gzdoom-gles/src/r_data/matrix.h

215 lines
No EOL
5.9 KiB
C++

// Matrix class based on code from VSML:
/** ----------------------------------------------------------
* \class VSMathLib
*
* Lighthouse3D
*
* VSMathLib - Very Simple Matrix Library
*
* Full documentation at
* http://www.lighthouse3d.com/very-simple-libs
*
* This class aims at easing geometric transforms, camera
* placement and projection definition for programmers
* working with OpenGL core versions.
*
*
---------------------------------------------------------------*/
#ifndef __VSMatrix__
#define __VSMatrix__
#include <stdlib.h>
#include "vectors.h"
#include "doomtype.h"
#ifdef USE_DOUBLE
typedef double FLOATTYPE;
#else
typedef float FLOATTYPE;
#endif
class VSMatrix {
public:
VSMatrix()
{
}
VSMatrix(int)
{
loadIdentity();
}
void translate(FLOATTYPE x, FLOATTYPE y, FLOATTYPE z);
void scale(FLOATTYPE x, FLOATTYPE y, FLOATTYPE z);
void rotate(FLOATTYPE angle, FLOATTYPE x, FLOATTYPE y, FLOATTYPE z);
void loadIdentity();
#ifdef USE_DOUBLE
void multMatrix(const float *aMatrix);
#endif
void multVector(FLOATTYPE *aVector);
void multMatrix(const FLOATTYPE *aMatrix);
void multMatrix(const VSMatrix &aMatrix)
{
multMatrix(aMatrix.mMatrix);
}
void loadMatrix(const FLOATTYPE *aMatrix);
#ifdef USE_DOUBLE
void loadMatrix(const float *aMatrix);
#endif
void lookAt(FLOATTYPE xPos, FLOATTYPE yPos, FLOATTYPE zPos, FLOATTYPE xLook, FLOATTYPE yLook, FLOATTYPE zLook, FLOATTYPE xUp, FLOATTYPE yUp, FLOATTYPE zUp);
void perspective(FLOATTYPE fov, FLOATTYPE ratio, FLOATTYPE nearp, FLOATTYPE farp);
void ortho(FLOATTYPE left, FLOATTYPE right, FLOATTYPE bottom, FLOATTYPE top, FLOATTYPE nearp=-1.0f, FLOATTYPE farp=1.0f);
void frustum(FLOATTYPE left, FLOATTYPE right, FLOATTYPE bottom, FLOATTYPE top, FLOATTYPE nearp, FLOATTYPE farp);
void copy(FLOATTYPE * pDest)
{
memcpy(pDest, mMatrix, 16 * sizeof(FLOATTYPE));
}
#ifdef USE_DOUBLE
void copy(float * pDest)
{
for (int i = 0; i < 16; i++)
{
pDest[i] = (float)mMatrix[i];
}
}
#endif
const FLOATTYPE *get() const
{
return mMatrix;
}
void multMatrixPoint(const FLOATTYPE *point, FLOATTYPE *res);
#ifdef USE_DOUBLE
void computeNormalMatrix(const float *aMatrix);
#endif
void computeNormalMatrix(const FLOATTYPE *aMatrix);
void computeNormalMatrix(const VSMatrix &aMatrix)
{
computeNormalMatrix(aMatrix.mMatrix);
}
bool inverseMatrix(VSMatrix &result);
void transpose();
protected:
static void crossProduct(const FLOATTYPE *a, const FLOATTYPE *b, FLOATTYPE *res);
static FLOATTYPE dotProduct(const FLOATTYPE *a, const FLOATTYPE * b);
static void normalize(FLOATTYPE *a);
static void subtract(const FLOATTYPE *a, const FLOATTYPE *b, FLOATTYPE *res);
static void add(const FLOATTYPE *a, const FLOATTYPE *b, FLOATTYPE *res);
static FLOATTYPE length(const FLOATTYPE *a);
static void multMatrix(FLOATTYPE *resMatrix, const FLOATTYPE *aMatrix);
static void setIdentityMatrix(FLOATTYPE *mat, int size = 4);
/// The storage for matrices
FLOATTYPE mMatrix[16];
};
class Matrix3x4 // used like a 4x4 matrix with the last row always being (0,0,0,1)
{
float m[3][4];
public:
void MakeIdentity()
{
memset(m, 0, sizeof(m));
m[0][0] = m[1][1] = m[2][2] = 1.f;
}
void Translate(float x, float y, float z)
{
m[0][3] = m[0][0]*x + m[0][1]*y + m[0][2]*z + m[0][3];
m[1][3] = m[1][0]*x + m[1][1]*y + m[1][2]*z + m[1][3];
m[2][3] = m[2][0]*x + m[2][1]*y + m[2][2]*z + m[2][3];
}
void Scale(float x, float y, float z)
{
m[0][0] *=x;
m[1][0] *=x;
m[2][0] *=x;
m[0][1] *=y;
m[1][1] *=y;
m[2][1] *=y;
m[0][2] *=z;
m[1][2] *=z;
m[2][2] *=z;
}
void Rotate(float ax, float ay, float az, float angle)
{
Matrix3x4 m1;
FVector3 axis(ax, ay, az);
axis.MakeUnit();
double c = cos(angle * M_PI/180.), s = sin(angle * M_PI/180.), t = 1 - c;
double sx = s*axis.X, sy = s*axis.Y, sz = s*axis.Z;
double tx, ty, txx, tyy, u, v;
tx = t*axis.X;
m1.m[0][0] = float( (txx=tx*axis.X) + c );
m1.m[0][1] = float( (u=tx*axis.Y) - sz);
m1.m[0][2] = float( (v=tx*axis.Z) + sy);
ty = t*axis.Y;
m1.m[1][0] = float( u + sz);
m1.m[1][1] = float( (tyy=ty*axis.Y) + c );
m1.m[1][2] = float( (u=ty*axis.Z) - sx);
m1.m[2][0] = float( v - sy);
m1.m[2][1] = float( u + sx);
m1.m[2][2] = float( (t-txx-tyy) + c );
m1.m[0][3] = 0.f;
m1.m[1][3] = 0.f;
m1.m[2][3] = 0.f;
*this = (*this) * m1;
}
Matrix3x4 operator *(const Matrix3x4 &other)
{
Matrix3x4 result;
result.m[0][0] = m[0][0]*other.m[0][0] + m[0][1]*other.m[1][0] + m[0][2]*other.m[2][0];
result.m[0][1] = m[0][0]*other.m[0][1] + m[0][1]*other.m[1][1] + m[0][2]*other.m[2][1];
result.m[0][2] = m[0][0]*other.m[0][2] + m[0][1]*other.m[1][2] + m[0][2]*other.m[2][2];
result.m[0][3] = m[0][0]*other.m[0][3] + m[0][1]*other.m[1][3] + m[0][2]*other.m[2][3] + m[0][3];
result.m[1][0] = m[1][0]*other.m[0][0] + m[1][1]*other.m[1][0] + m[1][2]*other.m[2][0];
result.m[1][1] = m[1][0]*other.m[0][1] + m[1][1]*other.m[1][1] + m[1][2]*other.m[2][1];
result.m[1][2] = m[1][0]*other.m[0][2] + m[1][1]*other.m[1][2] + m[1][2]*other.m[2][2];
result.m[1][3] = m[1][0]*other.m[0][3] + m[1][1]*other.m[1][3] + m[1][2]*other.m[2][3] + m[1][3];
result.m[2][0] = m[2][0]*other.m[0][0] + m[2][1]*other.m[1][0] + m[2][2]*other.m[2][0];
result.m[2][1] = m[2][0]*other.m[0][1] + m[2][1]*other.m[1][1] + m[2][2]*other.m[2][1];
result.m[2][2] = m[2][0]*other.m[0][2] + m[2][1]*other.m[1][2] + m[2][2]*other.m[2][2];
result.m[2][3] = m[2][0]*other.m[0][3] + m[2][1]*other.m[1][3] + m[2][2]*other.m[2][3] + m[2][3];
return result;
}
FVector3 operator *(const FVector3 &vec)
{
FVector3 result;
result.X = vec.X*m[0][0] + vec.Y*m[0][1] + vec.Z*m[0][2] + m[0][3];
result.Y = vec.X*m[1][0] + vec.Y*m[1][1] + vec.Z*m[1][2] + m[1][3];
result.Z = vec.X*m[2][0] + vec.Y*m[2][1] + vec.Z*m[2][2] + m[2][3];
return result;
}
};
#endif