gzdoom-gles/wadsrc/static/shaders/glsl/main.fp

323 lines
7.3 KiB
GLSL

in vec4 pixelpos;
in vec2 glowdist;
#ifdef SHADER_STORAGE_LIGHTS
layout(std430, binding = 3) buffer ParameterBuffer
{
vec4 lights[];
};
#elif defined MAXLIGHTS128
uniform vec4 lights[256];
#else
uniform vec4 lights[128];
#endif
uniform sampler2D tex;
vec4 Process(vec4 color);
vec4 ProcessTexel();
vec4 ProcessLight(vec4 color);
//===========================================================================
//
// Desaturate a color
//
//===========================================================================
vec4 desaturate(vec4 texel)
{
if (uDesaturationFactor > 0.0)
{
float gray = (texel.r * 0.3 + texel.g * 0.56 + texel.b * 0.14);
return mix (texel, vec4(gray,gray,gray,texel.a), uDesaturationFactor);
}
else
{
return texel;
}
}
//===========================================================================
//
// This function is common for all (non-special-effect) fragment shaders
//
//===========================================================================
vec4 getTexel(vec2 st)
{
vec4 texel = texture2D(tex, st);
//
// Apply texture modes
//
switch (uTextureMode)
{
case 1:
texel.rgb = vec3(1.0,1.0,1.0);
break;
case 2:
texel.a = 1.0;
break;
case 3:
texel = vec4(1.0-texel.r, 1.0-texel.b, 1.0-texel.g, texel.a);
break;
}
texel *= uObjectColor;
return desaturate(texel);
}
//===========================================================================
//
// Doom lighting equation ripped from EDGE.
// Big thanks to EDGE developers for making the only port
// that actually replicates software renderer's lighting in OpenGL.
// Float version.
// Basically replace int with float and divide all constants by 31.
//
//===========================================================================
float R_DoomLightingEquation(float light, float dist)
{
// Changing this constant gives results very similar to changing r_visibility.
// Default is 232, it seems to give exactly the same light bands as software renderer.
#define DOOMLIGHTFACTOR 232.0
/* L in the range 0 to 63 */
float L = light * 63.0/31.0;
float min_L = clamp(36.0/31.0 - L, 0.0, 1.0);
// Fix objects getting totally black when close.
if (dist < 0.0001)
dist = 0.0001;
float scale = 1.0 / dist;
float index = (59.0/31.0 - L) - (scale * DOOMLIGHTFACTOR/31.0 - DOOMLIGHTFACTOR/31.0);
/* result is colormap index (0 bright .. 31 dark) */
return clamp(index, min_L, 1.0);
}
//===========================================================================
//
// Calculate light
//
// It is important to note that the light color is not desaturated
// due to ZDoom's implementation weirdness. Everything that's added
// on top of it, e.g. dynamic lights and glows are, though, because
// the objects emitting these lights are also.
//
// This is making this a bit more complicated than it needs to
// because we can't just desaturate the final fragment color.
//
//===========================================================================
vec4 getLightColor(float fogdist, float fogfactor)
{
vec4 color = gl_Color;
if (uLightLevel >= 0.0)
{
float newlightlevel = 1.0 - R_DoomLightingEquation(uLightLevel, gl_FragCoord.z);
color.rgb *= newlightlevel;
}
else if (uFogEnabled > 0.0)
{
// brightening around the player for light mode 2
if (fogdist < uLightDist)
{
color.rgb *= uLightFactor - (fogdist / uLightDist) * (uLightFactor - 1.0);
}
//
// apply light diminishing through fog equation
//
color.rgb = mix(vec3(0.0, 0.0, 0.0), color.rgb, fogfactor);
}
//
// handle glowing walls
//
if (uGlowTopColor.a > 0.0 && glowdist.x < uGlowTopColor.a)
{
color.rgb += desaturate(uGlowTopColor * (1.0 - glowdist.x / uGlowTopColor.a)).rgb;
}
if (uGlowBottomColor.a > 0.0 && glowdist.y < uGlowBottomColor.a)
{
color.rgb += desaturate(uGlowBottomColor * (1.0 - glowdist.y / uGlowBottomColor.a)).rgb;
}
color = min(color, 1.0);
//
// apply brightmaps (or other light manipulation by custom shaders.
//
color = ProcessLight(color);
//
// apply dynamic lights (except additive)
//
vec4 dynlight = uDynLightColor;
if (uLightRange.z > uLightRange.x)
{
//
// modulated lights
//
for(int i=uLightRange.x; i<uLightRange.y; i+=2)
{
vec4 lightpos = lights[i];
vec4 lightcolor = lights[i+1];
lightcolor.rgb *= max(lightpos.w - distance(pixelpos.xyz, lightpos.xyz),0.0) / lightpos.w;
dynlight.rgb += lightcolor.rgb;
}
//
// subtractive lights
//
for(int i=uLightRange.y; i<uLightRange.z; i+=2)
{
vec4 lightpos = lights[i];
vec4 lightcolor = lights[i+1];
lightcolor.rgb *= max(lightpos.w - distance(pixelpos.xyz, lightpos.xyz),0.0) / lightpos.w;
dynlight.rgb -= lightcolor.rgb;
}
}
color.rgb = clamp(color.rgb + desaturate(dynlight).rgb, 0.0, 1.4);
// prevent any unintentional messing around with the alpha.
return vec4(color.rgb, gl_Color.a);
}
//===========================================================================
//
// Applies colored fog
//
//===========================================================================
vec4 applyFog(vec4 frag, float fogfactor)
{
return vec4(mix(uFogColor.rgb, frag.rgb, fogfactor), frag.a);
}
//===========================================================================
//
// Main shader routine
//
//===========================================================================
void main()
{
#ifndef NO_DISCARD
// clip plane emulation for plane reflections. These are always perfectly horizontal so a simple check of the pixelpos's y coordinate is sufficient.
if (pixelpos.y > uClipHeightTop) discard;
if (pixelpos.y < uClipHeightBottom) discard;
#endif
vec4 frag = ProcessTexel();
switch (uFixedColormap)
{
case 0:
{
float fogdist = 0.0;
float fogfactor = 0.0;
//
// calculate fog factor
//
if (uFogEnabled != 0)
{
if (uFogEnabled == 1 || uFogEnabled == -1)
{
fogdist = pixelpos.w;
}
else
{
fogdist = max(16.0, distance(pixelpos.xyz, uCameraPos.xyz));
}
fogfactor = exp2 (uFogDensity * fogdist);
}
frag *= getLightColor(fogdist, fogfactor);
if (uLightRange.w > uLightRange.z)
{
vec4 addlight = vec4(0.0,0.0,0.0,0.0);
//
// additive lights - these can be done after the alpha test.
//
for(int i=uLightRange.z; i<uLightRange.w; i+=2)
{
vec4 lightpos = lights[i];
vec4 lightcolor = lights[i+1];
lightcolor.rgb *= max(lightpos.w - distance(pixelpos.xyz, lightpos.xyz),0.0) / lightpos.w;
addlight.rgb += lightcolor.rgb;
}
frag.rgb = clamp(frag.rgb + desaturate(addlight).rgb, 0.0, 1.0);
}
//
// colored fog
//
if (uFogEnabled < 0)
{
frag = applyFog(frag, fogfactor);
}
break;
}
case 1:
{
float gray = (frag.r * 0.3 + frag.g * 0.56 + frag.b * 0.14);
vec4 cm = uFixedColormapStart + gray * uFixedColormapRange;
frag = vec4(clamp(cm.rgb, 0.0, 1.0), frag.a*gl_Color.a);
break;
}
case 2:
{
frag = frag * uFixedColormapStart;
frag.a *= gl_Color.a;
break;
}
case 3:
{
float fogdist;
float fogfactor;
//
// calculate fog factor
//
if (uFogEnabled == -1)
{
fogdist = pixelpos.w;
}
else
{
fogdist = max(16.0, distance(pixelpos.xyz, uCameraPos.xyz));
}
fogfactor = exp2 (uFogDensity * fogdist);
frag = vec4(uFogColor.rgb, (1.0 - fogfactor) * frag.a * 0.75 * gl_Color.a);
break;
}
}
gl_FragColor = frag;
}