mirror of
https://github.com/ZDoom/gzdoom-gles.git
synced 2025-01-23 08:51:06 +00:00
1746 lines
46 KiB
C++
1746 lines
46 KiB
C++
/*
|
|
* Copyright (C) 2002-2018 The DOSBox Team
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
/*
|
|
DOSBox implementation of a combined Yamaha YMF262 and Yamaha YM3812 emulator.
|
|
Enabling the opl3 bit will switch the emulator to stereo opl3 output instead of regular mono opl2
|
|
Except for the table generation it's all integer math
|
|
Can choose different types of generators, using muls and bigger tables, try different ones for slower platforms
|
|
The generation was based on the MAME implementation but tried to have it use less memory and be faster in general
|
|
MAME uses much bigger envelope tables and this will be the biggest cause of it sounding different at times
|
|
|
|
//TODO Don't delay first operator 1 sample in opl3 mode
|
|
//TODO Maybe not use class method pointers but a regular function pointers with operator as first parameter
|
|
//TODO Fix panning for the Percussion channels, would any opl3 player use it and actually really change it though?
|
|
//TODO Check if having the same accuracy in all frequency multipliers sounds better or not
|
|
|
|
//DUNNO Keyon in 4op, switch to 2op without keyoff.
|
|
*/
|
|
|
|
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <vector>
|
|
#include <memory>
|
|
#include "dbopl.h"
|
|
#include "../common/mutex.hpp"
|
|
#include "../common/ptr.hpp"
|
|
|
|
#if defined(__GNUC__) && __GNUC__ > 3
|
|
#define INLINE inline __attribute__((__always_inline__))
|
|
#elif defined(_MSC_VER)
|
|
#define INLINE __forceinline
|
|
#else
|
|
#define INLINE inline
|
|
#endif
|
|
|
|
#if defined(__GNUC__)
|
|
#if !defined(__clang__)
|
|
#define GCC_LIKELY(x) __builtin_expect(x, 1)
|
|
#define GCC_UNLIKELY(x) __builtin_expect(x, 0)
|
|
#else // !defined(__clang__)
|
|
#if !defined (__c2__) && defined(__has_builtin)
|
|
#if __has_builtin(__builtin_expect)
|
|
#define GCC_LIKELY(x) __builtin_expect(x, 1)
|
|
#define GCC_UNLIKELY(x) __builtin_expect(x, 0)
|
|
#endif // __has_builtin(__builtin_expect)
|
|
#endif // !defined (__c2__) && defined(__has_builtin)
|
|
#endif // !defined(__clang__)
|
|
#endif // defined(__GNUC__)
|
|
|
|
#if !defined(GCC_LIKELY)
|
|
#define GCC_LIKELY(x) (x)
|
|
#define GCC_UNLIKELY(x) (x)
|
|
#endif
|
|
|
|
#ifndef PI
|
|
#define PI 3.14159265358979323846
|
|
#endif
|
|
|
|
/*
|
|
* Workaround for some compilers are has no those macros in their headers!
|
|
*/
|
|
#ifndef INT16_MIN
|
|
#define INT16_MIN (-0x7fff - 1)
|
|
#endif
|
|
#ifndef INT16_MAX
|
|
#define INT16_MAX 0x7fff
|
|
#endif
|
|
|
|
|
|
namespace DBOPL {
|
|
|
|
#define OPLRATE ((double)(14318180.0 / 288.0))
|
|
#define TREMOLO_TABLE 52
|
|
|
|
//Try to use most precision for frequencies
|
|
//Else try to keep different waves in synch
|
|
//#define WAVE_PRECISION 1
|
|
#ifndef WAVE_PRECISION
|
|
//Wave bits available in the top of the 32bit range
|
|
//Original adlib uses 10.10, we use 10.22
|
|
#define WAVE_BITS 10
|
|
#else
|
|
//Need some extra bits at the top to have room for octaves and frequency multiplier
|
|
//We support to 8 times lower rate
|
|
//128 * 15 * 8 = 15350, 2^13.9, so need 14 bits
|
|
#define WAVE_BITS 14
|
|
#endif
|
|
#define WAVE_SH ( 32 - WAVE_BITS )
|
|
#define WAVE_MASK ( ( 1 << WAVE_SH ) - 1 )
|
|
|
|
//Use the same accuracy as the waves
|
|
#define LFO_SH ( WAVE_SH - 10 )
|
|
//LFO is controlled by our tremolo 256 sample limit
|
|
#define LFO_MAX ( 256 << ( LFO_SH ) )
|
|
|
|
|
|
//Maximum amount of attenuation bits
|
|
//Envelope goes to 511, 9 bits
|
|
#if (DBOPL_WAVE == WAVE_TABLEMUL )
|
|
//Uses the value directly
|
|
#define ENV_BITS ( 9 )
|
|
#else
|
|
//Add 3 bits here for more accuracy and would have to be shifted up either way
|
|
#define ENV_BITS ( 9 )
|
|
#endif
|
|
//Limits of the envelope with those bits and when the envelope goes silent
|
|
#define ENV_MIN 0
|
|
#define ENV_EXTRA ( ENV_BITS - 9 )
|
|
#define ENV_MAX ( 511 << ENV_EXTRA )
|
|
#define ENV_LIMIT ( ( 12 * 256) >> ( 3 - ENV_EXTRA ) )
|
|
#define ENV_SILENT( _X_ ) ( (_X_) >= ENV_LIMIT )
|
|
|
|
//Attack/decay/release rate counter shift
|
|
#define RATE_SH 24
|
|
#define RATE_MASK ( ( 1 << RATE_SH ) - 1 )
|
|
//Has to fit within 16bit lookuptable
|
|
#define MUL_SH 16
|
|
|
|
//Check some ranges
|
|
#if ENV_EXTRA > 3
|
|
#error Too many envelope bits
|
|
#endif
|
|
|
|
|
|
//How much to substract from the base value for the final attenuation
|
|
static const Bit8u KslCreateTable[16] = {
|
|
//0 will always be be lower than 7 * 8
|
|
64, 32, 24, 19,
|
|
16, 12, 11, 10,
|
|
8, 6, 5, 4,
|
|
3, 2, 1, 0,
|
|
};
|
|
|
|
#define M(_X_) ((Bit8u)( (_X_) * 2))
|
|
static const Bit8u FreqCreateTable[16] = {
|
|
M(0.5), M(1 ), M(2 ), M(3 ), M(4 ), M(5 ), M(6 ), M(7 ),
|
|
M(8 ), M(9 ), M(10), M(10), M(12), M(12), M(15), M(15)
|
|
};
|
|
#undef M
|
|
|
|
//We're not including the highest attack rate, that gets a special value
|
|
static const Bit8u AttackSamplesTable[13] = {
|
|
69, 55, 46, 40,
|
|
35, 29, 23, 20,
|
|
19, 15, 11, 10,
|
|
9
|
|
};
|
|
//On a real opl these values take 8 samples to reach and are based upon larger tables
|
|
static const Bit8u EnvelopeIncreaseTable[13] = {
|
|
4, 5, 6, 7,
|
|
8, 10, 12, 14,
|
|
16, 20, 24, 28,
|
|
32,
|
|
};
|
|
|
|
#if ( DBOPL_WAVE == WAVE_HANDLER ) || ( DBOPL_WAVE == WAVE_TABLELOG )
|
|
static Bit16u ExpTable[ 256 ];
|
|
#endif
|
|
|
|
#if ( DBOPL_WAVE == WAVE_HANDLER )
|
|
//PI table used by WAVEHANDLER
|
|
static Bit16u SinTable[ 512 ];
|
|
#endif
|
|
|
|
#if ( DBOPL_WAVE > WAVE_HANDLER )
|
|
//Layout of the waveform table in 512 entry intervals
|
|
//With overlapping waves we reduce the table to half it's size
|
|
|
|
// | |//\\|____|WAV7|//__|/\ |____|/\/\|
|
|
// |\\//| | |WAV7| | \/| | |
|
|
// |06 |0126|17 |7 |3 |4 |4 5 |5 |
|
|
|
|
//6 is just 0 shifted and masked
|
|
|
|
static Bit16s WaveTable[ 8 * 512 ];
|
|
//Distance into WaveTable the wave starts
|
|
static const Bit16u WaveBaseTable[8] = {
|
|
0x000, 0x200, 0x200, 0x800,
|
|
0xa00, 0xc00, 0x100, 0x400,
|
|
|
|
};
|
|
//Mask the counter with this
|
|
static const Bit16u WaveMaskTable[8] = {
|
|
1023, 1023, 511, 511,
|
|
1023, 1023, 512, 1023,
|
|
};
|
|
|
|
//Where to start the counter on at keyon
|
|
static const Bit16u WaveStartTable[8] = {
|
|
512, 0, 0, 0,
|
|
0, 512, 512, 256,
|
|
};
|
|
#endif
|
|
|
|
#if ( DBOPL_WAVE == WAVE_TABLEMUL )
|
|
static Bit16u MulTable[ 384 ];
|
|
#endif
|
|
|
|
static Bit8u KslTable[ 8 * 16 ];
|
|
static Bit8u TremoloTable[ TREMOLO_TABLE ];
|
|
//Start of a channel behind the chip struct start
|
|
static Bit16u ChanOffsetTable[32];
|
|
//Start of an operator behind the chip struct start
|
|
static Bit16u OpOffsetTable[64];
|
|
|
|
//The lower bits are the shift of the operator vibrato value
|
|
//The highest bit is right shifted to generate -1 or 0 for negation
|
|
//So taking the highest input value of 7 this gives 3, 7, 3, 0, -3, -7, -3, 0
|
|
static const Bit8s VibratoTable[ 8 ] = {
|
|
1 - 0x00, 0 - 0x00, 1 - 0x00, 30 - 0x00,
|
|
1 - 0x80, 0 - 0x80, 1 - 0x80, 30 - 0x80
|
|
};
|
|
|
|
//Shift strength for the ksl value determined by ksl strength
|
|
static const Bit8u KslShiftTable[4] = {
|
|
31,1,2,0
|
|
};
|
|
|
|
// Pan law table
|
|
static const Bit16u PanLawTable[] =
|
|
{
|
|
65535, 65529, 65514, 65489, 65454, 65409, 65354, 65289,
|
|
65214, 65129, 65034, 64929, 64814, 64689, 64554, 64410,
|
|
64255, 64091, 63917, 63733, 63540, 63336, 63123, 62901,
|
|
62668, 62426, 62175, 61914, 61644, 61364, 61075, 60776,
|
|
60468, 60151, 59825, 59489, 59145, 58791, 58428, 58057,
|
|
57676, 57287, 56889, 56482, 56067, 55643, 55211, 54770,
|
|
54320, 53863, 53397, 52923, 52441, 51951, 51453, 50947,
|
|
50433, 49912, 49383, 48846, 48302, 47750, 47191,
|
|
46340, /* Center left */
|
|
46340, /* Center right */
|
|
45472, 44885, 44291, 43690, 43083, 42469, 41848, 41221,
|
|
40588, 39948, 39303, 38651, 37994, 37330, 36661, 35986,
|
|
35306, 34621, 33930, 33234, 32533, 31827, 31116, 30400,
|
|
29680, 28955, 28225, 27492, 26754, 26012, 25266, 24516,
|
|
23762, 23005, 22244, 21480, 20713, 19942, 19169, 18392,
|
|
17613, 16831, 16046, 15259, 14469, 13678, 12884, 12088,
|
|
11291, 10492, 9691, 8888, 8085, 7280, 6473, 5666,
|
|
4858, 4050, 3240, 2431, 1620, 810, 0
|
|
};
|
|
|
|
//Generate a table index and table shift value using input value from a selected rate
|
|
static void EnvelopeSelect( Bit8u val, Bit8u& index, Bit8u& shift ) {
|
|
if ( val < 13 * 4 ) { //Rate 0 - 12
|
|
shift = 12 - ( val >> 2 );
|
|
index = val & 3;
|
|
} else if ( val < 15 * 4 ) { //rate 13 - 14
|
|
shift = 0;
|
|
index = val - 12 * 4;
|
|
} else { //rate 15 and up
|
|
shift = 0;
|
|
index = 12;
|
|
}
|
|
}
|
|
|
|
#if ( DBOPL_WAVE == WAVE_HANDLER )
|
|
/*
|
|
Generate the different waveforms out of the sine/exponetial table using handlers
|
|
*/
|
|
static inline Bits MakeVolume( Bitu wave, Bitu volume ) {
|
|
Bitu total = wave + volume;
|
|
Bitu index = total & 0xff;
|
|
Bitu sig = ExpTable[ index ];
|
|
Bitu exp = total >> 8;
|
|
#if 0
|
|
//Check if we overflow the 31 shift limit
|
|
if ( exp >= 32 ) {
|
|
LOG_MSG( "WTF %d %d", total, exp );
|
|
}
|
|
#endif
|
|
return (sig >> exp);
|
|
};
|
|
|
|
static Bits DB_FASTCALL WaveForm0( Bitu i, Bitu volume ) {
|
|
Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0
|
|
Bitu wave = SinTable[i & 511];
|
|
return (MakeVolume( wave, volume ) ^ neg) - neg;
|
|
}
|
|
static Bits DB_FASTCALL WaveForm1( Bitu i, Bitu volume ) {
|
|
Bit32u wave = SinTable[i & 511];
|
|
wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 );
|
|
return MakeVolume( wave, volume );
|
|
}
|
|
static Bits DB_FASTCALL WaveForm2( Bitu i, Bitu volume ) {
|
|
Bitu wave = SinTable[i & 511];
|
|
return MakeVolume( wave, volume );
|
|
}
|
|
static Bits DB_FASTCALL WaveForm3( Bitu i, Bitu volume ) {
|
|
Bitu wave = SinTable[i & 255];
|
|
wave |= ( ( (i ^ 256 ) & 256) - 1) >> ( 32 - 12 );
|
|
return MakeVolume( wave, volume );
|
|
}
|
|
static Bits DB_FASTCALL WaveForm4( Bitu i, Bitu volume ) {
|
|
//Twice as fast
|
|
i <<= 1;
|
|
Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0
|
|
Bitu wave = SinTable[i & 511];
|
|
wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 );
|
|
return (MakeVolume( wave, volume ) ^ neg) - neg;
|
|
}
|
|
static Bits DB_FASTCALL WaveForm5( Bitu i, Bitu volume ) {
|
|
//Twice as fast
|
|
i <<= 1;
|
|
Bitu wave = SinTable[i & 511];
|
|
wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 );
|
|
return MakeVolume( wave, volume );
|
|
}
|
|
static Bits DB_FASTCALL WaveForm6( Bitu i, Bitu volume ) {
|
|
Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0
|
|
return (MakeVolume( 0, volume ) ^ neg) - neg;
|
|
}
|
|
static Bits DB_FASTCALL WaveForm7( Bitu i, Bitu volume ) {
|
|
//Negative is reversed here
|
|
Bits neg = (( i >> 9) & 1) - 1;
|
|
Bitu wave = (i << 3);
|
|
//When negative the volume also runs backwards
|
|
wave = ((wave ^ neg) - neg) & 4095;
|
|
return (MakeVolume( wave, volume ) ^ neg) - neg;
|
|
}
|
|
|
|
static const WaveHandler WaveHandlerTable[8] = {
|
|
WaveForm0, WaveForm1, WaveForm2, WaveForm3,
|
|
WaveForm4, WaveForm5, WaveForm6, WaveForm7
|
|
};
|
|
|
|
#endif
|
|
|
|
/*
|
|
Operator
|
|
*/
|
|
|
|
//We zero out when rate == 0
|
|
inline void Operator::UpdateAttack( const Chip* chip ) {
|
|
Bit8u rate = reg60 >> 4;
|
|
if ( rate ) {
|
|
Bit8u val = (rate << 2) + ksr;
|
|
attackAdd = chip->attackRates[ val ];
|
|
rateZero &= ~(1 << ATTACK);
|
|
} else {
|
|
attackAdd = 0;
|
|
rateZero |= (1 << ATTACK);
|
|
}
|
|
}
|
|
inline void Operator::UpdateDecay( const Chip* chip ) {
|
|
Bit8u rate = reg60 & 0xf;
|
|
if ( rate ) {
|
|
Bit8u val = (rate << 2) + ksr;
|
|
decayAdd = chip->linearRates[ val ];
|
|
rateZero &= ~(1 << DECAY);
|
|
} else {
|
|
decayAdd = 0;
|
|
rateZero |= (1 << DECAY);
|
|
}
|
|
}
|
|
inline void Operator::UpdateRelease( const Chip* chip ) {
|
|
Bit8u rate = reg80 & 0xf;
|
|
if ( rate ) {
|
|
Bit8u val = (rate << 2) + ksr;
|
|
releaseAdd = chip->linearRates[ val ];
|
|
rateZero &= ~(1 << RELEASE);
|
|
if ( !(reg20 & MASK_SUSTAIN ) ) {
|
|
rateZero &= ~( 1 << SUSTAIN );
|
|
}
|
|
} else {
|
|
rateZero |= (1 << RELEASE);
|
|
releaseAdd = 0;
|
|
if ( !(reg20 & MASK_SUSTAIN ) ) {
|
|
rateZero |= ( 1 << SUSTAIN );
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void Operator::UpdateAttenuation( ) {
|
|
Bit8u kslBase = (Bit8u)((chanData >> SHIFT_KSLBASE) & 0xff);
|
|
Bit32u tl = reg40 & 0x3f;
|
|
Bit8u kslShift = KslShiftTable[ reg40 >> 6 ];
|
|
//Make sure the attenuation goes to the right bits
|
|
totalLevel = tl << ( ENV_BITS - 7 ); //Total level goes 2 bits below max
|
|
totalLevel += ( kslBase << ENV_EXTRA ) >> kslShift;
|
|
}
|
|
|
|
void Operator::UpdateFrequency( ) {
|
|
Bit32u freq = chanData & (( 1 << 10 ) - 1);
|
|
Bit32u block = (chanData >> 10) & 0xff;
|
|
#ifdef WAVE_PRECISION
|
|
block = 7 - block;
|
|
waveAdd = ( freq * freqMul ) >> block;
|
|
#else
|
|
waveAdd = ( freq << block ) * freqMul;
|
|
#endif
|
|
if ( reg20 & MASK_VIBRATO ) {
|
|
vibStrength = (Bit8u)(freq >> 7);
|
|
|
|
#ifdef WAVE_PRECISION
|
|
vibrato = ( vibStrength * freqMul ) >> block;
|
|
#else
|
|
vibrato = ( vibStrength << block ) * freqMul;
|
|
#endif
|
|
} else {
|
|
vibStrength = 0;
|
|
vibrato = 0;
|
|
}
|
|
}
|
|
|
|
void Operator::UpdateRates( const Chip* chip ) {
|
|
//Mame seems to reverse this where enabling ksr actually lowers
|
|
//the rate, but pdf manuals says otherwise?
|
|
Bit8u newKsr = (Bit8u)((chanData >> SHIFT_KEYCODE) & 0xff);
|
|
if ( !( reg20 & MASK_KSR ) ) {
|
|
newKsr >>= 2;
|
|
}
|
|
if ( ksr == newKsr )
|
|
return;
|
|
ksr = newKsr;
|
|
UpdateAttack( chip );
|
|
UpdateDecay( chip );
|
|
UpdateRelease( chip );
|
|
}
|
|
|
|
INLINE Bit32s Operator::RateForward( Bit32u add ) {
|
|
rateIndex += add;
|
|
Bit32s ret = rateIndex >> RATE_SH;
|
|
rateIndex = rateIndex & RATE_MASK;
|
|
return ret;
|
|
}
|
|
|
|
template< Operator::State yes>
|
|
Bits Operator::TemplateVolume( ) {
|
|
Bit32s vol = volume;
|
|
Bit32s change;
|
|
switch ( yes ) {
|
|
case OFF:
|
|
return ENV_MAX;
|
|
case ATTACK:
|
|
change = RateForward( attackAdd );
|
|
if ( !change )
|
|
return vol;
|
|
vol += ( (~vol) * change ) >> 3;
|
|
if ( vol < ENV_MIN ) {
|
|
volume = ENV_MIN;
|
|
rateIndex = 0;
|
|
SetState( DECAY );
|
|
return ENV_MIN;
|
|
}
|
|
break;
|
|
case DECAY:
|
|
vol += RateForward( decayAdd );
|
|
if ( GCC_UNLIKELY(vol >= sustainLevel) ) {
|
|
//Check if we didn't overshoot max attenuation, then just go off
|
|
if ( GCC_UNLIKELY(vol >= ENV_MAX) ) {
|
|
volume = ENV_MAX;
|
|
SetState( OFF );
|
|
return ENV_MAX;
|
|
}
|
|
//Continue as sustain
|
|
rateIndex = 0;
|
|
SetState( SUSTAIN );
|
|
}
|
|
break;
|
|
case SUSTAIN:
|
|
if ( reg20 & MASK_SUSTAIN ) {
|
|
return vol;
|
|
}
|
|
//In sustain phase, but not sustaining, do regular release
|
|
/* fall through */
|
|
case RELEASE:
|
|
vol += RateForward( releaseAdd );;
|
|
if ( GCC_UNLIKELY(vol >= ENV_MAX) ) {
|
|
volume = ENV_MAX;
|
|
SetState( OFF );
|
|
return ENV_MAX;
|
|
}
|
|
break;
|
|
}
|
|
volume = vol;
|
|
return vol;
|
|
}
|
|
|
|
static const VolumeHandler VolumeHandlerTable[5] = {
|
|
&Operator::TemplateVolume< Operator::OFF >,
|
|
&Operator::TemplateVolume< Operator::RELEASE >,
|
|
&Operator::TemplateVolume< Operator::SUSTAIN >,
|
|
&Operator::TemplateVolume< Operator::DECAY >,
|
|
&Operator::TemplateVolume< Operator::ATTACK >
|
|
};
|
|
|
|
INLINE Bitu Operator::ForwardVolume() {
|
|
return currentLevel + (this->*volHandler)();
|
|
}
|
|
|
|
|
|
INLINE Bitu Operator::ForwardWave() {
|
|
waveIndex += waveCurrent;
|
|
return waveIndex >> WAVE_SH;
|
|
}
|
|
|
|
void Operator::Write20( const Chip* chip, Bit8u val ) {
|
|
Bit8u change = (reg20 ^ val );
|
|
if ( !change )
|
|
return;
|
|
reg20 = val;
|
|
//Shift the tremolo bit over the entire register, saved a branch, YES!
|
|
tremoloMask = (Bit8s)(val) >> 7;
|
|
tremoloMask &= ~(( 1 << ENV_EXTRA ) -1);
|
|
//Update specific features based on changes
|
|
if ( change & MASK_KSR ) {
|
|
UpdateRates( chip );
|
|
}
|
|
//With sustain enable the volume doesn't change
|
|
if ( reg20 & MASK_SUSTAIN || ( !releaseAdd ) ) {
|
|
rateZero |= ( 1 << SUSTAIN );
|
|
} else {
|
|
rateZero &= ~( 1 << SUSTAIN );
|
|
}
|
|
//Frequency multiplier or vibrato changed
|
|
if ( change & (0xf | MASK_VIBRATO) ) {
|
|
freqMul = chip->freqMul[ val & 0xf ];
|
|
UpdateFrequency();
|
|
}
|
|
}
|
|
|
|
void Operator::Write40( const Chip* /*chip*/, Bit8u val ) {
|
|
if (!(reg40 ^ val ))
|
|
return;
|
|
reg40 = val;
|
|
UpdateAttenuation( );
|
|
}
|
|
|
|
void Operator::Write60( const Chip* chip, Bit8u val ) {
|
|
Bit8u change = reg60 ^ val;
|
|
reg60 = val;
|
|
if ( change & 0x0f ) {
|
|
UpdateDecay( chip );
|
|
}
|
|
if ( change & 0xf0 ) {
|
|
UpdateAttack( chip );
|
|
}
|
|
}
|
|
|
|
void Operator::Write80( const Chip* chip, Bit8u val ) {
|
|
Bit8u change = (reg80 ^ val );
|
|
if ( !change )
|
|
return;
|
|
reg80 = val;
|
|
Bit8u sustain = val >> 4;
|
|
//Turn 0xf into 0x1f
|
|
sustain |= ( sustain + 1) & 0x10;
|
|
sustainLevel = sustain << ( ENV_BITS - 5 );
|
|
if ( change & 0x0f ) {
|
|
UpdateRelease( chip );
|
|
}
|
|
}
|
|
|
|
void Operator::WriteE0( const Chip* chip, Bit8u val ) {
|
|
if ( !(regE0 ^ val) )
|
|
return;
|
|
//in opl3 mode you can always selet 7 waveforms regardless of waveformselect
|
|
Bit8u waveForm = val & ( ( 0x3 & chip->waveFormMask ) | (0x7 & chip->opl3Active ) );
|
|
regE0 = val;
|
|
#if ( DBOPL_WAVE == WAVE_HANDLER )
|
|
waveHandler = WaveHandlerTable[ waveForm ];
|
|
#else
|
|
waveBase = WaveTable + WaveBaseTable[ waveForm ];
|
|
waveStart = WaveStartTable[ waveForm ] << WAVE_SH;
|
|
waveMask = WaveMaskTable[ waveForm ];
|
|
#endif
|
|
}
|
|
|
|
INLINE void Operator::SetState( Bit8u s ) {
|
|
state = s;
|
|
volHandler = VolumeHandlerTable[ s ];
|
|
}
|
|
|
|
INLINE bool Operator::Silent() const {
|
|
if ( !ENV_SILENT( totalLevel + volume ) )
|
|
return false;
|
|
if ( !(rateZero & ( 1 << state ) ) )
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
INLINE void Operator::Prepare( const Chip* chip ) {
|
|
currentLevel = totalLevel + (chip->tremoloValue & tremoloMask);
|
|
waveCurrent = waveAdd;
|
|
if ( vibStrength >> chip->vibratoShift ) {
|
|
Bit32s add = vibrato >> chip->vibratoShift;
|
|
//Sign extend over the shift value
|
|
Bit32s neg = chip->vibratoSign;
|
|
//Negate the add with -1 or 0
|
|
add = ( add ^ neg ) - neg;
|
|
waveCurrent += add;
|
|
}
|
|
}
|
|
|
|
void Operator::KeyOn( Bit8u mask ) {
|
|
if ( !keyOn ) {
|
|
//Restart the frequency generator
|
|
#if ( DBOPL_WAVE > WAVE_HANDLER )
|
|
waveIndex = waveStart;
|
|
#else
|
|
waveIndex = 0;
|
|
#endif
|
|
rateIndex = 0;
|
|
SetState( ATTACK );
|
|
}
|
|
keyOn |= mask;
|
|
}
|
|
|
|
void Operator::KeyOff( Bit8u mask ) {
|
|
keyOn &= ~mask;
|
|
if ( !keyOn ) {
|
|
if ( state != OFF ) {
|
|
SetState( RELEASE );
|
|
}
|
|
}
|
|
}
|
|
|
|
INLINE Bits Operator::GetWave( Bitu index, Bitu vol ) {
|
|
#if ( DBOPL_WAVE == WAVE_HANDLER )
|
|
return waveHandler( index, vol << ( 3 - ENV_EXTRA ) );
|
|
#elif ( DBOPL_WAVE == WAVE_TABLEMUL )
|
|
return (waveBase[ index & waveMask ] * MulTable[ vol >> ENV_EXTRA ]) >> MUL_SH;
|
|
#elif ( DBOPL_WAVE == WAVE_TABLELOG )
|
|
Bit32s wave = waveBase[ index & waveMask ];
|
|
Bit32u total = ( wave & 0x7fff ) + vol << ( 3 - ENV_EXTRA );
|
|
Bit32s sig = ExpTable[ total & 0xff ];
|
|
Bit32u exp = total >> 8;
|
|
Bit32s neg = wave >> 16;
|
|
return ((sig ^ neg) - neg) >> exp;
|
|
#else
|
|
#error "No valid wave routine"
|
|
#endif
|
|
}
|
|
|
|
Bits INLINE Operator::GetSample( Bits modulation ) {
|
|
Bitu vol = ForwardVolume();
|
|
if ( ENV_SILENT( vol ) ) {
|
|
//Simply forward the wave
|
|
waveIndex += waveCurrent;
|
|
return 0;
|
|
} else {
|
|
Bitu index = ForwardWave();
|
|
index += modulation;
|
|
return GetWave( index, vol );
|
|
}
|
|
}
|
|
|
|
Operator::Operator() {
|
|
chanData = 0;
|
|
freqMul = 0;
|
|
waveIndex = 0;
|
|
waveAdd = 0;
|
|
waveCurrent = 0;
|
|
keyOn = 0;
|
|
ksr = 0;
|
|
reg20 = 0;
|
|
reg40 = 0;
|
|
reg60 = 0;
|
|
reg80 = 0;
|
|
regE0 = 0;
|
|
SetState( OFF );
|
|
rateZero = (1 << OFF);
|
|
sustainLevel = ENV_MAX;
|
|
currentLevel = ENV_MAX;
|
|
totalLevel = ENV_MAX;
|
|
volume = ENV_MAX;
|
|
releaseAdd = 0;
|
|
}
|
|
|
|
/*
|
|
Channel
|
|
*/
|
|
|
|
Channel::Channel() {
|
|
old[0] = old[1] = 0;
|
|
chanData = 0;
|
|
regB0 = 0;
|
|
regC0 = 0;
|
|
maskLeft = -1;
|
|
maskRight = -1;
|
|
feedback = 31;
|
|
fourMask = 0;
|
|
synthHandler = &Channel::BlockTemplate< sm2FM >;
|
|
}
|
|
|
|
void Channel::SetChanData( const Chip* chip, Bit32u data ) {
|
|
Bit32u change = chanData ^ data;
|
|
chanData = data;
|
|
Op( 0 )->chanData = data;
|
|
Op( 1 )->chanData = data;
|
|
//Since a frequency update triggered this, always update frequency
|
|
Op( 0 )->UpdateFrequency();
|
|
Op( 1 )->UpdateFrequency();
|
|
if ( change & ( 0xff << SHIFT_KSLBASE ) ) {
|
|
Op( 0 )->UpdateAttenuation();
|
|
Op( 1 )->UpdateAttenuation();
|
|
}
|
|
if ( change & ( 0xff << SHIFT_KEYCODE ) ) {
|
|
Op( 0 )->UpdateRates( chip );
|
|
Op( 1 )->UpdateRates( chip );
|
|
}
|
|
}
|
|
|
|
void Channel::UpdateFrequency( const Chip* chip, Bit8u fourOp ) {
|
|
//Extrace the frequency bits
|
|
Bit32u data = chanData & 0xffff;
|
|
Bit32u kslBase = KslTable[ data >> 6 ];
|
|
Bit32u keyCode = ( data & 0x1c00) >> 9;
|
|
if ( chip->reg08 & 0x40 ) {
|
|
keyCode |= ( data & 0x100)>>8; /* notesel == 1 */
|
|
} else {
|
|
keyCode |= ( data & 0x200)>>9; /* notesel == 0 */
|
|
}
|
|
//Add the keycode and ksl into the highest bits of chanData
|
|
data |= (keyCode << SHIFT_KEYCODE) | ( kslBase << SHIFT_KSLBASE );
|
|
( this + 0 )->SetChanData( chip, data );
|
|
if ( fourOp & 0x3f ) {
|
|
( this + 1 )->SetChanData( chip, data );
|
|
}
|
|
}
|
|
|
|
void Channel::WriteA0( const Chip* chip, Bit8u val ) {
|
|
Bit8u fourOp = chip->reg104 & chip->opl3Active & fourMask;
|
|
//Don't handle writes to silent fourop channels
|
|
if ( fourOp > 0x80 )
|
|
return;
|
|
Bit32u change = (chanData ^ val ) & 0xff;
|
|
if ( change ) {
|
|
chanData ^= change;
|
|
UpdateFrequency( chip, fourOp );
|
|
}
|
|
}
|
|
|
|
void Channel::WriteB0( const Chip* chip, Bit8u val ) {
|
|
Bit8u fourOp = chip->reg104 & chip->opl3Active & fourMask;
|
|
//Don't handle writes to silent fourop channels
|
|
if ( fourOp > 0x80 )
|
|
return;
|
|
Bitu change = (chanData ^ ( val << 8 ) ) & 0x1f00;
|
|
if ( change ) {
|
|
chanData ^= change;
|
|
UpdateFrequency( chip, fourOp );
|
|
}
|
|
//Check for a change in the keyon/off state
|
|
if ( !(( val ^ regB0) & 0x20))
|
|
return;
|
|
regB0 = val;
|
|
if ( val & 0x20 ) {
|
|
Op(0)->KeyOn( 0x1 );
|
|
Op(1)->KeyOn( 0x1 );
|
|
if ( fourOp & 0x3f ) {
|
|
( this + 1 )->Op(0)->KeyOn( 1 );
|
|
( this + 1 )->Op(1)->KeyOn( 1 );
|
|
}
|
|
} else {
|
|
Op(0)->KeyOff( 0x1 );
|
|
Op(1)->KeyOff( 0x1 );
|
|
if ( fourOp & 0x3f ) {
|
|
( this + 1 )->Op(0)->KeyOff( 1 );
|
|
( this + 1 )->Op(1)->KeyOff( 1 );
|
|
}
|
|
}
|
|
}
|
|
|
|
void Channel::WriteC0(const Chip* chip, Bit8u val) {
|
|
Bit8u change = val ^ regC0;
|
|
if (!change)
|
|
return;
|
|
regC0 = val;
|
|
feedback = (regC0 >> 1) & 7;
|
|
if (feedback) {
|
|
//We shift the input to the right 10 bit wave index value
|
|
feedback = 9 - feedback;
|
|
}
|
|
else {
|
|
feedback = 31;
|
|
}
|
|
UpdateSynth(chip);
|
|
}
|
|
|
|
void Channel::WritePan(Bit8u val) {
|
|
panLeft = PanLawTable[val & 0x7F];
|
|
panRight = PanLawTable[0x7F - (val & 0x7F)];
|
|
}
|
|
|
|
void Channel::UpdateSynth( const Chip* chip ) {
|
|
//Select the new synth mode
|
|
if ( chip->opl3Active ) {
|
|
//4-op mode enabled for this channel
|
|
if ( (chip->reg104 & fourMask) & 0x3f ) {
|
|
Channel* chan0, *chan1;
|
|
//Check if it's the 2nd channel in a 4-op
|
|
if ( !(fourMask & 0x80 ) ) {
|
|
chan0 = this;
|
|
chan1 = this + 1;
|
|
} else {
|
|
chan0 = this - 1;
|
|
chan1 = this;
|
|
}
|
|
|
|
Bit8u synth = ( (chan0->regC0 & 1) << 0 )| (( chan1->regC0 & 1) << 1 );
|
|
switch ( synth ) {
|
|
case 0:
|
|
chan0->synthHandler = &Channel::BlockTemplate< sm3FMFM >;
|
|
break;
|
|
case 1:
|
|
chan0->synthHandler = &Channel::BlockTemplate< sm3AMFM >;
|
|
break;
|
|
case 2:
|
|
chan0->synthHandler = &Channel::BlockTemplate< sm3FMAM >;
|
|
break;
|
|
case 3:
|
|
chan0->synthHandler = &Channel::BlockTemplate< sm3AMAM >;
|
|
break;
|
|
}
|
|
//Disable updating percussion channels
|
|
} else if ((fourMask & 0x40) && ( chip->regBD & 0x20) ) {
|
|
|
|
//Regular dual op, am or fm
|
|
} else if (regC0 & 1 ) {
|
|
synthHandler = &Channel::BlockTemplate< sm3AM >;
|
|
} else {
|
|
synthHandler = &Channel::BlockTemplate< sm3FM >;
|
|
}
|
|
maskLeft = (regC0 & 0x10 ) ? -1 : 0;
|
|
maskRight = (regC0 & 0x20 ) ? -1 : 0;
|
|
//opl2 active
|
|
} else {
|
|
//Disable updating percussion channels
|
|
if ( (fourMask & 0x40) && ( chip->regBD & 0x20 ) ) {
|
|
|
|
//Regular dual op, am or fm
|
|
} else if (regC0 & 1 ) {
|
|
synthHandler = &Channel::BlockTemplate< sm2AM >;
|
|
} else {
|
|
synthHandler = &Channel::BlockTemplate< sm2FM >;
|
|
}
|
|
}
|
|
}
|
|
|
|
template< bool opl3Mode>
|
|
INLINE void Channel::GeneratePercussion( Chip* chip, Bit32s* output ) {
|
|
Channel* chan = this;
|
|
|
|
//BassDrum
|
|
Bit32s mod = (Bit32u)((old[0] + old[1])) >> feedback;
|
|
old[0] = old[1];
|
|
old[1] = static_cast<Bit32u>(Op(0)->GetSample( mod ));
|
|
|
|
//When bassdrum is in AM mode first operator is ignoed
|
|
if ( chan->regC0 & 1 ) {
|
|
mod = 0;
|
|
} else {
|
|
mod = old[0];
|
|
}
|
|
Bit32s sample = static_cast<Bit32u>(Op(1)->GetSample( mod ));
|
|
|
|
|
|
//Precalculate stuff used by other outputs
|
|
Bit32u noiseBit = chip->ForwardNoise() & 0x1;
|
|
Bit32u c2 = static_cast<Bit32u>(Op(2)->ForwardWave());
|
|
Bit32u c5 = static_cast<Bit32u>(Op(5)->ForwardWave());
|
|
Bit32u phaseBit = (((c2 & 0x88) ^ ((c2<<5) & 0x80)) | ((c5 ^ (c5<<2)) & 0x20)) ? 0x02 : 0x00;
|
|
|
|
//Hi-Hat
|
|
Bit32u hhVol = static_cast<Bit32u>(Op(2)->ForwardVolume());
|
|
if ( !ENV_SILENT( hhVol ) ) {
|
|
Bit32u hhIndex = (phaseBit<<8) | (0x34 << ( phaseBit ^ (noiseBit << 1 )));
|
|
sample += static_cast<Bit32u>(Op(2)->GetWave( hhIndex, hhVol ));
|
|
}
|
|
//Snare Drum
|
|
Bit32u sdVol = static_cast<Bit32u>(Op(3)->ForwardVolume());
|
|
if ( !ENV_SILENT( sdVol ) ) {
|
|
Bit32u sdIndex = ( 0x100 + (c2 & 0x100) ) ^ ( noiseBit << 8 );
|
|
sample += static_cast<Bit32u>(Op(3)->GetWave( sdIndex, sdVol ));
|
|
}
|
|
//Tom-tom
|
|
sample += static_cast<Bit32u>(Op(4)->GetSample( 0 ));
|
|
|
|
//Top-Cymbal
|
|
Bit32u tcVol = static_cast<Bit32u>(Op(5)->ForwardVolume());
|
|
if ( !ENV_SILENT( tcVol ) ) {
|
|
Bit32u tcIndex = (1 + phaseBit) << 8;
|
|
sample += static_cast<Bit32u>(Op(5)->GetWave( tcIndex, tcVol ));
|
|
}
|
|
sample <<= 1;
|
|
if ( opl3Mode ) {
|
|
output[0] += sample;
|
|
output[1] += sample;
|
|
} else {
|
|
output[0] += sample;
|
|
}
|
|
}
|
|
|
|
template<SynthMode mode>
|
|
Channel* Channel::BlockTemplate( Chip* chip, Bit32u samples, Bit32s* output ) {
|
|
switch( mode ) {
|
|
case sm2AM:
|
|
case sm3AM:
|
|
if ( Op(0)->Silent() && Op(1)->Silent() ) {
|
|
old[0] = old[1] = 0;
|
|
return (this + 1);
|
|
}
|
|
break;
|
|
case sm2FM:
|
|
case sm3FM:
|
|
if ( Op(1)->Silent() ) {
|
|
old[0] = old[1] = 0;
|
|
return (this + 1);
|
|
}
|
|
break;
|
|
case sm3FMFM:
|
|
if ( Op(3)->Silent() ) {
|
|
old[0] = old[1] = 0;
|
|
return (this + 2);
|
|
}
|
|
break;
|
|
case sm3AMFM:
|
|
if ( Op(0)->Silent() && Op(3)->Silent() ) {
|
|
old[0] = old[1] = 0;
|
|
return (this + 2);
|
|
}
|
|
break;
|
|
case sm3FMAM:
|
|
if ( Op(1)->Silent() && Op(3)->Silent() ) {
|
|
old[0] = old[1] = 0;
|
|
return (this + 2);
|
|
}
|
|
break;
|
|
case sm3AMAM:
|
|
if ( Op(0)->Silent() && Op(2)->Silent() && Op(3)->Silent() ) {
|
|
old[0] = old[1] = 0;
|
|
return (this + 2);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
//Init the operators with the the current vibrato and tremolo values
|
|
Op( 0 )->Prepare( chip );
|
|
Op( 1 )->Prepare( chip );
|
|
if ( mode > sm4Start ) {
|
|
Op( 2 )->Prepare( chip );
|
|
Op( 3 )->Prepare( chip );
|
|
}
|
|
if ( mode > sm6Start ) {
|
|
Op( 4 )->Prepare( chip );
|
|
Op( 5 )->Prepare( chip );
|
|
}
|
|
for ( Bitu i = 0; i < samples; i++ ) {
|
|
//Early out for percussion handlers
|
|
if ( mode == sm2Percussion ) {
|
|
GeneratePercussion<false>( chip, output + i );
|
|
continue; //Prevent some unitialized value bitching
|
|
} else if ( mode == sm3Percussion ) {
|
|
GeneratePercussion<true>( chip, output + i * 2 );
|
|
continue; //Prevent some unitialized value bitching
|
|
}
|
|
|
|
//Do unsigned shift so we can shift out all bits but still stay in 10 bit range otherwise
|
|
Bit32s mod = (Bit32u)((old[0] + old[1])) >> feedback;
|
|
old[0] = old[1];
|
|
old[1] = static_cast<Bit32u>(Op(0)->GetSample( mod ));
|
|
Bit32s sample;
|
|
Bit32s out0 = old[0];
|
|
if ( mode == sm2AM || mode == sm3AM ) {
|
|
sample = static_cast<Bit32u>(out0 + Op(1)->GetSample( 0 ));
|
|
} else if ( mode == sm2FM || mode == sm3FM ) {
|
|
sample = static_cast<Bit32u>(Op(1)->GetSample( out0 ));
|
|
} else if ( mode == sm3FMFM ) {
|
|
Bits next = Op(1)->GetSample( out0 );
|
|
next = Op(2)->GetSample( next );
|
|
sample = static_cast<Bit32u>(Op(3)->GetSample( next ));
|
|
} else if ( mode == sm3AMFM ) {
|
|
sample = out0;
|
|
Bits next = Op(1)->GetSample( 0 );
|
|
next = Op(2)->GetSample( next );
|
|
sample += static_cast<Bit32u>(Op(3)->GetSample( next ));
|
|
} else if ( mode == sm3FMAM ) {
|
|
sample = static_cast<Bit32u>(Op(1)->GetSample( out0 ));
|
|
Bits next = Op(2)->GetSample( 0 );
|
|
sample += static_cast<Bit32u>(Op(3)->GetSample( next ));
|
|
} else if ( mode == sm3AMAM ) {
|
|
sample = out0;
|
|
Bits next = Op(1)->GetSample( 0 );
|
|
sample += static_cast<Bit32u>(Op(2)->GetSample( next ));
|
|
sample += static_cast<Bit32u>(Op(3)->GetSample( 0 ));
|
|
}
|
|
switch( mode ) {
|
|
case sm2AM:
|
|
case sm2FM:
|
|
output[ i ] += sample;
|
|
break;
|
|
case sm3AM:
|
|
case sm3FM:
|
|
case sm3FMFM:
|
|
case sm3AMFM:
|
|
case sm3FMAM:
|
|
case sm3AMAM:
|
|
output[ i * 2 + 0 ] += (sample * panLeft / 65535) & maskLeft;
|
|
output[ i * 2 + 1 ] += (sample * panRight / 65535) & maskRight;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
switch( mode ) {
|
|
case sm2AM:
|
|
case sm2FM:
|
|
case sm3AM:
|
|
case sm3FM:
|
|
return ( this + 1 );
|
|
case sm3FMFM:
|
|
case sm3AMFM:
|
|
case sm3FMAM:
|
|
case sm3AMAM:
|
|
return( this + 2 );
|
|
case sm2Percussion:
|
|
case sm3Percussion:
|
|
return( this + 3 );
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
Chip
|
|
*/
|
|
|
|
Chip::Chip() {
|
|
reg08 = 0;
|
|
reg04 = 0;
|
|
regBD = 0;
|
|
reg104 = 0;
|
|
opl3Active = 0;
|
|
}
|
|
|
|
INLINE Bit32u Chip::ForwardNoise() {
|
|
noiseCounter += noiseAdd;
|
|
Bitu count = noiseCounter >> LFO_SH;
|
|
noiseCounter &= WAVE_MASK;
|
|
for ( ; count > 0; --count ) {
|
|
//Noise calculation from mame
|
|
noiseValue ^= ( 0x800302 ) & ( 0 - (noiseValue & 1 ) );
|
|
noiseValue >>= 1;
|
|
}
|
|
return noiseValue;
|
|
}
|
|
|
|
INLINE Bit32u Chip::ForwardLFO( Bit32u samples ) {
|
|
//Current vibrato value, runs 4x slower than tremolo
|
|
vibratoSign = ( VibratoTable[ vibratoIndex >> 2] ) >> 7;
|
|
vibratoShift = ( VibratoTable[ vibratoIndex >> 2] & 7) + vibratoStrength;
|
|
tremoloValue = TremoloTable[ tremoloIndex ] >> tremoloStrength;
|
|
|
|
//Check hom many samples there can be done before the value changes
|
|
Bit32u todo = LFO_MAX - lfoCounter;
|
|
Bit32u count = (todo + lfoAdd - 1) / lfoAdd;
|
|
if ( count > samples ) {
|
|
count = samples;
|
|
lfoCounter += count * lfoAdd;
|
|
} else {
|
|
lfoCounter += count * lfoAdd;
|
|
lfoCounter &= (LFO_MAX - 1);
|
|
//Maximum of 7 vibrato value * 4
|
|
vibratoIndex = ( vibratoIndex + 1 ) & 31;
|
|
//Clip tremolo to the the table size
|
|
if ( tremoloIndex + 1 < TREMOLO_TABLE )
|
|
++tremoloIndex;
|
|
else
|
|
tremoloIndex = 0;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
|
|
void Chip::WriteBD( Bit8u val ) {
|
|
Bit8u change = regBD ^ val;
|
|
if ( !change )
|
|
return;
|
|
regBD = val;
|
|
//TODO could do this with shift and xor?
|
|
vibratoStrength = (val & 0x40) ? 0x00 : 0x01;
|
|
tremoloStrength = (val & 0x80) ? 0x00 : 0x02;
|
|
if ( val & 0x20 ) {
|
|
//Drum was just enabled, make sure channel 6 has the right synth
|
|
if ( change & 0x20 ) {
|
|
if ( opl3Active ) {
|
|
chan[6].synthHandler = &Channel::BlockTemplate< sm3Percussion >;
|
|
} else {
|
|
chan[6].synthHandler = &Channel::BlockTemplate< sm2Percussion >;
|
|
}
|
|
}
|
|
//Bass Drum
|
|
if ( val & 0x10 ) {
|
|
chan[6].op[0].KeyOn( 0x2 );
|
|
chan[6].op[1].KeyOn( 0x2 );
|
|
} else {
|
|
chan[6].op[0].KeyOff( 0x2 );
|
|
chan[6].op[1].KeyOff( 0x2 );
|
|
}
|
|
//Hi-Hat
|
|
if ( val & 0x1 ) {
|
|
chan[7].op[0].KeyOn( 0x2 );
|
|
} else {
|
|
chan[7].op[0].KeyOff( 0x2 );
|
|
}
|
|
//Snare
|
|
if ( val & 0x8 ) {
|
|
chan[7].op[1].KeyOn( 0x2 );
|
|
} else {
|
|
chan[7].op[1].KeyOff( 0x2 );
|
|
}
|
|
//Tom-Tom
|
|
if ( val & 0x4 ) {
|
|
chan[8].op[0].KeyOn( 0x2 );
|
|
} else {
|
|
chan[8].op[0].KeyOff( 0x2 );
|
|
}
|
|
//Top Cymbal
|
|
if ( val & 0x2 ) {
|
|
chan[8].op[1].KeyOn( 0x2 );
|
|
} else {
|
|
chan[8].op[1].KeyOff( 0x2 );
|
|
}
|
|
//Toggle keyoffs when we turn off the percussion
|
|
} else if ( change & 0x20 ) {
|
|
//Trigger a reset to setup the original synth handler
|
|
//This makes it call
|
|
chan[6].UpdateSynth( this );
|
|
chan[6].op[0].KeyOff( 0x2 );
|
|
chan[6].op[1].KeyOff( 0x2 );
|
|
chan[7].op[0].KeyOff( 0x2 );
|
|
chan[7].op[1].KeyOff( 0x2 );
|
|
chan[8].op[0].KeyOff( 0x2 );
|
|
chan[8].op[1].KeyOff( 0x2 );
|
|
}
|
|
}
|
|
|
|
|
|
#define REGOP( _FUNC_ ) \
|
|
index = ( ( reg >> 3) & 0x20 ) | ( reg & 0x1f ); \
|
|
if ( OpOffsetTable[ index ] ) { \
|
|
Operator* regOp = (Operator*)( ((char *)this ) + OpOffsetTable[ index ] ); \
|
|
regOp->_FUNC_( this, val ); \
|
|
}
|
|
|
|
#define REGCHAN( _FUNC_ ) \
|
|
index = ( ( reg >> 4) & 0x10 ) | ( reg & 0xf ); \
|
|
if ( ChanOffsetTable[ index ] ) { \
|
|
Channel* regChan = (Channel*)( ((char *)this ) + ChanOffsetTable[ index ] ); \
|
|
regChan->_FUNC_( this, val ); \
|
|
}
|
|
|
|
//Update the 0xc0 register for all channels to signal the switch to mono/stereo handlers
|
|
void Chip::UpdateSynths() {
|
|
for (int i = 0; i < 18; i++) {
|
|
chan[i].UpdateSynth(this);
|
|
}
|
|
}
|
|
|
|
|
|
void Chip::WriteReg( Bit32u reg, Bit8u val ) {
|
|
Bitu index;
|
|
switch ( (reg & 0xf0) >> 4 ) {
|
|
case 0x00 >> 4:
|
|
if ( reg == 0x01 ) {
|
|
waveFormMask = ( val & 0x20 ) ? 0x7 : 0x0;
|
|
} else if ( reg == 0x104 ) {
|
|
//Only detect changes in lowest 6 bits
|
|
if ( !((reg104 ^ val) & 0x3f) )
|
|
return;
|
|
//Always keep the highest bit enabled, for checking > 0x80
|
|
reg104 = 0x80 | ( val & 0x3f );
|
|
//Switch synths when changing the 4op combinations
|
|
UpdateSynths();
|
|
} else if ( reg == 0x105 ) {
|
|
//MAME says the real opl3 doesn't reset anything on opl3 disable/enable till the next write in another register
|
|
if ( !((opl3Active ^ val) & 1 ) )
|
|
return;
|
|
opl3Active = ( val & 1 ) ? 0xff : 0;
|
|
//Just tupdate the synths now that opl3 most have been enabled
|
|
//This isn't how the real card handles it but need to switch to stereo generating handlers
|
|
UpdateSynths();
|
|
} else if ( reg == 0x08 ) {
|
|
reg08 = val;
|
|
}
|
|
case 0x10 >> 4:
|
|
break;
|
|
case 0x20 >> 4:
|
|
case 0x30 >> 4:
|
|
REGOP( Write20 );
|
|
break;
|
|
case 0x40 >> 4:
|
|
case 0x50 >> 4:
|
|
REGOP( Write40 );
|
|
break;
|
|
case 0x60 >> 4:
|
|
case 0x70 >> 4:
|
|
REGOP( Write60 );
|
|
break;
|
|
case 0x80 >> 4:
|
|
case 0x90 >> 4:
|
|
REGOP( Write80 );
|
|
break;
|
|
case 0xa0 >> 4:
|
|
REGCHAN( WriteA0 );
|
|
break;
|
|
case 0xb0 >> 4:
|
|
if ( reg == 0xbd ) {
|
|
WriteBD( val );
|
|
} else {
|
|
REGCHAN( WriteB0 );
|
|
}
|
|
break;
|
|
case 0xc0 >> 4:
|
|
REGCHAN( WriteC0 );
|
|
case 0xd0 >> 4:
|
|
break;
|
|
case 0xe0 >> 4:
|
|
case 0xf0 >> 4:
|
|
REGOP( WriteE0 );
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
Bit32u Chip::WriteAddr( Bit32u port, Bit8u val ) {
|
|
switch ( port & 3 ) {
|
|
case 0:
|
|
return val;
|
|
case 2:
|
|
if ( opl3Active || (val == 0x05) )
|
|
return 0x100 | val;
|
|
else
|
|
return val;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void Chip::GenerateBlock2( Bitu total, Bit32s* output ) {
|
|
while ( total > 0 ) {
|
|
Bit32u samples = ForwardLFO( static_cast<Bit32u>(total) );
|
|
memset(output, 0, sizeof(Bit32s) * samples);
|
|
// int count = 0;
|
|
for( Channel* ch = chan; ch < chan + 9; ) {
|
|
// count++;
|
|
ch = (ch->*(ch->synthHandler))( this, samples, output );
|
|
}
|
|
total -= samples;
|
|
output += samples;
|
|
}
|
|
}
|
|
|
|
void Chip::GenerateBlock2_Mix( Bitu total, Bit32s* output ) {
|
|
while ( total > 0 ) {
|
|
Bit32u samples = ForwardLFO( static_cast<Bit32u>(total) );
|
|
// int count = 0;
|
|
for( Channel* ch = chan; ch < chan + 9; ) {
|
|
// count++;
|
|
ch = (ch->*(ch->synthHandler))( this, samples, output );
|
|
}
|
|
total -= samples;
|
|
output += samples;
|
|
}
|
|
}
|
|
|
|
void Chip::GenerateBlock3( Bitu total, Bit32s* output ) {
|
|
while ( total > 0 ) {
|
|
Bit32u samples = ForwardLFO( static_cast<Bit32u>(total) );
|
|
memset(output, 0, sizeof(Bit32s) * samples *2);
|
|
// int count = 0;
|
|
for( Channel* ch = chan; ch < chan + 18; ) {
|
|
// count++;
|
|
ch = (ch->*(ch->synthHandler))( this, samples, output );
|
|
}
|
|
total -= samples;
|
|
output += samples * 2;
|
|
}
|
|
}
|
|
|
|
void Chip::GenerateBlock3_Mix( Bitu total, Bit32s* output ) {
|
|
while ( total > 0 ) {
|
|
Bit32u samples = ForwardLFO( static_cast<Bit32u>(total) );
|
|
// int count = 0;
|
|
for( Channel* ch = chan; ch < chan + 18; ) {
|
|
// count++;
|
|
ch = (ch->*(ch->synthHandler))( this, samples, output );
|
|
}
|
|
total -= samples;
|
|
output += samples * 2;
|
|
}
|
|
}
|
|
|
|
struct CacheEntry {
|
|
Bit32u rate;
|
|
Bit32u freqMul[16];
|
|
Bit32u linearRates[76];
|
|
Bit32u attackRates[76];
|
|
};
|
|
struct Cache {
|
|
Cache() {}
|
|
~Cache();
|
|
Mutex mutex;
|
|
std::vector<CacheEntry *> entries;
|
|
private:
|
|
Cache(const Cache &);
|
|
Cache &operator=(const Cache &);
|
|
};
|
|
|
|
static Cache cache;
|
|
|
|
Cache::~Cache()
|
|
{
|
|
for ( size_t i = 0, n = entries.size(); i < n; ++i )
|
|
delete entries[i];
|
|
}
|
|
|
|
static const CacheEntry *CacheLookupRateDependent( Bit32u rate )
|
|
{
|
|
for ( size_t i = 0, n = cache.entries.size(); i < n; ++i ) {
|
|
const CacheEntry *entry = cache.entries[i];
|
|
if (entry->rate == rate)
|
|
return entry;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static const CacheEntry &ComputeRateDependent( Bit32u rate )
|
|
{
|
|
{
|
|
MutexHolder lock( cache.mutex );
|
|
if (const CacheEntry *entry = CacheLookupRateDependent( rate ))
|
|
return *entry;
|
|
}
|
|
|
|
double original = OPLRATE;
|
|
double scale = original / (double)rate;
|
|
|
|
My_UPtr<CacheEntry> entry(new CacheEntry);
|
|
entry->rate = rate;
|
|
Bit32u *freqMul = entry->freqMul;
|
|
Bit32u *linearRates = entry->linearRates;
|
|
Bit32u *attackRates = entry->attackRates;
|
|
|
|
//With higher octave this gets shifted up
|
|
//-1 since the freqCreateTable = *2
|
|
#ifdef WAVE_PRECISION
|
|
double freqScale = ( 1 << 7 ) * scale * ( 1 << ( WAVE_SH - 1 - 10));
|
|
for ( int i = 0; i < 16; i++ ) {
|
|
freqMul[i] = (Bit32u)( 0.5 + freqScale * FreqCreateTable[ i ] );
|
|
}
|
|
#else
|
|
Bit32u freqScale = (Bit32u)( 0.5 + scale * ( 1 << ( WAVE_SH - 1 - 10)));
|
|
for ( int i = 0; i < 16; i++ ) {
|
|
freqMul[i] = freqScale * FreqCreateTable[ i ];
|
|
}
|
|
#endif
|
|
|
|
//-3 since the real envelope takes 8 steps to reach the single value we supply
|
|
for ( Bit8u i = 0; i < 76; i++ ) {
|
|
Bit8u index, shift;
|
|
EnvelopeSelect( i, index, shift );
|
|
linearRates[i] = (Bit32u)( scale * (EnvelopeIncreaseTable[ index ] << ( RATE_SH + ENV_EXTRA - shift - 3 )));
|
|
}
|
|
|
|
// Bit32s attackDiffs[62];
|
|
//Generate the best matching attack rate
|
|
for ( Bit8u i = 0; i < 62; i++ ) {
|
|
Bit8u index, shift;
|
|
EnvelopeSelect( i, index, shift );
|
|
//Original amount of samples the attack would take
|
|
Bit32s original = (Bit32u)( (AttackSamplesTable[ index ] << shift) / scale);
|
|
|
|
Bit32s guessAdd = (Bit32u)( scale * (EnvelopeIncreaseTable[ index ] << ( RATE_SH - shift - 3 )));
|
|
Bit32s bestAdd = guessAdd;
|
|
Bit32u bestDiff = 1 << 30;
|
|
for( Bit32u passes = 0; passes < 16; passes ++ ) {
|
|
Bit32s volume = ENV_MAX;
|
|
Bit32s samples = 0;
|
|
Bit32u count = 0;
|
|
while ( volume > 0 && samples < original * 2 ) {
|
|
count += guessAdd;
|
|
Bit32s change = count >> RATE_SH;
|
|
count &= RATE_MASK;
|
|
if ( GCC_UNLIKELY(change) ) { // less than 1 %
|
|
volume += ( ~volume * change ) >> 3;
|
|
}
|
|
samples++;
|
|
|
|
}
|
|
Bit32s diff = original - samples;
|
|
Bit32u lDiff = labs( diff );
|
|
//Init last on first pass
|
|
if ( lDiff < bestDiff ) {
|
|
bestDiff = lDiff;
|
|
bestAdd = guessAdd;
|
|
//We hit an exactly matching sample count
|
|
if ( !bestDiff )
|
|
break;
|
|
}
|
|
//Linear correction factor, not exactly perfect but seems to work
|
|
double correct = (original - diff) / (double)original;
|
|
guessAdd = (Bit32u)(guessAdd * correct);
|
|
//Below our target
|
|
if ( diff < 0 ) {
|
|
//Always add one here for rounding, an overshoot will get corrected by another pass decreasing
|
|
guessAdd++;
|
|
}
|
|
}
|
|
attackRates[i] = bestAdd;
|
|
//Keep track of the diffs for some debugging
|
|
// attackDiffs[i] = bestDiff;
|
|
}
|
|
for ( Bit8u i = 62; i < 76; i++ ) {
|
|
//This should provide instant volume maximizing
|
|
attackRates[i] = 8 << RATE_SH;
|
|
}
|
|
|
|
MutexHolder lock( cache.mutex );
|
|
if (const CacheEntry *e = CacheLookupRateDependent( rate ))
|
|
return *e;
|
|
|
|
cache.entries.push_back(entry.get());
|
|
return *entry.release();
|
|
}
|
|
|
|
void Chip::Setup( Bit32u rate ) {
|
|
double original = OPLRATE;
|
|
// double original = rate;
|
|
double scale = original / (double)rate;
|
|
|
|
//Noise counter is run at the same precision as general waves
|
|
noiseAdd = (Bit32u)( 0.5 + scale * ( 1 << LFO_SH ) );
|
|
noiseCounter = 0;
|
|
noiseValue = 1; //Make sure it triggers the noise xor the first time
|
|
//The low frequency oscillation counter
|
|
//Every time his overflows vibrato and tremoloindex are increased
|
|
lfoAdd = (Bit32u)( 0.5 + scale * ( 1 << LFO_SH ) );
|
|
lfoCounter = 0;
|
|
vibratoIndex = 0;
|
|
tremoloIndex = 0;
|
|
|
|
const CacheEntry &entry = ComputeRateDependent( rate );
|
|
freqMul = entry.freqMul;
|
|
linearRates = entry.linearRates;
|
|
attackRates = entry.attackRates;
|
|
|
|
//Setup the channels with the correct four op flags
|
|
//Channels are accessed through a table so they appear linear here
|
|
chan[ 0].fourMask = 0x00 | ( 1 << 0 );
|
|
chan[ 1].fourMask = 0x80 | ( 1 << 0 );
|
|
chan[ 2].fourMask = 0x00 | ( 1 << 1 );
|
|
chan[ 3].fourMask = 0x80 | ( 1 << 1 );
|
|
chan[ 4].fourMask = 0x00 | ( 1 << 2 );
|
|
chan[ 5].fourMask = 0x80 | ( 1 << 2 );
|
|
|
|
chan[ 9].fourMask = 0x00 | ( 1 << 3 );
|
|
chan[10].fourMask = 0x80 | ( 1 << 3 );
|
|
chan[11].fourMask = 0x00 | ( 1 << 4 );
|
|
chan[12].fourMask = 0x80 | ( 1 << 4 );
|
|
chan[13].fourMask = 0x00 | ( 1 << 5 );
|
|
chan[14].fourMask = 0x80 | ( 1 << 5 );
|
|
|
|
//mark the percussion channels
|
|
chan[ 6].fourMask = 0x40;
|
|
chan[ 7].fourMask = 0x40;
|
|
chan[ 8].fourMask = 0x40;
|
|
|
|
//Clear Everything in opl3 mode
|
|
WriteReg( 0x105, 0x1 );
|
|
for ( int i = 0; i < 512; i++ ) {
|
|
if ( i == 0x105 )
|
|
continue;
|
|
WriteReg( i, 0xff );
|
|
WriteReg( i, 0x0 );
|
|
}
|
|
WriteReg( 0x105, 0x0 );
|
|
//Clear everything in opl2 mode
|
|
for ( int i = 0; i < 255; i++ ) {
|
|
WriteReg( i, 0xff );
|
|
WriteReg( i, 0x0 );
|
|
}
|
|
|
|
for ( int i = 0; i < 18; i++ ) {
|
|
chan[i].WritePan( 0x40 );
|
|
}
|
|
}
|
|
|
|
static volatile bool doneTables = false;
|
|
static Mutex mutexTables;
|
|
|
|
void InitTables( void ) {
|
|
if ( doneTables )
|
|
return;
|
|
MutexHolder lock( mutexTables );
|
|
if ( doneTables )
|
|
return;
|
|
#if ( DBOPL_WAVE == WAVE_HANDLER ) || ( DBOPL_WAVE == WAVE_TABLELOG )
|
|
//Exponential volume table, same as the real adlib
|
|
for ( int i = 0; i < 256; i++ ) {
|
|
//Save them in reverse
|
|
ExpTable[i] = (int)( 0.5 + ( pow(2.0, ( 255 - i) * ( 1.0 /256 ) )-1) * 1024 );
|
|
ExpTable[i] += 1024; //or remove the -1 oh well :)
|
|
//Preshift to the left once so the final volume can shift to the right
|
|
ExpTable[i] *= 2;
|
|
}
|
|
#endif
|
|
#if ( DBOPL_WAVE == WAVE_HANDLER )
|
|
//Add 0.5 for the trunc rounding of the integer cast
|
|
//Do a PI sinetable instead of the original 0.5 PI
|
|
for ( int i = 0; i < 512; i++ ) {
|
|
SinTable[i] = (Bit16s)( 0.5 - log10( sin( (i + 0.5) * (PI / 512.0) ) ) / log10(2.0)*256 );
|
|
}
|
|
#endif
|
|
#if ( DBOPL_WAVE == WAVE_TABLEMUL )
|
|
//Multiplication based tables
|
|
for ( int i = 0; i < 384; i++ ) {
|
|
int s = i * 8;
|
|
//TODO maybe keep some of the precision errors of the original table?
|
|
double val = ( 0.5 + ( pow(2.0, -1.0 + ( 255 - s) * ( 1.0 /256 ) )) * ( 1 << MUL_SH ));
|
|
MulTable[i] = (Bit16u)(val);
|
|
}
|
|
|
|
//Sine Wave Base
|
|
for ( int i = 0; i < 512; i++ ) {
|
|
WaveTable[ 0x0200 + i ] = (Bit16s)(sin( (i + 0.5) * (PI / 512.0) ) * 4084);
|
|
WaveTable[ 0x0000 + i ] = -WaveTable[ 0x200 + i ];
|
|
}
|
|
//Exponential wave
|
|
for ( int i = 0; i < 256; i++ ) {
|
|
WaveTable[ 0x700 + i ] = (Bit16s)( 0.5 + ( pow(2.0, -1.0 + ( 255 - i * 8) * ( 1.0 /256 ) ) ) * 4085 );
|
|
WaveTable[ 0x6ff - i ] = -WaveTable[ 0x700 + i ];
|
|
}
|
|
#endif
|
|
#if ( DBOPL_WAVE == WAVE_TABLELOG )
|
|
//Sine Wave Base
|
|
for ( int i = 0; i < 512; i++ ) {
|
|
WaveTable[ 0x0200 + i ] = (Bit16s)( 0.5 - log10( sin( (i + 0.5) * (PI / 512.0) ) ) / log10(2.0)*256 );
|
|
WaveTable[ 0x0000 + i ] = ((Bit16s)0x8000) | WaveTable[ 0x200 + i];
|
|
}
|
|
//Exponential wave
|
|
for ( int i = 0; i < 256; i++ ) {
|
|
WaveTable[ 0x700 + i ] = i * 8;
|
|
WaveTable[ 0x6ff - i ] = ((Bit16s)0x8000) | i * 8;
|
|
}
|
|
#endif
|
|
|
|
// | |//\\|____|WAV7|//__|/\ |____|/\/\|
|
|
// |\\//| | |WAV7| | \/| | |
|
|
// |06 |0126|27 |7 |3 |4 |4 5 |5 |
|
|
|
|
#if (( DBOPL_WAVE == WAVE_TABLELOG ) || ( DBOPL_WAVE == WAVE_TABLEMUL ))
|
|
for ( int i = 0; i < 256; i++ ) {
|
|
//Fill silence gaps
|
|
WaveTable[ 0x400 + i ] = WaveTable[0];
|
|
WaveTable[ 0x500 + i ] = WaveTable[0];
|
|
WaveTable[ 0x900 + i ] = WaveTable[0];
|
|
WaveTable[ 0xc00 + i ] = WaveTable[0];
|
|
WaveTable[ 0xd00 + i ] = WaveTable[0];
|
|
//Replicate sines in other pieces
|
|
WaveTable[ 0x800 + i ] = WaveTable[ 0x200 + i ];
|
|
//double speed sines
|
|
WaveTable[ 0xa00 + i ] = WaveTable[ 0x200 + i * 2 ];
|
|
WaveTable[ 0xb00 + i ] = WaveTable[ 0x000 + i * 2 ];
|
|
WaveTable[ 0xe00 + i ] = WaveTable[ 0x200 + i * 2 ];
|
|
WaveTable[ 0xf00 + i ] = WaveTable[ 0x200 + i * 2 ];
|
|
}
|
|
#endif
|
|
|
|
//Create the ksl table
|
|
for ( int oct = 0; oct < 8; oct++ ) {
|
|
int base = oct * 8;
|
|
for ( int i = 0; i < 16; i++ ) {
|
|
int val = base - KslCreateTable[i];
|
|
if ( val < 0 )
|
|
val = 0;
|
|
//*4 for the final range to match attenuation range
|
|
KslTable[ oct * 16 + i ] = val * 4;
|
|
}
|
|
}
|
|
//Create the Tremolo table, just increase and decrease a triangle wave
|
|
for ( Bit8u i = 0; i < TREMOLO_TABLE / 2; i++ ) {
|
|
Bit8u val = i << ENV_EXTRA;
|
|
TremoloTable[i] = val;
|
|
TremoloTable[TREMOLO_TABLE - 1 - i] = val;
|
|
}
|
|
//Create a table with offsets of the channels from the start of the chip
|
|
DBOPL::Chip* chip = 0;
|
|
for ( Bitu i = 0; i < 32; i++ ) {
|
|
Bitu index = i & 0xf;
|
|
if ( index >= 9 ) {
|
|
ChanOffsetTable[i] = 0;
|
|
continue;
|
|
}
|
|
//Make sure the four op channels follow eachother
|
|
if ( index < 6 ) {
|
|
index = (index % 3) * 2 + ( index / 3 );
|
|
}
|
|
//Add back the bits for highest ones
|
|
if ( i >= 16 )
|
|
index += 9;
|
|
Bitu blah = reinterpret_cast<Bitu>( &(chip->chan[ index ]) );
|
|
ChanOffsetTable[i] = static_cast<Bit16u>(blah);
|
|
}
|
|
//Same for operators
|
|
for ( Bitu i = 0; i < 64; i++ ) {
|
|
if ( i % 8 >= 6 || ( (i / 8) % 4 == 3 ) ) {
|
|
OpOffsetTable[i] = 0;
|
|
continue;
|
|
}
|
|
Bitu chNum = (i / 8) * 3 + (i % 8) % 3;
|
|
//Make sure we use 16 and up for the 2nd range to match the chanoffset gap
|
|
if ( chNum >= 12 )
|
|
chNum += 16 - 12;
|
|
Bitu opNum = ( i % 8 ) / 3;
|
|
DBOPL::Channel* chan = 0;
|
|
Bitu blah = reinterpret_cast<Bitu>( &(chan->op[opNum]) );
|
|
OpOffsetTable[i] = static_cast<Bit16u>(ChanOffsetTable[ chNum ] + blah);
|
|
}
|
|
#if 0
|
|
//Stupid checks if table's are correct
|
|
for ( Bitu i = 0; i < 18; i++ ) {
|
|
Bit32u find = (Bit16u)( &(chip->chan[ i ]) );
|
|
for ( Bitu c = 0; c < 32; c++ ) {
|
|
if ( ChanOffsetTable[c] == find ) {
|
|
find = 0;
|
|
break;
|
|
}
|
|
}
|
|
if ( find ) {
|
|
find = find;
|
|
}
|
|
}
|
|
for ( Bitu i = 0; i < 36; i++ ) {
|
|
Bit32u find = (Bit16u)( &(chip->chan[ i / 2 ].op[i % 2]) );
|
|
for ( Bitu c = 0; c < 64; c++ ) {
|
|
if ( OpOffsetTable[c] == find ) {
|
|
find = 0;
|
|
break;
|
|
}
|
|
}
|
|
if ( find ) {
|
|
find = find;
|
|
}
|
|
}
|
|
#endif
|
|
doneTables = true;
|
|
}
|
|
|
|
Bit32u Handler::WriteAddr( Bit32u port, Bit8u val ) {
|
|
return chip.WriteAddr( port, val );
|
|
|
|
}
|
|
void Handler::WriteReg( Bit32u addr, Bit8u val ) {
|
|
chip.WriteReg( addr, val );
|
|
}
|
|
|
|
#define DB_MAX(x, y) ((x) > (y) ? (x) : (y))
|
|
#define DB_MIN(x, y) ((x) < (y) ? (x) : (y))
|
|
|
|
#define DBOPL_CLAMP(V, MIN, MAX) DB_MAX(DB_MIN(V, (MAX)), (MIN))
|
|
|
|
void Handler::GenerateArr(Bit32s *out, Bitu *samples)
|
|
{
|
|
if(GCC_UNLIKELY(*samples > 512))
|
|
*samples = 512;
|
|
if(!chip.opl3Active)
|
|
chip.GenerateBlock2(*samples, out);
|
|
else
|
|
chip.GenerateBlock3(*samples, out);
|
|
}
|
|
|
|
void Handler::GenerateArr(Bit16s *out, Bitu *samples)
|
|
{
|
|
Bit32s out32[1024];
|
|
if(GCC_UNLIKELY(*samples > 512))
|
|
*samples = 512;
|
|
memset(out32, 0, sizeof(Bit32s) * 1024);
|
|
if(!chip.opl3Active)
|
|
chip.GenerateBlock2(*samples, out32);
|
|
else
|
|
chip.GenerateBlock3(*samples, out32);
|
|
Bitu sz = *samples * 2;
|
|
for(Bitu i = 0; i < sz; i++)
|
|
out[i] = static_cast<Bit16s>(DBOPL_CLAMP(out32[i], INT16_MIN, INT16_MAX));
|
|
}
|
|
|
|
void Handler::GenerateArrMix(Bit32s *out, Bitu *samples)
|
|
{
|
|
if(GCC_UNLIKELY(*samples > 512))
|
|
*samples = 512;
|
|
if(!chip.opl3Active)
|
|
chip.GenerateBlock2_Mix(*samples, out);
|
|
else
|
|
chip.GenerateBlock3_Mix(*samples, out);
|
|
}
|
|
|
|
void Handler::GenerateArrMix(Bit16s *out, Bitu *samples)
|
|
{
|
|
Bit32s out32[1024];
|
|
if(GCC_UNLIKELY(*samples > 512))
|
|
*samples = 512;
|
|
memset(out32, 0, sizeof(Bit32s) * 1024);
|
|
if(!chip.opl3Active)
|
|
chip.GenerateBlock2(*samples, out32);
|
|
else
|
|
chip.GenerateBlock3(*samples, out32);
|
|
Bitu sz = *samples * 2;
|
|
for(Bitu i = 0; i < sz; i++)
|
|
out[i] += static_cast<Bit16s>(DBOPL_CLAMP(out32[i], INT16_MIN, INT16_MAX));
|
|
}
|
|
|
|
void Handler::Init( Bitu rate ) {
|
|
InitTables();
|
|
chip.Setup( static_cast<Bit32u>(rate) );
|
|
}
|
|
|
|
void Handler::WritePan( Bit32u reg, Bit8u val )
|
|
{
|
|
Bitu index;
|
|
index = ((reg >> 4) & 0x10) | (reg & 0xf);
|
|
if (ChanOffsetTable[index]) {
|
|
Channel* regChan = (Channel*)(((char *)&chip) + ChanOffsetTable[index]);
|
|
regChan->WritePan(val);
|
|
}
|
|
}
|
|
|
|
} //Namespace DBOPL
|