mirror of
https://github.com/ZDoom/gzdoom-gles.git
synced 2024-11-18 10:21:29 +00:00
bf31d66d31
- The old algorithm is something I threw together that produced decent, but not spectacular results since it had a tendency to waste space by forcing everything onto "shelves". The new packer is the Skyline-MinWaste-WasteMap-BestFirstFit algorithm described by Jukka Jylanki in his paper *A Thousand Ways to Pack the Bin - A Practical Approach to Two-Dimensional Rectangle Bin Packing*, which can currently be read at http://clb.demon.fi/files/RectangleBinPack.pdf This is minus the optimization to rotate rectangles to make better fits.
94 lines
1.8 KiB
C++
94 lines
1.8 KiB
C++
/** @file Rect.h
|
|
@author Jukka Jylänki
|
|
|
|
This work is released to Public Domain, do whatever you want with it.
|
|
*/
|
|
#pragma once
|
|
|
|
#include <vector>
|
|
|
|
struct RectSize
|
|
{
|
|
int width;
|
|
int height;
|
|
};
|
|
|
|
struct Rect
|
|
{
|
|
int x;
|
|
int y;
|
|
int width;
|
|
int height;
|
|
};
|
|
|
|
/// Performs a lexicographic compare on (rect short side, rect long side).
|
|
/// @return -1 if the smaller side of a is shorter than the smaller side of b, 1 if the other way around.
|
|
/// If they are equal, the larger side length is used as a tie-breaker.
|
|
/// If the rectangles are of same size, returns 0.
|
|
int CompareRectShortSide(const Rect &a, const Rect &b);
|
|
|
|
/// Performs a lexicographic compare on (x, y, width, height).
|
|
int NodeSortCmp(const Rect &a, const Rect &b);
|
|
|
|
/// Returns true if a is contained in b.
|
|
bool IsContainedIn(const Rect &a, const Rect &b);
|
|
|
|
#ifdef _DEBUG
|
|
class DisjointRectCollection
|
|
{
|
|
public:
|
|
TArray<Rect> rects;
|
|
|
|
bool Add(const Rect &r)
|
|
{
|
|
// Degenerate rectangles are ignored.
|
|
if (r.width == 0 || r.height == 0)
|
|
return true;
|
|
|
|
if (!Disjoint(r))
|
|
return false;
|
|
rects.Push(r);
|
|
return true;
|
|
}
|
|
|
|
bool Del(const Rect &r)
|
|
{
|
|
for(unsigned i = 0; i < rects.Size(); ++i)
|
|
{
|
|
if(r.x == rects[i].x && r.y == rects[i].y && r.width == rects[i].width && r.height == rects[i].height)
|
|
{
|
|
rects.Delete(i);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Clear()
|
|
{
|
|
rects.Clear();
|
|
}
|
|
|
|
bool Disjoint(const Rect &r) const
|
|
{
|
|
// Degenerate rectangles are ignored.
|
|
if (r.width == 0 || r.height == 0)
|
|
return true;
|
|
|
|
for(unsigned i = 0; i < rects.Size(); ++i)
|
|
if (!Disjoint(rects[i], r))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static bool Disjoint(const Rect &a, const Rect &b)
|
|
{
|
|
if (a.x + a.width <= b.x ||
|
|
b.x + b.width <= a.x ||
|
|
a.y + a.height <= b.y ||
|
|
b.y + b.height <= a.y)
|
|
return true;
|
|
return false;
|
|
}
|
|
};
|
|
#endif
|