gzdoom-gles/src/sound/timiditypp/recache.cpp
alexey.lysiuk 2ae8d39441 Removed all superfluous #include's
Automatically optimized by CLion IDE with manual corrections
2018-04-24 14:30:35 +03:00

438 lines
No EOL
11 KiB
C++

/*
TiMidity++ -- MIDI to WAVE converter and player
Copyright (C) 1999-2004 Masanao Izumo <iz@onicos.co.jp>
Copyright (C) 1995 Tuukka Toivonen <tt@cgs.fi>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
recache.c
Code related to resample cache.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "timidity.h"
#include "common.h"
#include "instrum.h"
#include "playmidi.h"
#include "tables.h"
#include "recache.h"
#include "resample.h"
namespace TimidityPlus
{
#define CACHE_DATA_LEN (allocate_cache_size / sizeof(sample_t))
inline uint32_t sp_hash(Sample *sp, int note)
{
return ((uint32_t)(intptr_t)(sp)+(uint32_t)(note));
}
#define RESAMPLATION_CACHE _x = do_resamplation(src, ofs, &resrc); \
dest[i] = (int16_t) ((_x > 32767) ? 32767 \
: ((_x < -32768) ? -32768 : _x))
void Recache::free_cache_data(void) {
free(cache_data);
reuse_mblock(&hash_entry_pool);
}
void Recache::resamp_cache_reset(void)
{
if (cache_data == NULL) {
cache_data = (sample_t *)
safe_large_malloc((CACHE_DATA_LEN + 1) * sizeof(sample_t));
memset(cache_data, 0, (CACHE_DATA_LEN + 1) * sizeof(sample_t));
init_mblock(&hash_entry_pool);
}
cache_data_len = 0;
memset(cache_hash_table, 0, sizeof(cache_hash_table));
memset(channel_note_table, 0, sizeof(channel_note_table));
reuse_mblock(&hash_entry_pool);
}
struct cache_hash *Recache::resamp_cache_fetch(Sample *sp, int note)
{
unsigned int addr;
struct cache_hash *p;
if (sp->vibrato_control_ratio || (sp->modes & MODES_PINGPONG)
|| (sp->sample_rate == playback_rate
&& sp->root_freq == get_note_freq(sp, sp->note_to_use)))
return NULL;
addr = sp_hash(sp, note) % HASH_TABLE_SIZE;
p = cache_hash_table[addr];
while (p && (p->note != note || p->sp != sp))
p = p->next;
if (p && p->resampled != NULL)
return p;
return NULL;
}
void Recache::resamp_cache_refer_on(Voice *vp, int32_t sample_start)
{
unsigned int addr;
struct cache_hash *p;
int note, ch;
ch = vp->channel;
if (vp->vibrato_control_ratio || player->channel[ch].portamento
|| (vp->sample->modes & MODES_PINGPONG)
|| vp->orig_frequency != vp->frequency
|| (vp->sample->sample_rate == playback_rate
&& vp->sample->root_freq
== get_note_freq(vp->sample, vp->sample->note_to_use)))
return;
note = vp->note;
if (channel_note_table[ch].cache[note])
resamp_cache_refer_off(ch, note, sample_start);
addr = sp_hash(vp->sample, note) % HASH_TABLE_SIZE;
p = cache_hash_table[addr];
while (p && (p->note != note || p->sp != vp->sample))
p = p->next;
if (! p) {
p = (struct cache_hash *)
new_segment(&hash_entry_pool, sizeof(struct cache_hash));
p->cnt = 0;
p->note = vp->note;
p->sp = vp->sample;
p->resampled = NULL;
p->next = cache_hash_table[addr];
cache_hash_table[addr] = p;
}
channel_note_table[ch].cache[note] = p;
channel_note_table[ch].on[note] = sample_start;
}
void Recache::resamp_cache_refer_off(int ch, int note, int32_t sample_end)
{
int32_t sample_start, len;
struct cache_hash *p;
Sample *sp;
p = channel_note_table[ch].cache[note];
if (p == NULL)
return;
sp = p->sp;
if (sp->sample_rate == playback_rate
&& sp->root_freq == get_note_freq(sp, sp->note_to_use))
return;
sample_start = channel_note_table[ch].on[note];
len = sample_end - sample_start;
if (len < 0) {
channel_note_table[ch].cache[note] = NULL;
return;
}
if (! (sp->modes & MODES_LOOPING)) {
double a;
int32_t slen;
a = ((double) sp->root_freq * playback_rate)
/ ((double) sp->sample_rate * get_note_freq(sp, note));
slen = (int32_t) ((sp->data_length >> FRACTION_BITS) * a);
if (len > slen)
len = slen;
}
p->cnt += len;
channel_note_table[ch].cache[note] = NULL;
}
void Recache::resamp_cache_refer_alloff(int ch, int32_t sample_end)
{
int i;
for (i = 0; i < 128; i++)
resamp_cache_refer_off(ch, i, sample_end);
}
void Recache::resamp_cache_create(void)
{
int i, skip;
int32_t n, t1, t2, total;
struct cache_hash **array;
/* It is NP completion that solve the best cache hit rate.
* So I thought better algorism O(n log n), but not a best solution.
* Follows implementation takes good hit rate, and it is fast.
*/
n = t1 = t2 = 0;
total = 0;
/* set size per count */
for (i = 0; i < HASH_TABLE_SIZE; i++) {
struct cache_hash *p, *q;
p = cache_hash_table[i], q = NULL;
while (p) {
struct cache_hash *tmp;
t1 += p->cnt;
tmp = p, p = p->next;
if (tmp->cnt > 0) {
Sample *sp;
splen_t newlen;
sp = tmp->sp;
sample_resamp_info(sp, tmp->note, NULL, NULL, &newlen);
if (newlen > 0) {
total += tmp->cnt;
tmp->r = (double) newlen / tmp->cnt;
tmp->next = q, q = tmp;
n++;
}
}
}
cache_hash_table[i] = q;
}
if (n == 0) {
return;
}
array = (struct cache_hash **) new_segment(&hash_entry_pool,
n * sizeof(struct cache_hash *));
n = 0;
for (i = 0; i < HASH_TABLE_SIZE; i++) {
struct cache_hash *p;
for (p = cache_hash_table[i]; p; p = p->next)
array[n++] = p;
}
if ((uint32_t)total > CACHE_DATA_LEN)
qsort_cache_array(array, 0, n - 1);
skip = 0;
for (i = 0; i < n; i++) {
if (array[i]->r != 0
&& cache_resampling(array[i]) == CACHE_RESAMPLING_OK)
t2 += array[i]->cnt;
else
skip++;
}
/* update cache_hash_table */
if (skip)
for (i = 0; i < HASH_TABLE_SIZE; i++) {
struct cache_hash *p, *q;
p = cache_hash_table[i], q = NULL;
while (p) {
struct cache_hash *tmp;
tmp = p, p = p->next;
if (tmp->resampled)
tmp->next = q, q = tmp;
}
cache_hash_table[i] = q;
}
}
double Recache::sample_resamp_info(Sample *sp, int note,
splen_t *loop_start, splen_t *loop_end, splen_t *data_length)
{
splen_t xls, xle, ls, le, ll, newlen;
double a, xxls, xxle, xn;
a = ((double) sp->sample_rate * get_note_freq(sp, note))
/ ((double) sp->root_freq * playback_rate);
a = TIM_FSCALENEG((double) (int32_t) TIM_FSCALE(a, FRACTION_BITS),
FRACTION_BITS);
xn = sp->data_length / a;
if (xn >= SPLEN_T_MAX) {
/* Ignore this sample */
*data_length = 0;
return 0.0;
}
newlen = (splen_t) (TIM_FSCALENEG(xn, FRACTION_BITS) + 0.5);
ls = sp->loop_start;
le = sp->loop_end;
ll = le - ls;
xxls = ls / a + 0.5;
if (xxls >= SPLEN_T_MAX) {
/* Ignore this sample */
*data_length = 0;
return 0.0;
}
xls = (splen_t) xxls;
xxle = le / a + 0.5;
if (xxle >= SPLEN_T_MAX) {
/* Ignore this sample */
*data_length = 0;
return 0.0;
}
xle = (splen_t) xxle;
if ((sp->modes & MODES_LOOPING)
&& ((xle - xls) >> FRACTION_BITS) < MIN_LOOPLEN) {
splen_t n;
splen_t newxle;
double xl; /* Resampled new loop length */
double xnewxle;
xl = ll / a;
if (xl >= SPLEN_T_MAX) {
/* Ignore this sample */
*data_length = 0;
return 0.0;
}
n = (splen_t) (0.0001 + MIN_LOOPLEN
/ TIM_FSCALENEG(xl, FRACTION_BITS)) + 1;
xnewxle = le / a + n * xl + 0.5;
if (xnewxle >= SPLEN_T_MAX) {
/* Ignore this sample */
*data_length = 0;
return 0.0;
}
newxle = (splen_t) xnewxle;
newlen += (newxle - xle) >> FRACTION_BITS;
xle = newxle;
}
if (loop_start)
*loop_start = (splen_t) (xls & ~FRACTION_MASK);
if (loop_end)
*loop_end = (splen_t) (xle & ~FRACTION_MASK);
*data_length = newlen << FRACTION_BITS;
return a;
}
void Recache::qsort_cache_array(struct cache_hash **a, int32_t first, int32_t last)
{
int32_t i = first, j = last;
struct cache_hash *x, *t;
if (j - i < SORT_THRESHOLD) {
insort_cache_array(a + i, j - i + 1);
return;
}
x = a[(first + last) / 2];
for (;;) {
while (a[i]->r < x->r)
i++;
while (x->r < a[j]->r)
j--;
if (i >= j)
break;
t = a[i], a[i] = a[j], a[j] = t;
i++, j--;
}
if (first < i - 1)
qsort_cache_array(a, first, i - 1);
if (j + 1 < last)
qsort_cache_array(a, j + 1, last);
}
void Recache::insort_cache_array(struct cache_hash **data, int32_t n)
{
int32_t i, j;
struct cache_hash *x;
for (i = 1; i < n; i++) {
x = data[i];
for (j = i - 1; j >= 0 && x->r < data[j]->r; j--)
data[j + 1] = data[j];
data[j + 1] = x;
}
}
int Recache::cache_resampling(struct cache_hash *p)
{
Sample *sp, *newsp;
sample_t *src, *dest;
splen_t newlen, ofs, le, ls, ll, xls, xle;
int32_t incr, _x;
resample_rec_t resrc;
double a;
int8_t note;
sp = p->sp;
if (sp->note_to_use)
note = sp->note_to_use;
else
note = p->note;
a = sample_resamp_info(sp, note, &xls, &xle, &newlen);
if (newlen == 0)
return CACHE_RESAMPLING_NOTOK;
newlen >>= FRACTION_BITS;
if (cache_data_len + newlen + 1 > CACHE_DATA_LEN)
return CACHE_RESAMPLING_NOTOK;
resrc.loop_start = ls = sp->loop_start;
resrc.loop_end = le = sp->loop_end;
resrc.data_length = sp->data_length;
ll = sp->loop_end - sp->loop_start;
dest = cache_data + cache_data_len;
src = sp->data;
newsp = (Sample *) new_segment(&hash_entry_pool, sizeof(Sample));
memcpy(newsp, sp, sizeof(Sample));
newsp->data = dest;
ofs = 0;
incr = (splen_t) (TIM_FSCALE(a, FRACTION_BITS) + 0.5);
if (sp->modes & MODES_LOOPING)
for (splen_t i = 0; i < newlen; i++) {
if (ofs >= le)
ofs -= ll;
RESAMPLATION_CACHE;
ofs += incr;
}
else
for (splen_t i = 0; i < newlen; i++) {
RESAMPLATION_CACHE;
ofs += incr;
}
newsp->loop_start = xls;
newsp->loop_end = xle;
newsp->data_length = newlen << FRACTION_BITS;
if (sp->modes & MODES_LOOPING)
loop_connect(dest, (int32_t) (xls >> FRACTION_BITS),
(int32_t) (xle >> FRACTION_BITS));
dest[xle >> FRACTION_BITS] = dest[xls >> FRACTION_BITS];
newsp->root_freq = get_note_freq(newsp, note);
newsp->sample_rate = playback_rate;
p->resampled = newsp;
cache_data_len += newlen + 1;
return CACHE_RESAMPLING_OK;
}
void Recache::loop_connect(sample_t *data, int32_t start, int32_t end)
{
int i, mixlen;
int32_t t0, t1;
mixlen = MIXLEN;
if (start < mixlen)
mixlen = start;
if (end - start < mixlen)
mixlen = end - start;
if (mixlen <= 0)
return;
t0 = start - mixlen;
t1 = end - mixlen;
for (i = 0; i < mixlen; i++) {
double x, b;
b = i / (double) mixlen; /* 0 <= b < 1 */
x = b * data[t0 + i] + (1.0 - b) * data[t1 + i];
if (x < -32768)
data[t1 + i] = -32768;
else if (x > 32767)
data[t1 + i] = 32767;
else
data[t1 + i] = (sample_t) x;
}
}
}