicLight::LinkLight()
{
// mark the old light nodes
FLightNode * node;
node = touching_sides;
while (node)
{
node->lightsource = nullptr;
node = node->nextTarget;
}
node = touching_sector;
while (node)
{
node->lightsource = nullptr;
node = node->nextTarget;
}
if (radius>0)
{
// passing in radius*radius allows us to do a distance check without any calls to sqrt
FSection *sect = Level->PointInRenderSubsector(Pos)->section;
dl_validcount++;
::validcount++;
CollectWithinRadius(Pos, sect, float(radius*radius));
}
// Now delete any nodes that won't be used. These are the ones where
// m_thing is still nullptr.
node = touching_sides;
while (node)
{
if (node->lightsource == nullptr)
{
node = DeleteLightNode(node);
}
else
node = node->nextTarget;
}
node = touching_sector;
while (node)
{
if (node->lightsource == nullptr)
{
node = DeleteLightNode(node);
}
else
node = node->nextTarget;
}
}
//==========================================================================
//
// Deletes the link lists
//
//==========================================================================
void FDynamicLight::UnlinkLight ()
{
while (touching_sides) touching_sides = DeleteLightNode(touching_sides);
while (touching_sector) touching_sector = DeleteLightNode(touching_sector);
shadowmapped = false;
}
//==========================================================================
//
//
//
//==========================================================================
void AActor::AttachLight(unsigned int count, const FLightDefaults *lightdef)
{
FDynamicLight *light;
if (count < AttachedLights.Size())
{
light = AttachedLights[count];
assert(light != nullptr);
}
else
{
light = GetLight(Level);
light->SetActor(this, true);
AttachedLights.Push(light);
}
lightdef->ApplyProperties(light);
}
//==========================================================================
//
// per-state light adjustment
//
//==========================================================================
void AActor::SetDynamicLights()
{
TArray<FInternalLightAssociation *> & LightAssociations = GetInfo()->LightAssociations;
unsigned int count = 0;
if (state == nullptr) return;
if (LightAssociations.Size() > 0)
{
unsigned int i;
for (i = 0; i < LightAssociations.Size(); i++)
{
if (LightAssociations[i]->Sprite() == sprite &&
(LightAssociations[i]->Frame()==frame || LightAssociations[i]->Frame()==-1))
{
AttachLight(count++, LightAssociations[i]->Light());
}
}
}
if (count == 0 && state->Light > 0)
{
for(int i= state->Light; StateLights[i] != nullptr; i++)
{
if (StateLights[i] != (FLightDefaults*)-1)
{
AttachLight(count++, StateLights[i]);
}
}
}
for(;count<AttachedLights.Size();count++)
{
AttachedLights[count]->Deactivate();
}
}
//==========================================================================
//
//
//
//==========================================================================
void AActor::DeleteAttachedLights()
{
for (auto l : AttachedLights)
{
l->UnlinkLight();
l->ReleaseLight();
}
AttachedLights.Clear();
}
//==========================================================================
//
// This is called before saving the game
//
//==========================================================================
void FLevelLocals::DeleteAllAttachedLights()
{
auto it = GetThinkerIterator<AActor>();
AActor * a;
while ((a=it.Next()))
{
a->DeleteAttachedLights();
}
}
//==========================================================================
//
//
//
//==========================================================================
void FLevelLocals::RecreateAllAttachedLights()
{
auto it = GetThinkerIterator<AActor>();
AActor * a;
while ((a=it.Next()))
{
if (!a->IsKindOf(NAME_DynamicLight))
{
a->SetDynamicLights();
}
else if (a->AttachedLights.Size() == 0)
{
::AttachLight(a);
if (!(a->flags2 & MF2_DORMANT))
{
::ActivateLight(a);
}
}
}
}