gzdoom-gles/src/r_main.cpp
Randy Heit c412b42703 - Fixed: cycle_t was still a DWORD and not a QWORD under GCC.
- The stat meters now return an FString instead of sprintfing into a fixed
  output buffer.
- NOASM is now automatically defined when compiling for a non-x86 target.
- Some changes have been made to the integral types in doomtype.h:
  - For consistancy with the other integral types, byte is no longer a
    synonym for BYTE.
  - Most uses of BOOL have been change to the standard C++ bool type. Those
    that weren't were changed to INTBOOL to indicate they may contain values
    other than 0 or 1 but are still used as a boolean.
  - Compiler-provided types with explicit bit sizes are now used. In
    particular, DWORD is no longer a long so it will work with both 64-bit
    Windows and Linux.
  - Since some files need to include Windows headers, uint32 is a synonym
    for the non-Windows version of DWORD.
- Removed d_textur.h. The pic_t struct it defined was used nowhere, and that
  was all it contained.


SVN r326 (trunk)
2006-09-14 00:02:31 +00:00

2055 lines
50 KiB
C++

// Emacs style mode select -*- C++ -*-
//-----------------------------------------------------------------------------
//
// $Id:$
//
// Copyright (C) 1993-1996 by id Software, Inc.
//
// This source is available for distribution and/or modification
// only under the terms of the DOOM Source Code License as
// published by id Software. All rights reserved.
//
// The source is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// FITNESS FOR A PARTICULAR PURPOSE. See the DOOM Source Code License
// for more details.
//
// $Log:$
//
// DESCRIPTION:
// Rendering main loop and setup functions,
// utility functions (BSP, geometry, trigonometry).
// See tables.c, too.
//
//-----------------------------------------------------------------------------
// HEADER FILES ------------------------------------------------------------
#include <stdlib.h>
#include <math.h>
#include "templates.h"
#include "m_alloc.h"
#include "doomdef.h"
#include "d_net.h"
#include "doomstat.h"
#include "m_random.h"
#include "m_bbox.h"
#include "p_local.h"
#include "r_local.h"
#include "r_sky.h"
#include "st_stuff.h"
#include "c_cvars.h"
#include "v_video.h"
#include "stats.h"
#include "i_video.h"
#include "i_system.h"
#include "vectors.h"
#include "a_sharedglobal.h"
// MACROS ------------------------------------------------------------------
#if 0
#define TEST_X 32343794
#define TEST_Y 111387517
#define TEST_Z 2164524
#define TEST_ANGLE 2468347904
#endif
// TYPES -------------------------------------------------------------------
struct InterpolationViewer
{
AActor *ViewActor;
int otic;
fixed_t oviewx, oviewy, oviewz;
fixed_t nviewx, nviewy, nviewz;
int oviewpitch, nviewpitch;
angle_t oviewangle, nviewangle;
};
// EXTERNAL FUNCTION PROTOTYPES --------------------------------------------
void R_SpanInitData ();
void RP_RenderBSPNode (void *node);
bool RP_SetupFrame (bool backside);
// PUBLIC FUNCTION PROTOTYPES ----------------------------------------------
// PRIVATE FUNCTION PROTOTYPES ---------------------------------------------
static void R_Shutdown();
// EXTERNAL DATA DECLARATIONS ----------------------------------------------
extern bool DrawFSHUD; // [RH] Defined in d_main.cpp
extern short *openings;
extern bool r_fakingunderwater;
extern "C" int fuzzviewheight;
EXTERN_CVAR (Bool, r_particles)
EXTERN_CVAR (Bool, cl_capfps)
// PRIVATE DATA DECLARATIONS -----------------------------------------------
static float CurrentVisibility = 8.f;
static fixed_t MaxVisForWall;
static fixed_t MaxVisForFloor;
static FRandom pr_torchflicker ("TorchFlicker");
static TArray<InterpolationViewer> PastViewers;
static int centerxwide;
static bool polyclipped;
static bool r_showviewer;
bool r_dontmaplines;
// PUBLIC DATA DEFINITIONS -------------------------------------------------
CVAR (String, r_viewsize, "", CVAR_NOSET)
CVAR (Int, r_polymost, 0, 0)
CVAR (Bool, r_deathcamera, false, CVAR_ARCHIVE)
fixed_t r_BaseVisibility;
fixed_t r_WallVisibility;
fixed_t r_FloorVisibility;
float r_TiltVisibility;
fixed_t r_SpriteVisibility;
fixed_t r_ParticleVisibility;
fixed_t r_SkyVisibility;
fixed_t r_TicFrac; // [RH] Fractional tic to render
DWORD r_FrameTime; // [RH] Time this frame started drawing (in ms)
bool r_NoInterpolate;
angle_t LocalViewAngle;
int LocalViewPitch;
bool LocalKeyboardTurner;
float LastFOV;
int WidescreenRatio;
fixed_t GlobVis;
fixed_t FocalTangent;
fixed_t FocalLengthX;
fixed_t FocalLengthY;
float FocalLengthXfloat;
int viewangleoffset;
int validcount = 1; // increment every time a check is made
lighttable_t *basecolormap; // [RH] colormap currently drawing with
int fixedlightlev;
lighttable_t *fixedcolormap;
float WallTMapScale;
float WallTMapScale2;
extern "C" {
int centerx;
int centery;
}
DCanvas *RenderTarget; // [RH] canvas to render to
bool bRenderingToCanvas; // [RH] True if rendering to a special canvas
fixed_t globaluclip, globaldclip;
fixed_t centerxfrac;
fixed_t centeryfrac;
fixed_t yaspectmul;
float iyaspectmulfloat;
fixed_t InvZtoScale;
// just for profiling purposes
int framecount;
int linecount;
int loopcount;
fixed_t viewx;
fixed_t viewy;
fixed_t viewz;
int viewpitch;
int otic;
angle_t viewangle;
sector_t *viewsector;
fixed_t viewcos, viewtancos;
fixed_t viewsin, viewtansin;
AActor *camera; // [RH] camera to draw from. doesn't have to be a player
int r_Yaspect = 200; // Why did I make this a variable? It's never set anywhere.
//
// precalculated math tables
//
int FieldOfView = 2048; // Fineangles in the SCREENWIDTH wide window
// The xtoviewangleangle[] table maps a screen pixel
// to the lowest viewangle that maps back to x ranges
// from clipangle to -clipangle.
angle_t xtoviewangle[MAXWIDTH+1];
int extralight; // bumped light from gun blasts
bool foggy; // [RH] ignore extralight and fullbright?
int r_actualextralight;
bool setsizeneeded;
int setblocks, setdetail = -1;
fixed_t freelookviewheight;
unsigned int R_OldBlend = ~0;
void (*colfunc) (void);
void (*basecolfunc) (void);
void (*fuzzcolfunc) (void);
void (*transcolfunc) (void);
void (*spanfunc) (void);
void (*hcolfunc_pre) (void);
void (*hcolfunc_post1) (int hx, int sx, int yl, int yh);
void (*hcolfunc_post2) (int hx, int sx, int yl, int yh);
void (*hcolfunc_post4) (int sx, int yl, int yh);
cycle_t WallCycles, PlaneCycles, MaskedCycles, WallScanCycles;
FCanvasTextureInfo *FCanvasTextureInfo::List;
// PRIVATE DATA DEFINITIONS ------------------------------------------------
static int lastcenteryfrac;
static bool NoInterpolateView;
// CODE --------------------------------------------------------------------
//==========================================================================
//
// R_PointToAngle
//
// To get a global angle from cartesian coordinates, the coordinates are
// flipped until they are in the first octant of the coordinate system,
// then the y (<=x) is scaled and divided by x to get a tangent (slope)
// value which is looked up in the tantoangle[] table.
//
//==========================================================================
angle_t R_PointToAngle2 (fixed_t x1, fixed_t y1, fixed_t x, fixed_t y)
{
x -= x1;
y -= y1;
if ((x | y) == 0)
{
return 0;
}
fixed_t ax = abs (x);
fixed_t ay = abs (y);
int div;
angle_t angle;
if (ax > ay)
{
swap (ax, ay);
}
div = SlopeDiv (ax, ay);
angle = tantoangle[div];
if (x >= 0)
{
if (y >= 0)
{
if (x > y)
{ // octant 0
return angle;
}
else
{ // octant 1
return ANG90 - 1 - angle;
}
}
else // y < 0
{
if (x > -y)
{ // octant 8
return (angle_t)-(SDWORD)angle;
}
else
{ // octant 7
return ANG270 + angle;
}
}
}
else // x < 0
{
if (y >= 0)
{
if (-x > y)
{ // octant 3
return ANG180 - 1 - angle;
}
else
{ // octant 2
return ANG90 + angle;
}
}
else // y < 0
{
if (x < y)
{ // octant 4
return ANG180 + angle;
}
else
{ // octant 5
return ANG270 - 1 - angle;
}
}
}
}
//==========================================================================
//
// R_InitPointToAngle
//
//==========================================================================
void R_InitPointToAngle (void)
{
double f;
int i;
//
// slope (tangent) to angle lookup
//
for (i = 0; i <= SLOPERANGE; i++)
{
f = atan2 ((double)i, (double)SLOPERANGE) / (6.28318530718 /* 2*pi */);
tantoangle[i] = (angle_t)(0xffffffff*f);
}
}
//==========================================================================
//
// R_PointToDist2
//
// Returns the distance from (0,0) to some other point. In a
// floating point environment, we'd probably be better off using the
// Pythagorean Theorem to determine the result.
//
// killough 5/2/98: simplified
// [RH] Simplified further [sin (t + 90 deg) == cos (t)]
// Not used. Should it go away?
//
//==========================================================================
fixed_t R_PointToDist2 (fixed_t dx, fixed_t dy)
{
dx = abs (dx);
dy = abs (dy);
if ((dx | dy) == 0)
{
return 0;
}
if (dy > dx)
{
swap (dx, dy);
}
return FixedDiv (dx, finecosine[tantoangle[FixedDiv (dy, dx) >> DBITS] >> ANGLETOFINESHIFT]);
}
//==========================================================================
//
// R_InitTables
//
//==========================================================================
void R_InitTables (void)
{
int i;
const double pimul = PI*2/FINEANGLES;
// viewangle tangent table
finetangent[0] = (angle_t)(FRACUNIT*tan ((0.5-FINEANGLES/4)*pimul)+0.5);
for (i = 1; i < FINEANGLES/2; i++)
{
finetangent[i] = (angle_t)(FRACUNIT*tan ((i-FINEANGLES/4)*pimul)+0.5);
}
// finesine table
for (i = 0; i < FINEANGLES/4; i++)
{
finesine[i] = (angle_t)(FRACUNIT * sin (i*pimul));
}
for (i = 0; i < FINEANGLES/4; i++)
{
finesine[i+FINEANGLES/4] = finesine[FINEANGLES/4-1-i];
}
for (i = 0; i < FINEANGLES/2; i++)
{
finesine[i+FINEANGLES/2] = -finesine[i];
}
finesine[FINEANGLES/4] = FRACUNIT;
finesine[FINEANGLES*3/4] = -FRACUNIT;
memcpy (&finesine[FINEANGLES], &finesine[0], sizeof(angle_t)*FINEANGLES/4);
}
//==========================================================================
//
// R_InitTextureMapping
//
//==========================================================================
void R_InitTextureMapping ()
{
int i;
fixed_t slope;
int fov = FieldOfView;
// For widescreen displays, increase the FOV so that the middle part of the
// screen that would be visible on a 4:3 display has the requested FOV.
if (centerxwide != centerx)
{ // centerxwide is what centerx would be if the display was not widescreen
fov = int(atan(double(centerx)*tan(double(fov)*M_PI/(FINEANGLES))/double(centerxwide))*(FINEANGLES)/M_PI);
if (fov > 170*FINEANGLES/360)
fov = 170*FINEANGLES/360;
}
/*
default: break;
case 1: fov = MIN (fov * 512/433, 170 * FINEANGLES / 360); break; // 16:9
case 2: fov = MIN (fov * 512/459, 170 * FINEANGLES / 360); break; // 16:10
}
*/
const int hitan = finetangent[FINEANGLES/4+fov/2];
// Calc focallength so FieldOfView fineangles covers viewwidth.
FocalTangent = hitan;
FocalLengthX = FixedDiv (centerxfrac, hitan);
FocalLengthY = Scale (centerxfrac, yaspectmul, hitan);
FocalLengthXfloat = (float)FocalLengthX / 65536.f;
// Now generate xtoviewangle for sky texture mapping.
// [RH] Do not generate viewangletox, because texture mapping is no
// longer done with trig, so it's not needed.
const int t = MIN<int> ((FocalLengthX >> FRACBITS) + centerx, viewwidth);
const fixed_t slopestep = hitan / centerx;
const fixed_t dfocus = FocalLengthX >> DBITS;
for (i = centerx, slope = 0; i <= t; i++, slope += slopestep)
{
xtoviewangle[i] = (angle_t)-(signed)tantoangle[slope >> DBITS];
}
for (; i <= viewwidth; i++)
{
xtoviewangle[i] = ANG270+tantoangle[dfocus / (i - centerx)];
}
for (i = 0; i < centerx; i++)
{
xtoviewangle[i] = (angle_t)(-(signed)xtoviewangle[viewwidth-i-1]);
}
}
//==========================================================================
//
// R_SetFOV
//
// Changes the field of view in degrees
//
//==========================================================================
void R_SetFOV (float fov)
{
if (fov < 5.f)
fov = 5.f;
else if (fov > 170.f)
fov = 170.f;
if (fov != LastFOV)
{
LastFOV = fov;
FieldOfView = (int)(fov * (float)FINEANGLES / 360.f);
setsizeneeded = true;
}
}
//==========================================================================
//
// R_GetFOV
//
// Returns the current field of view in degrees
//
//==========================================================================
float R_GetFOV ()
{
return LastFOV;
}
//==========================================================================
//
// R_SetVisibility
//
// Changes how rapidly things get dark with distance
//
//==========================================================================
void R_SetVisibility (float vis)
{
// Allow negative visibilities, just for novelty's sake
//vis = clamp (vis, -204.7f, 204.7f);
CurrentVisibility = vis;
if (FocalTangent == 0)
{ // If r_visibility is called before the renderer is all set up, don't
// divide by zero. This will be called again later, and the proper
// values can be initialized then.
return;
}
r_BaseVisibility = toint (vis * 65536.f);
// Prevent overflow on walls
if (r_BaseVisibility < 0 && r_BaseVisibility < -MaxVisForWall)
r_WallVisibility = -MaxVisForWall;
else if (r_BaseVisibility > 0 && r_BaseVisibility > MaxVisForWall)
r_WallVisibility = MaxVisForWall;
else
r_WallVisibility = r_BaseVisibility;
r_WallVisibility = FixedMul (Scale (InvZtoScale, SCREENWIDTH*(BaseRatioSizes[WidescreenRatio][1]<<detailyshift),
(viewwidth<<detailxshift)*SCREENHEIGHT*3), FixedMul (r_WallVisibility, FocalTangent));
// Prevent overflow on floors/ceilings. Note that the calculation of
// MaxVisForFloor means that planes less than two units from the player's
// view could still overflow, but there is no way to totally eliminate
// that while still using fixed point math.
if (r_BaseVisibility < 0 && r_BaseVisibility < -MaxVisForFloor)
r_FloorVisibility = -MaxVisForFloor;
else if (r_BaseVisibility > 0 && r_BaseVisibility > MaxVisForFloor)
r_FloorVisibility = MaxVisForFloor;
else
r_FloorVisibility = r_BaseVisibility;
r_FloorVisibility = Scale (160*FRACUNIT, r_FloorVisibility, FocalLengthY);
r_TiltVisibility = vis * (float)FocalTangent * (16.f * 320.f) / (float)viewwidth;
r_SpriteVisibility = r_WallVisibility;
}
//==========================================================================
//
// R_GetVisibility
//
//==========================================================================
float R_GetVisibility ()
{
return CurrentVisibility;
}
//==========================================================================
//
// R_SetViewSize
//
// Do not really change anything here, because it might be in the middle
// of a refresh. The change will take effect next refresh.
//
//==========================================================================
void R_SetViewSize (int blocks)
{
setsizeneeded = true;
setblocks = blocks;
}
//==========================================================================
//
// CVAR r_detail
//
// Selects a pixel doubling mode
//
//==========================================================================
CUSTOM_CVAR (Int, r_detail, 0, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
{
static bool badrecovery = false;
if (badrecovery)
{
badrecovery = false;
return;
}
if (self < 0 || self > 3)
{
Printf ("Bad detail mode. (Use 0-3)\n");
badrecovery = true;
self = (detailyshift << 1) | detailxshift;
return;
}
setdetail = self;
setsizeneeded = true;
}
//==========================================================================
//
// R_SetDetail
//
//==========================================================================
void R_SetDetail (int detail)
{
detailxshift = detail & 1;
detailyshift = (detail >> 1) & 1;
}
//==========================================================================
//
// R_SetWindow
//
//==========================================================================
void R_SetWindow (int windowSize, int fullWidth, int fullHeight, int stHeight)
{
int virtheight, virtwidth;
if (windowSize >= 11)
{
realviewwidth = fullWidth;
freelookviewheight = realviewheight = fullHeight;
}
else if (windowSize == 10)
{
realviewwidth = fullWidth;
realviewheight = stHeight;
freelookviewheight = fullHeight;
}
else
{
realviewwidth = ((setblocks*fullWidth)/10) & (~15);
realviewheight = ((setblocks*stHeight)/10)&~7;
freelookviewheight = ((setblocks*fullHeight)/10)&~7;
}
// If the screen is approximately 16:9 or 16:10, consider it widescreen.
WidescreenRatio = CheckRatio (fullWidth, fullHeight);
DrawFSHUD = (windowSize == 11);
viewwidth = realviewwidth >> detailxshift;
viewheight = realviewheight >> detailyshift;
fuzzviewheight = viewheight - 2; // Maximum row the fuzzer can draw to
freelookviewheight >>= detailyshift;
halfviewwidth = (viewwidth >> 1) - 1;
if (!bRenderingToCanvas)
{ // Set r_viewsize cvar to reflect the current view size
UCVarValue value;
char temp[16];
sprintf (temp, "%d x %d", viewwidth, viewheight);
value.String = temp;
r_viewsize.ForceSet (value, CVAR_String);
}
lastcenteryfrac = 1<<30;
centery = viewheight/2;
centerx = viewwidth/2;
centerxfrac = centerx<<FRACBITS;
centeryfrac = centery<<FRACBITS;
virtwidth = fullWidth >> detailxshift;
virtheight = fullHeight >> detailyshift;
if (WidescreenRatio & 4)
{
virtheight = virtheight * BaseRatioSizes[WidescreenRatio][3] / 48;
centerxwide = centerx;
}
else
{
virtwidth = virtwidth * BaseRatioSizes[WidescreenRatio][3] / 48;
centerxwide = centerx * BaseRatioSizes[WidescreenRatio][3] / 48;
}
yaspectmul = Scale ((320<<FRACBITS), virtheight, r_Yaspect * virtwidth);
iyaspectmulfloat = (float)virtwidth * r_Yaspect / 320.f / (float)virtheight;
InvZtoScale = yaspectmul * centerx;
WallTMapScale = (float)centerx * 32.f;
WallTMapScale2 = iyaspectmulfloat * 2.f / (float)centerx;
// psprite scales
pspritexscale = (centerxwide << FRACBITS) / 160;
pspriteyscale = FixedMul (pspritexscale, yaspectmul);
pspritexiscale = FixedDiv (FRACUNIT, pspritexscale);
// thing clipping
clearbufshort (screenheightarray, viewwidth, (short)viewheight);
// [RH] Sky height fix for screens not 200 (or 240) pixels tall
R_InitSkyMap ();
R_InitTextureMapping ();
MaxVisForWall = FixedMul (Scale (InvZtoScale, SCREENWIDTH*(r_Yaspect<<detailyshift),
(viewwidth<<detailxshift)*SCREENHEIGHT), FocalTangent);
MaxVisForWall = FixedDiv (0x7fff0000, MaxVisForWall);
MaxVisForFloor = Scale (FixedDiv (0x7fff0000, viewheight<<(FRACBITS-2)), FocalLengthY, 160*FRACUNIT);
// Reset r_*Visibility vars
R_SetVisibility (R_GetVisibility ());
}
//==========================================================================
//
// R_ExecuteSetViewSize
//
//==========================================================================
void R_ExecuteSetViewSize ()
{
setsizeneeded = false;
BorderNeedRefresh = screen->GetPageCount ();
if (setdetail >= 0)
{
R_SetDetail (setdetail);
setdetail = -1;
}
R_SetWindow (setblocks, SCREENWIDTH, SCREENHEIGHT, ST_Y);
// Handle resize, e.g. smaller view windows with border and/or status bar.
viewwindowx = (screen->GetWidth() - (viewwidth<<detailxshift))>>1;
// Same with base row offset.
viewwindowy = ((viewwidth<<detailxshift) == screen->GetWidth()) ?
0 : (ST_Y-(viewheight<<detailyshift)) >> 1;
}
//==========================================================================
//
// CVAR screenblocks
//
// Selects the size of the visible window
//
//==========================================================================
CUSTOM_CVAR (Int, screenblocks, 10, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
{
if (self > 12)
self = 12;
else if (self < 3)
self = 3;
else
R_SetViewSize (self);
}
//==========================================================================
//
// CVAR r_columnmethod
//
// Selects which version of the seg renderers to use.
//
//==========================================================================
CUSTOM_CVAR (Int, r_columnmethod, 1, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
{
if (self != 0 && self != 1)
{
self = 1;
}
else
{ // Trigger the change
r_detail.Callback ();
}
}
//==========================================================================
//
// R_Init
//
//==========================================================================
void R_Init ()
{
atterm (R_Shutdown);
R_InitData ();
R_InitPointToAngle ();
R_InitTables ();
// viewwidth / viewheight are set by the defaults
R_SetViewSize (screenblocks);
R_InitPlanes ();
R_InitTranslationTables ();
R_InitParticles (); // [RH] Setup particle engine
colfunc = basecolfunc = R_DrawColumn;
fuzzcolfunc = R_DrawFuzzColumn;
transcolfunc = R_DrawTranslatedColumn;
spanfunc = R_DrawSpan;
// [RH] Horizontal column drawers
hcolfunc_pre = R_DrawColumnHoriz;
hcolfunc_post1 = rt_map1col;
hcolfunc_post4 = rt_map4cols;
framecount = 0;
}
//==========================================================================
//
// R_Shutdown
//
//==========================================================================
static void R_Shutdown ()
{
R_DeinitParticles();
R_DeinitPlanes();
R_DeinitData();
}
//==========================================================================
//
// R_PointInSubsector
//
//==========================================================================
subsector_t *R_PointInSubsector (fixed_t x, fixed_t y)
{
node_t *node;
int side;
// single subsector is a special case
if (numnodes == 0)
return subsectors;
node = nodes + numnodes - 1;
do
{
side = R_PointOnSide (x, y, node);
node = (node_t *)node->children[side];
}
while (!((size_t)node & 1));
return (subsector_t *)((BYTE *)node - 1);
}
//==========================================================================
//
// R_InterpolateView
//
//==========================================================================
//CVAR (Int, tf, 0, 0)
EXTERN_CVAR (Bool, cl_noprediction)
void R_InterpolateView (player_t *player, fixed_t frac, InterpolationViewer *iview)
{
// frac = tf;
if (NoInterpolateView)
{
NoInterpolateView = false;
iview->oviewx = iview->nviewx;
iview->oviewy = iview->nviewy;
iview->oviewz = iview->nviewz;
iview->oviewpitch = iview->nviewpitch;
iview->oviewangle = iview->nviewangle;
}
viewx = iview->oviewx + FixedMul (frac, iview->nviewx - iview->oviewx);
viewy = iview->oviewy + FixedMul (frac, iview->nviewy - iview->oviewy);
viewz = iview->oviewz + FixedMul (frac, iview->nviewz - iview->oviewz);
if (player != NULL &&
player - players == consoleplayer &&
camera == player->mo &&
!demoplayback &&
iview->nviewx == camera->x &&
iview->nviewy == camera->y &&
!(player->cheats & (CF_TOTALLYFROZEN|CF_FROZEN)) &&
player->playerstate == PST_LIVE &&
player->mo->reactiontime == 0 &&
!NoInterpolateView &&
!paused &&
(!netgame || !cl_noprediction) &&
!LocalKeyboardTurner)
{
viewangle = iview->nviewangle + (LocalViewAngle & 0xFFFF0000);
viewpitch = clamp<int> (iview->nviewpitch - (LocalViewPitch & 0xFFFF0000), -ANGLE_1*MAX_UP_ANGLE, +ANGLE_1*MAX_DN_ANGLE);
}
else
{
viewpitch = iview->oviewpitch + FixedMul (frac, iview->nviewpitch - iview->oviewpitch);
viewangle = iview->oviewangle + FixedMul (frac, iview->nviewangle - iview->oviewangle);
}
// Due to interpolation this is not necessarily the same as the sector the camera is in.
viewsector = R_PointInSubsector(viewx, viewy)->sector;
}
//==========================================================================
//
// R_ResetViewInterpolation
//
//==========================================================================
void R_ResetViewInterpolation ()
{
NoInterpolateView = true;
}
//==========================================================================
//
// R_SetViewAngle
//
//==========================================================================
void R_SetViewAngle ()
{
angle_t ang = viewangle >> ANGLETOFINESHIFT;
viewsin = finesine[ang];
viewcos = finecosine[ang];
viewtansin = FixedMul (FocalTangent, viewsin);
viewtancos = FixedMul (FocalTangent, viewcos);
}
//==========================================================================
//
// FindPastViewer
//
//==========================================================================
static InterpolationViewer *FindPastViewer (AActor *actor)
{
for (unsigned int i = 0; i < PastViewers.Size(); ++i)
{
if (PastViewers[i].ViewActor == actor)
{
return &PastViewers[i];
}
}
// Not found, so make a new one
InterpolationViewer iview;
iview.ViewActor = actor;
iview.otic = -1;
return &PastViewers[PastViewers.Push (iview)];
}
//==========================================================================
//
// R_FreePastViewers
//
//==========================================================================
void R_FreePastViewers ()
{
PastViewers.Clear ();
}
//==========================================================================
//
// R_CopyStackedViewParameters
//
//==========================================================================
void R_CopyStackedViewParameters()
{
stacked_viewx = viewx;
stacked_viewy = viewy;
stacked_viewz = viewz;
stacked_angle = viewangle;
stacked_extralight = extralight;
stacked_visibility = R_GetVisibility();
}
//==========================================================================
//
// R_SetupFrame
//
//==========================================================================
void R_SetupFrame (AActor *actor)
{
player_t *player = actor->player;
unsigned int newblend;
InterpolationViewer *iview;
if (player != NULL && player->mo == actor)
{ // [RH] Use camera instead of viewplayer
camera = player->camera;
if (camera == NULL)
{
camera = player->camera = player->mo;
}
if (camera == actor)
{
P_PredictPlayer (player);
}
}
else
{
camera = actor;
}
if (camera == NULL)
{
I_Error ("You lost your body. Bad dehacked work is likely to blame.");
}
iview = FindPastViewer (camera);
int nowtic = I_GetTime (false);
if (iview->otic != -1 && nowtic > iview->otic)
{
iview->otic = nowtic;
iview->oviewx = iview->nviewx;
iview->oviewy = iview->nviewy;
iview->oviewz = iview->nviewz;
iview->oviewpitch = iview->nviewpitch;
iview->oviewangle = iview->nviewangle;
}
if (player != NULL &&
((player->cheats & CF_CHASECAM) || (r_deathcamera && camera->health <= 0)) &&
(camera->RenderStyle != STYLE_None) &&
!(camera->renderflags & RF_INVISIBLE) &&
camera->sprite != 0) // Sprite 0 is always TNT1
{
// [RH] Use chasecam view
P_AimCamera (camera);
iview->nviewx = CameraX;
iview->nviewy = CameraY;
iview->nviewz = CameraZ;
viewsector = CameraSector;
r_showviewer = true;
}
else
{
iview->nviewx = camera->x;
iview->nviewy = camera->y;
iview->nviewz = camera->player ? camera->player->viewz : camera->z;
viewsector = camera->Sector;
r_showviewer = false;
}
iview->nviewpitch = camera->pitch;
if (camera->player != 0)
{
player = camera->player;
}
iview->nviewangle = camera->angle + viewangleoffset;
if (iview->otic == -1 || r_NoInterpolate)
{
R_ResetViewInterpolation ();
iview->otic = nowtic;
}
R_UpdateAnimations (I_MSTime());
r_TicFrac = I_GetTimeFrac (&r_FrameTime);
if (cl_capfps || r_NoInterpolate)
{
r_TicFrac = FRACUNIT;
}
R_InterpolateView (player, r_TicFrac, iview);
#ifdef TEST_X
viewx = TEST_X;
viewy = TEST_Y;
viewz = TEST_Z;
viewangle = TEST_ANGLE;
#endif
R_CopyStackedViewParameters();
R_SetViewAngle ();
dointerpolations (r_TicFrac);
// Keep the view within the sector's floor and ceiling
fixed_t theZ = viewsector->ceilingplane.ZatPoint (viewx, viewy) - 4*FRACUNIT;
if (viewz > theZ)
{
viewz = theZ;
}
theZ = viewsector->floorplane.ZatPoint (viewx, viewy) + 4*FRACUNIT;
if (viewz < theZ)
{
viewz = theZ;
}
if (!paused)
{
int intensity = DEarthquake::StaticGetQuakeIntensity (camera);
if (intensity != 0)
{
viewx += ((pr_torchflicker() % (intensity<<2))
-(intensity<<1))<<FRACBITS;
viewy += ((pr_torchflicker() % (intensity<<2))
-(intensity<<1))<<FRACBITS;
}
}
extralight = camera->player ? camera->player->extralight : 0;
// killough 3/20/98, 4/4/98: select colormap based on player status
// [RH] Can also select a blend
if (viewsector->heightsec &&
!(viewsector->heightsec->MoreFlags & SECF_IGNOREHEIGHTSEC))
{
const sector_t *s = viewsector->heightsec;
newblend = viewz < s->floorplane.ZatPoint (viewx, viewy)
? s->bottommap
: viewz > s->ceilingplane.ZatPoint (viewx, viewy)
? s->topmap
: s->midmap;
if (APART(newblend) == 0 && newblend >= numfakecmaps)
newblend = 0;
}
else
{
newblend = 0;
}
// [RH] Don't override testblend unless entering a sector with a
// blend different from the previous sector's. Same goes with
// NormalLight's maps pointer.
if (R_OldBlend != newblend)
{
R_OldBlend = newblend;
if (APART(newblend))
{
BaseBlendR = RPART(newblend);
BaseBlendG = GPART(newblend);
BaseBlendB = BPART(newblend);
BaseBlendA = APART(newblend) / 255.f;
NormalLight.Maps = realcolormaps;
}
else
{
NormalLight.Maps = realcolormaps + NUMCOLORMAPS*256*newblend;
BaseBlendR = BaseBlendG = BaseBlendB = 0;
BaseBlendA = 0.f;
}
}
fixedcolormap = NULL;
fixedlightlev = 0;
if (player != NULL && camera == player->mo && player->fixedcolormap)
{
if (player->fixedcolormap < NUMCOLORMAPS)
{
fixedlightlev = player->fixedcolormap*256;
fixedcolormap = NormalLight.Maps;
}
else switch (player->fixedcolormap)
{
case INVERSECOLORMAP:
fixedcolormap = InverseColormap;
break;
case GOLDCOLORMAP:
fixedcolormap = GoldColormap;
break;
default:
break;
}
}
// [RH] Inverse light for shooting the Sigil
else if (extralight == INT_MIN)
{
fixedcolormap = InverseColormap;
extralight = 0;
}
// [RH] freelook stuff
{
fixed_t dy;
if (camera != NULL)
{
dy = FixedMul (FocalLengthY, finetangent[(ANGLE_90-viewpitch)>>ANGLETOFINESHIFT]);
}
else
{
dy = 0;
}
centeryfrac = (viewheight << (FRACBITS-1)) + dy;
centery = centeryfrac >> FRACBITS;
globaluclip = FixedDiv (-centeryfrac, InvZtoScale);
globaldclip = FixedDiv ((viewheight<<FRACBITS)-centeryfrac, InvZtoScale);
//centeryfrac &= 0xffff0000;
int e, i;
i = 0;
e = viewheight;
fixed_t focus = FocalLengthY;
fixed_t den;
if (i < centery)
{
den = centeryfrac - (i << FRACBITS) - FRACUNIT/2;
if (e <= centery)
{
do {
yslope[i] = FixedDiv (focus, den);
den -= FRACUNIT;
} while (++i < e);
}
else
{
do {
yslope[i] = FixedDiv (focus, den);
den -= FRACUNIT;
} while (++i < centery);
den = (i << FRACBITS) - centeryfrac + FRACUNIT/2;
do {
yslope[i] = FixedDiv (focus, den);
den += FRACUNIT;
} while (++i < e);
}
}
else
{
den = (i << FRACBITS) - centeryfrac + FRACUNIT/2;
do {
yslope[i] = FixedDiv (focus, den);
den += FRACUNIT;
} while (++i < e);
}
}
P_UnPredictPlayer ();
framecount++;
validcount++;
if (r_polymost)
{
polyclipped = RP_SetupFrame (false);
}
}
//==========================================================================
//
// R_RefreshViewBorder
//
// Draws the border around the player view, if needed.
//
//==========================================================================
void R_RefreshViewBorder ()
{
if (setblocks < 10)
{
if (BorderNeedRefresh)
{
BorderNeedRefresh--;
if (BorderTopRefresh)
{
BorderTopRefresh--;
}
R_DrawViewBorder();
}
else if (BorderTopRefresh)
{
BorderTopRefresh--;
R_DrawTopBorder();
}
}
}
//==========================================================================
//
// R_EnterMirror
//
// [RH] Draw the reflection inside a mirror
//
//==========================================================================
void R_EnterMirror (drawseg_t *ds, int depth)
{
angle_t startang = viewangle;
fixed_t startx = viewx;
fixed_t starty = viewy;
unsigned int mirrorsAtStart = WallMirrors.Size ();
vertex_t *v1 = ds->curline->v1;
// Reflect the current view behind the mirror.
if (ds->curline->linedef->dx == 0)
{ // vertical mirror
viewx = v1->x - startx + v1->x;
}
else if (ds->curline->linedef->dy == 0)
{ // horizontal mirror
viewy = v1->y - starty + v1->y;
}
else
{ // any mirror--use floats to avoid integer overflow
vertex_t *v2 = ds->curline->v2;
float dx = FIXED2FLOAT(v2->x - v1->x);
float dy = FIXED2FLOAT(v2->y - v1->y);
float x1 = FIXED2FLOAT(v1->x);
float y1 = FIXED2FLOAT(v1->y);
float x = FIXED2FLOAT(startx);
float y = FIXED2FLOAT(starty);
// the above two cases catch len == 0
float r = ((x - x1)*dx + (y - y1)*dy) / (dx*dx + dy*dy);
viewx = FLOAT2FIXED((x1 + r * dx)*2 - x);
viewy = FLOAT2FIXED((y1 + r * dy)*2 - y);
}
viewangle = 2*R_PointToAngle2 (ds->curline->v1->x, ds->curline->v1->y,
ds->curline->v2->x, ds->curline->v2->y) - startang;
viewsin = finesine[viewangle>>ANGLETOFINESHIFT];
viewcos = finecosine[viewangle>>ANGLETOFINESHIFT];
viewtansin = FixedMul (FocalTangent, viewsin);
viewtancos = FixedMul (FocalTangent, viewcos);
R_CopyStackedViewParameters();
validcount++;
ActiveWallMirror = ds->curline;
R_ClearPlanes (false);
R_ClearClipSegs (ds->x1, ds->x2 + 1);
memcpy (ceilingclip + ds->x1, openings + ds->sprtopclip, (ds->x2 - ds->x1 + 1)*sizeof(*ceilingclip));
memcpy (floorclip + ds->x1, openings + ds->sprbottomclip, (ds->x2 - ds->x1 + 1)*sizeof(*floorclip));
WindowLeft = ds->x1;
WindowRight = ds->x2;
MirrorFlags = (depth + 1) & 1;
R_RenderBSPNode (nodes + numnodes - 1);
R_DrawPlanes ();
R_DrawSkyBoxes ();
// Allow up to 4 recursions through a mirror
if (depth < 4)
{
unsigned int mirrorsAtEnd = WallMirrors.Size ();
for (; mirrorsAtStart < mirrorsAtEnd; mirrorsAtStart++)
{
R_EnterMirror (drawsegs + WallMirrors[mirrorsAtStart], depth + 1);
}
}
else
{
depth = depth;
}
viewangle = startang;
viewx = startx;
viewy = starty;
}
//==========================================================================
//
// R_SetupBuffer
//
// Precalculate all row offsets and fuzz table.
//
//==========================================================================
void R_SetupBuffer (bool inview)
{
static BYTE *lastbuff = NULL;
int pitch = RenderTarget->GetPitch();
BYTE *lineptr = RenderTarget->GetBuffer() + viewwindowy*pitch + viewwindowx;
if (inview)
{
pitch <<= detailyshift;
}
if (detailxshift)
{
lineptr += viewwidth;
}
if (dc_pitch != pitch || lineptr != lastbuff)
{
if (dc_pitch != pitch)
{
dc_pitch = pitch;
R_InitFuzzTable (pitch);
#ifdef USEASM
ASM_PatchPitch ();
#endif
}
dc_destorg = lineptr;
for (int i = 0; i < RenderTarget->GetHeight(); i++)
{
ylookup[i] = i * pitch;
}
}
}
//==========================================================================
//
// R_RenderActorView
//
//==========================================================================
void R_RenderActorView (AActor *actor, bool dontmaplines)
{
WallCycles = PlaneCycles = MaskedCycles = WallScanCycles = 0;
R_SetupBuffer (true);
R_SetupFrame (actor);
// Clear buffers.
R_ClearClipSegs (0, viewwidth);
R_ClearDrawSegs ();
R_ClearPlanes (true);
R_ClearSprites ();
NetUpdate ();
// [RH] Show off segs if r_drawflat is 1
if (r_drawflat)
{
hcolfunc_pre = R_FillColumnHorizP;
hcolfunc_post1 = rt_copy1col;
hcolfunc_post4 = rt_copy4cols;
colfunc = R_FillColumnP;
spanfunc = R_FillSpan;
}
else
{
hcolfunc_pre = R_DrawColumnHoriz;
hcolfunc_post1 = rt_map1col;
hcolfunc_post4 = rt_map4cols;
colfunc = basecolfunc;
spanfunc = R_DrawSpan;
}
WindowLeft = 0;
WindowRight = viewwidth - 1;
MirrorFlags = 0;
ActiveWallMirror = NULL;
r_dontmaplines = dontmaplines;
// [RH] Hack to make windows into underwater areas possible
r_fakingunderwater = false;
// [RH] Setup particles for this frame
R_FindParticleSubsectors ();
clock (WallCycles);
DWORD savedflags = camera->renderflags;
// Never draw the player unless in chasecam mode
if (!r_showviewer)
{
camera->renderflags |= RF_INVISIBLE;
}
if (r_polymost < 2)
{
R_RenderBSPNode (nodes + numnodes - 1); // The head node is the last node output.
}
camera->renderflags = savedflags;
unclock (WallCycles);
NetUpdate ();
if (viewactive)
{
clock (PlaneCycles);
R_DrawPlanes ();
R_DrawSkyBoxes ();
unclock (PlaneCycles);
// [RH] Walk through mirrors
size_t lastmirror = WallMirrors.Size ();
for (unsigned int i = 0; i < lastmirror; i++)
{
R_EnterMirror (drawsegs + WallMirrors[i], 0);
}
NetUpdate ();
clock (MaskedCycles);
R_DrawMasked ();
unclock (MaskedCycles);
NetUpdate ();
if (r_polymost)
{
RP_RenderBSPNode (nodes + numnodes - 1);
if (polyclipped)
{
RP_SetupFrame (true);
RP_RenderBSPNode (nodes + numnodes - 1);
}
}
}
WallMirrors.Clear ();
restoreinterpolations ();
// If there is vertical doubling, and the view window is not an even height,
// draw a black line at the bottom of the view window.
if (detailyshift && viewwindowy == 0 && (realviewheight & 1))
{
screen->Clear (0, realviewheight-1, realviewwidth, realviewheight, 0);
}
R_SetupBuffer (false);
}
//==========================================================================
//
// R_RenderViewToCanvas
//
// Pre: Canvas is already locked.
//
//==========================================================================
void R_RenderViewToCanvas (AActor *actor, DCanvas *canvas,
int x, int y, int width, int height, bool dontmaplines)
{
const int saveddetail = detailxshift | (detailyshift << 1);
const bool savedviewactive = viewactive;
detailxshift = detailyshift = 0;
realviewwidth = viewwidth = width;
RenderTarget = canvas;
bRenderingToCanvas = true;
R_SetDetail (0);
R_SetWindow (12, width, height, height);
viewwindowx = x;
viewwindowy = y;
viewactive = true;
R_RenderActorView (actor, dontmaplines);
RenderTarget = screen;
bRenderingToCanvas = false;
R_SetDetail (saveddetail);
R_ExecuteSetViewSize ();
screen->Lock (true);
R_SetupBuffer (false);
screen->Unlock ();
viewactive = savedviewactive;
}
//==========================================================================
//
// FCanvasTextureInfo :: Add
//
// Assigns a camera to a canvas texture.
//
//==========================================================================
void FCanvasTextureInfo::Add (AActor *viewpoint, int picnum, int fov)
{
FCanvasTextureInfo *probe;
FCanvasTexture *texture;
if (picnum < 0)
{
return;
}
texture = static_cast<FCanvasTexture *>(TexMan[picnum]);
if (!texture->bHasCanvas)
{
Printf ("%s is not a valid target for a camera\n", texture->Name);
return;
}
// Is this texture already assigned to a camera?
for (probe = List; probe != NULL; probe = probe->Next)
{
if (probe->Texture == texture)
{
// Yes, change its assignment to this new camera
probe->Viewpoint = viewpoint;
probe->FOV = fov;
texture->bFirstUpdate = true;
return;
}
}
// No, create a new assignment
probe = new FCanvasTextureInfo;
probe->Viewpoint = viewpoint;
probe->Texture = texture;
probe->PicNum = picnum;
probe->FOV = fov;
probe->Next = List;
texture->bFirstUpdate = true;
List = probe;
}
//==========================================================================
//
// FCanvasTextureInfo :: UpdateAll
//
// Updates all canvas textures that were visible in the last frame.
//
//==========================================================================
void FCanvasTextureInfo::UpdateAll ()
{
FCanvasTextureInfo *probe;
for (probe = List; probe != NULL; probe = probe->Next)
{
if (probe->Viewpoint != NULL && probe->Texture->bNeedsUpdate)
{
probe->Texture->RenderView (probe->Viewpoint, probe->FOV);
}
}
}
//==========================================================================
//
// FCanvasTextureInfo :: EmptyList
//
// Removes all camera->texture assignments.
//
//==========================================================================
void FCanvasTextureInfo::EmptyList ()
{
FCanvasTextureInfo *probe, *next;
for (probe = List; probe != NULL; probe = next)
{
next = probe->Next;
delete probe;
}
List = NULL;
}
//==========================================================================
//
// FCanvasTextureInfo :: Serialize
//
// Reads or writes the current set of mappings in an archive.
//
//==========================================================================
void FCanvasTextureInfo::Serialize (FArchive &arc)
{
if (arc.IsStoring ())
{
FCanvasTextureInfo *probe;
for (probe = List; probe != NULL; probe = probe->Next)
{
if (probe->Texture != NULL && probe->Viewpoint != NULL)
{
arc << probe->Viewpoint << probe->FOV;
TexMan.WriteTexture (arc, probe->PicNum);
}
}
AActor *nullactor = NULL;
arc << nullactor;
}
else
{
AActor *viewpoint;
int picnum, fov;
EmptyList ();
arc << viewpoint;
while (viewpoint != NULL)
{
arc << fov;
picnum = TexMan.ReadTexture (arc);
Add (viewpoint, picnum, fov);
arc << viewpoint;
}
}
}
//==========================================================================
//
// R_MultiresInit
//
// Called from V_SetResolution()
//
//==========================================================================
void R_MultiresInit ()
{
R_PlaneInitData ();
R_OldBlend = ~0;
}
// Stuff from BUILD to interpolate floors and ceilings
//
// "Build Engine & Tools" Copyright (c) 1993-1997 Ken Silverman
// Ken Silverman's official web site: "http://www.advsys.net/ken"
// See the included license file "BUILDLIC.TXT" for license info.
// This code has been modified from its original form.
static bool didInterp;
FActiveInterpolation *FActiveInterpolation::curiposhash[INTERPOLATION_BUCKETS];
void FActiveInterpolation::CopyInterpToOld ()
{
switch (Type)
{
case INTERP_SectorFloor:
oldipos[0] = ((sector_t*)Address)->floorplane.d;
oldipos[1] = ((sector_t*)Address)->floortexz;
break;
case INTERP_SectorCeiling:
oldipos[0] = ((sector_t*)Address)->ceilingplane.d;
oldipos[1] = ((sector_t*)Address)->ceilingtexz;
break;
case INTERP_Vertex:
oldipos[0] = ((vertex_t*)Address)->x;
oldipos[1] = ((vertex_t*)Address)->y;
break;
case INTERP_FloorPanning:
oldipos[0] = ((sector_t*)Address)->floor_xoffs;
oldipos[1] = ((sector_t*)Address)->floor_yoffs;
break;
case INTERP_CeilingPanning:
oldipos[0] = ((sector_t*)Address)->ceiling_xoffs;
oldipos[1] = ((sector_t*)Address)->ceiling_yoffs;
break;
case INTERP_WallPanning:
oldipos[0] = ((side_t*)Address)->rowoffset;
oldipos[1] = ((side_t*)Address)->textureoffset;
break;
}
}
void FActiveInterpolation::CopyBakToInterp ()
{
switch (Type)
{
case INTERP_SectorFloor:
((sector_t*)Address)->floorplane.d = bakipos[0];
((sector_t*)Address)->floortexz = bakipos[1];
break;
case INTERP_SectorCeiling:
((sector_t*)Address)->ceilingplane.d = bakipos[0];
((sector_t*)Address)->ceilingtexz = bakipos[1];
break;
case INTERP_Vertex:
((vertex_t*)Address)->x = bakipos[0];
((vertex_t*)Address)->y = bakipos[1];
break;
case INTERP_FloorPanning:
((sector_t*)Address)->floor_xoffs = bakipos[0];
((sector_t*)Address)->floor_yoffs = bakipos[1];
break;
case INTERP_CeilingPanning:
((sector_t*)Address)->ceiling_xoffs = bakipos[0];
((sector_t*)Address)->ceiling_yoffs = bakipos[1];
break;
case INTERP_WallPanning:
((side_t*)Address)->rowoffset = bakipos[0];
((side_t*)Address)->textureoffset = bakipos[1];
break;
}
}
void FActiveInterpolation::DoAnInterpolation (fixed_t smoothratio)
{
fixed_t *adr1, *adr2, pos;
switch (Type)
{
case INTERP_SectorFloor:
adr1 = &((sector_t*)Address)->floorplane.d;
adr2 = &((sector_t*)Address)->floortexz;
break;
case INTERP_SectorCeiling:
adr1 = &((sector_t*)Address)->ceilingplane.d;
adr2 = &((sector_t*)Address)->ceilingtexz;
break;
case INTERP_Vertex:
adr1 = &((vertex_t*)Address)->x;
adr2 = &((vertex_t*)Address)->y;
break;
case INTERP_FloorPanning:
adr1 = &((sector_t*)Address)->floor_xoffs;
adr2 = &((sector_t*)Address)->floor_yoffs;
break;
case INTERP_CeilingPanning:
adr1 = &((sector_t*)Address)->ceiling_xoffs;
adr2 = &((sector_t*)Address)->ceiling_yoffs;
break;
case INTERP_WallPanning:
adr1 = &((side_t*)Address)->rowoffset;
adr2 = &((side_t*)Address)->textureoffset;
break;
default:
return;
}
pos = bakipos[0] = *adr1;
*adr1 = oldipos[0] + FixedMul (pos - oldipos[0], smoothratio);
pos = bakipos[1] = *adr2;
*adr2 = oldipos[1] + FixedMul (pos - oldipos[1], smoothratio);
}
size_t FActiveInterpolation::HashKey (EInterpType type, void *interptr)
{
return (size_t)type * ((size_t)interptr>>5);
}
int FActiveInterpolation::CountInterpolations ()
{
int d1, d2, d3;
return CountInterpolations (&d1, &d2, &d3);
}
int FActiveInterpolation::CountInterpolations (int *usedbuckets, int *minbucketfill, int *maxbucketfill)
{
int count = 0;
int inuse = 0;
int minuse = INT_MAX;
int maxuse = INT_MIN;
for (int i = INTERPOLATION_BUCKETS-1; i >= 0; --i)
{
int use = 0;
FActiveInterpolation *probe = FActiveInterpolation::curiposhash[i];
if (probe != NULL)
{
inuse++;
}
while (probe != NULL)
{
count++;
use++;
probe = probe->Next;
}
if (use > 0 && use < minuse)
{
minuse = use;
}
if (use > maxuse)
{
maxuse = use;
}
}
*usedbuckets = inuse;
*minbucketfill = minuse == INT_MAX ? 0 : minuse;
*maxbucketfill = maxuse;
return count;
}
FActiveInterpolation *FActiveInterpolation::FindInterpolation (EInterpType type, void *interptr, FActiveInterpolation **&interp_p)
{
size_t hash = HashKey (type, interptr) % INTERPOLATION_BUCKETS;
FActiveInterpolation *probe, **probe_p;
for (probe_p = &curiposhash[hash], probe = *probe_p;
probe != NULL;
probe_p = &probe->Next, probe = *probe_p)
{
if (probe->Address > interptr)
{ // We passed the place it would have been, so it must not be here.
probe = NULL;
break;
}
if (probe->Address == interptr && probe->Type == type)
{ // Found it.
break;
}
}
interp_p = probe_p;
return probe;
}
void clearinterpolations()
{
for (int i = INTERPOLATION_BUCKETS-1; i >= 0; --i)
{
for (FActiveInterpolation *probe = FActiveInterpolation::curiposhash[i];
probe != NULL; )
{
FActiveInterpolation *next = probe->Next;
delete probe;
probe = next;
}
FActiveInterpolation::curiposhash[i] = NULL;
}
}
void updateinterpolations() //Stick at beginning of domovethings
{
for (int i = INTERPOLATION_BUCKETS-1; i >= 0; --i)
{
for (FActiveInterpolation *probe = FActiveInterpolation::curiposhash[i];
probe != NULL; probe = probe->Next)
{
probe->CopyInterpToOld ();
}
}
}
void setinterpolation(EInterpType type, void *posptr)
{
FActiveInterpolation **interp_p;
FActiveInterpolation *interp = FActiveInterpolation::FindInterpolation (type, posptr, interp_p);
if (interp != NULL) return; // It's already active
interp = new FActiveInterpolation;
interp->Type = type;
interp->Address = posptr;
interp->Next = *interp_p;
*interp_p = interp;
interp->CopyInterpToOld ();
}
void stopinterpolation(EInterpType type, void *posptr)
{
FActiveInterpolation **interp_p;
FActiveInterpolation *interp = FActiveInterpolation::FindInterpolation (type, posptr, interp_p);
if (interp != NULL)
{
*interp_p = interp->Next;
delete interp;
}
}
void dointerpolations(fixed_t smoothratio) //Stick at beginning of drawscreen
{
if (smoothratio == FRACUNIT)
{
didInterp = false;
return;
}
didInterp = true;
for (int i = INTERPOLATION_BUCKETS-1; i >= 0; --i)
{
for (FActiveInterpolation *probe = FActiveInterpolation::curiposhash[i];
probe != NULL; probe = probe->Next)
{
probe->DoAnInterpolation (smoothratio);
}
}
}
void restoreinterpolations() //Stick at end of drawscreen
{
if (didInterp)
{
didInterp = false;
for (int i = INTERPOLATION_BUCKETS-1; i >= 0; --i)
{
for (FActiveInterpolation *probe = FActiveInterpolation::curiposhash[i];
probe != NULL; probe = probe->Next)
{
probe->CopyBakToInterp ();
}
}
}
}
void SerializeInterpolations (FArchive &arc)
{
FActiveInterpolation *interp;
int numinterpolations;
int i;
if (arc.IsStoring ())
{
numinterpolations = FActiveInterpolation::CountInterpolations();
arc.WriteCount (numinterpolations);
for (i = INTERPOLATION_BUCKETS-1; i >= 0; --i)
{
for (interp = FActiveInterpolation::curiposhash[i];
interp != NULL; interp = interp->Next)
{
arc << interp;
}
}
}
else
{
clearinterpolations ();
numinterpolations = arc.ReadCount ();
for (i = numinterpolations; i > 0; --i)
{
FActiveInterpolation **interp_p;
arc << interp;
if (FActiveInterpolation::FindInterpolation (interp->Type, interp->Address, interp_p) == NULL)
{ // Should always return NULL, because there should never be any duplicates stored.
interp->Next = *interp_p;
*interp_p = interp;
}
}
}
}
FArchive &operator << (FArchive &arc, FActiveInterpolation *&interp)
{
BYTE type;
union
{
vertex_t *vert;
sector_t *sect;
side_t *side;
void *ptr;
} ptr;
if (arc.IsStoring ())
{
type = interp->Type;
ptr.ptr = interp->Address;
arc << type;
switch (type)
{
case INTERP_Vertex: arc << ptr.vert; break;
case INTERP_WallPanning: arc << ptr.side; break;
default: arc << ptr.sect; break;
}
}
else
{
interp = new FActiveInterpolation;
arc << type;
interp->Type = (EInterpType)type;
switch (type)
{
case INTERP_Vertex: arc << ptr.vert; break;
case INTERP_WallPanning: arc << ptr.side; break;
default: arc << ptr.sect; break;
}
interp->Address = ptr.ptr;
}
return arc;
}
ADD_STAT (interpolations)
{
int inuse, minuse, maxuse, total;
FString out;
total = FActiveInterpolation::CountInterpolations (&inuse, &minuse, &maxuse);
out.Format ("%d interpolations buckets:%3d min:%3d max:%3d avg:%3d %d%% full %d%% buckfull",
total, inuse, minuse, maxuse, inuse?total/inuse:0, total*100/INTERPOLATION_BUCKETS, inuse*100/INTERPOLATION_BUCKETS);
return out;
}