gzdoom-gles/src/p_things.cpp
Christoph Oelckers a42f98af15 - Added another set of ACS inventory functions which take a tid for the actor
and aren't limited to the script's activator.
- Added GetSectorLightLevel(tag), GetActorCeilingZ(tid) and
  SetActorPosition(tid, x, y, z, fog) ACS functions.
- Fixed: First initialization of camera textures should not mark the rendered
  lines as mapped.

SVN r198 (trunk)
2006-06-18 15:49:00 +00:00

388 lines
11 KiB
C++

/*
** p_things.cpp
** ACS-accessible thing utilities
**
**---------------------------------------------------------------------------
** Copyright 1998-2006 Randy Heit
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#include "doomtype.h"
#include "p_local.h"
#include "p_effect.h"
#include "info.h"
#include "s_sound.h"
#include "tables.h"
#include "doomstat.h"
#include "m_random.h"
#include "c_console.h"
#include "c_dispatch.h"
#include "a_sharedglobal.h"
#include "gi.h"
#include "templates.h"
// List of spawnable things for the Thing_Spawn and Thing_Projectile specials.
const PClass *SpawnableThings[MAX_SPAWNABLES];
static FRandom pr_leadtarget ("LeadTarget");
bool P_Thing_Spawn (int tid, int type, angle_t angle, bool fog, int newtid)
{
int rtn = 0;
const PClass *kind;
AActor *spot, *mobj;
FActorIterator iterator (tid);
if (type >= MAX_SPAWNABLES)
return false;
if ( (kind = SpawnableThings[type]) == NULL)
return false;
if ((GetDefaultByType (kind)->flags3 & MF3_ISMONSTER) && (dmflags & DF_NO_MONSTERS))
return false;
while ( (spot = iterator.Next ()) )
{
mobj = Spawn (kind, spot->x, spot->y, spot->z);
if (mobj != NULL)
{
DWORD oldFlags2 = mobj->flags2;
mobj->flags2 |= MF2_PASSMOBJ;
if (P_TestMobjLocation (mobj))
{
rtn++;
mobj->angle = (angle != ANGLE_MAX ? angle : spot->angle);
if (fog)
{
Spawn<ATeleportFog> (spot->x, spot->y, spot->z + TELEFOGHEIGHT);
}
if (mobj->flags & MF_SPECIAL)
mobj->flags |= MF_DROPPED; // Don't respawn
mobj->tid = newtid;
mobj->AddToHash ();
mobj->flags2 = oldFlags2;
}
else
{
// If this is a monster, subtract it from the total monster
// count, because it already added to it during spawning.
if (mobj->CountsAsKill())
{
level.total_monsters--;
}
// Same, for items
if (mobj->flags & MF_COUNTITEM)
{
level.total_items--;
}
mobj->Destroy ();
rtn = false;
}
}
}
return rtn != 0;
}
// [BC] Added
// [RH] Fixed
bool P_MoveThing(AActor * source, fixed_t x, fixed_t y, fixed_t z, bool fog)
{
fixed_t oldx, oldy, oldz;
oldx = source->x;
oldy = source->y;
oldz = source->z;
source->SetOrigin (x, y, z);
if (P_TestMobjLocation (source))
{
if (fog)
{
Spawn<ATeleportFog> (x, y, z + TELEFOGHEIGHT);
Spawn<ATeleportFog> (oldx, oldy, oldz + TELEFOGHEIGHT);
}
return true;
}
else
{
source->SetOrigin (oldx, oldy, oldz);
return false;
}
}
bool P_Thing_Move (int tid, int mapspot, bool fog)
{
FActorIterator iterator1 (tid);
FActorIterator iterator2 (mapspot);
AActor *source, *target;
source = iterator1.Next ();
target = iterator2.Next ();
if (source != NULL && target != NULL)
{
return P_MoveThing(source, target->x, target->y, target->z, fog);
}
return false;
}
bool P_Thing_Projectile (int tid, int type, const char * type_name, angle_t angle,
fixed_t speed, fixed_t vspeed, int dest, AActor *forcedest, int gravity, int newtid,
bool leadTarget)
{
int rtn = 0;
const PClass *kind;
AActor *spot, *mobj, *targ = forcedest;
FActorIterator iterator (tid);
float fspeed = float(speed);
int defflags3;
if (type_name == NULL)
{
if (type >= MAX_SPAWNABLES)
return false;
if ((kind = SpawnableThings[type]) == NULL)
return false;
}
else
{
if ((kind = PClass::FindClass(type_name)) == NULL)
return false;
}
defflags3 = GetDefaultByType (kind)->flags3;
if ((defflags3 & MF3_ISMONSTER) && (dmflags & DF_NO_MONSTERS))
return false;
while ( (spot = iterator.Next ()) )
{
FActorIterator tit (dest);
if (dest == 0 || (targ = tit.Next()))
{
do
{
fixed_t z = spot->z;
if (defflags3 & MF3_FLOORHUGGER)
{
z = ONFLOORZ;
}
else if (defflags3 & MF3_CEILINGHUGGER)
{
z = ONCEILINGZ;
}
else if (z != ONFLOORZ)
{
z -= spot->floorclip;
}
mobj = Spawn (kind, spot->x, spot->y, z);
if (mobj)
{
mobj->tid = newtid;
mobj->AddToHash ();
if (mobj->SeeSound)
{
S_SoundID (mobj, CHAN_VOICE, mobj->SeeSound, 1, ATTN_NORM);
}
if (gravity)
{
mobj->flags &= ~MF_NOGRAVITY;
if (!(mobj->flags3 & MF3_ISMONSTER) && gravity == 1)
{
mobj->flags2 |= MF2_LOGRAV;
}
}
else
{
mobj->flags |= MF_NOGRAVITY;
}
mobj->target = spot;
if (targ != NULL)
{
fixed_t spot[3] = { targ->x, targ->y, targ->z+targ->height/2 };
vec3_t aim =
{
float(spot[0] - mobj->x),
float(spot[1] - mobj->y),
float(spot[2] - mobj->z)
};
if (leadTarget && speed > 0 && (targ->momx | targ->momy | targ->momz))
{
// Aiming at the target's position some time in the future
// is basically just an application of the law of sines:
// a/sin(A) = b/sin(B)
// Thanks to all those on the notgod phorum for helping me
// with the math. I don't think I would have thought of using
// trig alone had I been left to solve it by myself.
double tvel[3] = { double(targ->momx), double(targ->momy), double(targ->momz) };
if (!(targ->flags & MF_NOGRAVITY) && targ->waterlevel < 3)
{ // If the target is subject to gravity and not underwater,
// assume that it isn't moving vertically. Thanks to gravity,
// even if we did consider the vertical component of the target's
// velocity, we would still miss more often than not.
tvel[2] = 0.0;
if ((targ->momx | targ->momy) == 0)
{
goto nolead;
}
}
double dist = sqrt (aim[0]*aim[0] + aim[1]*aim[1] + aim[2]*aim[2]);
double targspeed = sqrt (tvel[0]*tvel[0] + tvel[1]*tvel[1] + tvel[2]*tvel[2]);
double ydotx = -aim[0]*tvel[0] - aim[1]*tvel[1] - aim[2]*tvel[2];
double a = acos (clamp (ydotx / targspeed / dist, -1.0, 1.0));
double multiplier = double(pr_leadtarget.Random2())*0.1/255+1.1;
double sinb = clamp (targspeed*multiplier * sin(a) / fspeed, -1.0, 1.0);
double cosb = cos (asin (sinb));
// Use the cross product of two of the triangle's sides to get a
// rotation vector.
double rv[3] =
{
tvel[1]*aim[2] - tvel[2]*aim[1],
tvel[2]*aim[0] - tvel[0]*aim[2],
tvel[0]*aim[1] - tvel[1]*aim[0]
};
// The vector must be normalized.
double irvlen = 1.0 / sqrt(rv[0]*rv[0] + rv[1]*rv[1] + rv[2]*rv[2]);
rv[0] *= irvlen;
rv[1] *= irvlen;
rv[2] *= irvlen;
// Now combine the rotation vector with angle b to get a rotation matrix.
double t = 1.0 - cosb;
double rm[3][3] =
{
{t*rv[0]*rv[0]+cosb, t*rv[0]*rv[1]-sinb*rv[2], t*rv[0]*rv[2]+sinb*rv[1]},
{t*rv[0]*rv[1]+sinb*rv[2], t*rv[1]*rv[1]+cosb, t*rv[1]*rv[2]-sinb*rv[0]},
{t*rv[0]*rv[2]-sinb*rv[1], t*rv[1]*rv[2]+sinb*rv[0], t*rv[2]*rv[2]+cosb}
};
// And multiply the original aim vector with the matrix to get a
// new aim vector that leads the target.
double aimvec[3] =
{
rm[0][0]*aim[0] + rm[1][0]*aim[1] + rm[2][0]*aim[2],
rm[0][1]*aim[0] + rm[1][1]*aim[1] + rm[2][1]*aim[2],
rm[0][2]*aim[0] + rm[1][2]*aim[1] + rm[2][2]*aim[2]
};
// And make the projectile follow that vector at the desired speed.
double aimscale = fspeed / dist;
mobj->momx = fixed_t (aimvec[0] * aimscale);
mobj->momy = fixed_t (aimvec[1] * aimscale);
mobj->momz = fixed_t (aimvec[2] * aimscale);
mobj->angle = R_PointToAngle2 (0, 0, mobj->momx, mobj->momy);
}
else
{
nolead:
mobj->angle = R_PointToAngle2 (mobj->x, mobj->y, targ->x, targ->y);
VectorNormalize (aim);
mobj->momx = fixed_t(aim[0] * fspeed);
mobj->momy = fixed_t(aim[1] * fspeed);
mobj->momz = fixed_t(aim[2] * fspeed);
}
if (mobj->flags2 & MF2_SEEKERMISSILE)
{
mobj->tracer = targ;
}
}
else
{
mobj->angle = angle;
mobj->momx = FixedMul (speed, finecosine[angle>>ANGLETOFINESHIFT]);
mobj->momy = FixedMul (speed, finesine[angle>>ANGLETOFINESHIFT]);
mobj->momz = vspeed;
}
// Set the missile's speed to reflect the speed it was spawned at.
if (mobj->flags & MF_MISSILE)
{
mobj->Speed = fixed_t (sqrtf (float(speed*speed + vspeed*vspeed)));
}
// Hugger missiles don't have any vertical velocity
if (mobj->flags3 & (MF3_FLOORHUGGER|MF3_CEILINGHUGGER))
{
mobj->momz = 0;
}
if (mobj->flags & MF_SPECIAL)
{
mobj->flags |= MF_DROPPED;
}
if (mobj->flags & MF_MISSILE)
{
if (P_CheckMissileSpawn (mobj))
{
rtn = true;
}
}
else if (!P_TestMobjLocation (mobj))
{
// If this is a monster, subtract it from the total monster
// count, because it already added to it during spawning.
if (mobj->CountsAsKill())
{
level.total_monsters--;
}
// Same, for items
if (mobj->flags & MF_COUNTITEM)
{
level.total_items--;
}
mobj->Destroy ();
}
else
{
// It spawned fine.
rtn = 1;
}
}
} while (dest != 0 && (targ = tit.Next()));
}
}
return rtn != 0;
}
CCMD (dumpspawnables)
{
int i;
for (i = 0; i < MAX_SPAWNABLES; i++)
{
if (SpawnableThings[i] != NULL)
{
Printf ("%d %s\n", i, SpawnableThings[i]->TypeName.GetChars());
}
}
}