mirror of
https://github.com/ZDoom/gzdoom-gles.git
synced 2025-01-09 02:31:01 +00:00
902a4b839c
Instead of trying to fix Simplify, which seems to be a lost cause, the ring list now gets unraveled into an array which is immune from this type of problem.
3280 lines
94 KiB
C++
3280 lines
94 KiB
C++
/*
|
|
** zcc_compile.cpp
|
|
**
|
|
**---------------------------------------------------------------------------
|
|
** Copyright -2016 Randy Heit
|
|
** Copyright 2016 Christoph Oelckers
|
|
** All rights reserved.
|
|
**
|
|
** Redistribution and use in source and binary forms, with or without
|
|
** modification, are permitted provided that the following conditions
|
|
** are met:
|
|
**
|
|
** 1. Redistributions of source code must retain the above copyright
|
|
** notice, this list of conditions and the following disclaimer.
|
|
** 2. Redistributions in binary form must reproduce the above copyright
|
|
** notice, this list of conditions and the following disclaimer in the
|
|
** documentation and/or other materials provided with the distribution.
|
|
** 3. The name of the author may not be used to endorse or promote products
|
|
** derived from this software without specific prior written permission.
|
|
**
|
|
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
**---------------------------------------------------------------------------
|
|
**
|
|
*/
|
|
|
|
#include "a_pickups.h"
|
|
#include "thingdef.h"
|
|
#include "sc_man.h"
|
|
#include "c_console.h"
|
|
#include "c_dispatch.h"
|
|
#include "doomerrors.h"
|
|
#include "w_wad.h"
|
|
#include "cmdlib.h"
|
|
#include "m_alloc.h"
|
|
#include "zcc_parser.h"
|
|
#include "zcc-parse.h"
|
|
#include "zcc_compile.h"
|
|
#include "v_text.h"
|
|
#include "p_lnspec.h"
|
|
#include "i_system.h"
|
|
#include "gdtoa.h"
|
|
#include "codegeneration/codegen.h"
|
|
#include "vmbuilder.h"
|
|
#include "version.h"
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: ProcessClass
|
|
//
|
|
//==========================================================================
|
|
|
|
void ZCCCompiler::ProcessClass(ZCC_Class *cnode, PSymbolTreeNode *treenode)
|
|
{
|
|
ZCC_ClassWork *cls = nullptr;
|
|
// If this is a class extension, put the new node directly into the existing class.
|
|
if (cnode->Flags == ZCC_Extension)
|
|
{
|
|
for (auto clss : Classes)
|
|
{
|
|
if (clss->NodeName() == cnode->NodeName)
|
|
{
|
|
cls = clss;
|
|
break;
|
|
}
|
|
}
|
|
if (cls == nullptr)
|
|
{
|
|
Error(cnode, "Class %s cannot be found in the current translation unit.");
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Classes.Push(new ZCC_ClassWork(static_cast<ZCC_Class *>(cnode), treenode));
|
|
cls = Classes.Last();
|
|
}
|
|
|
|
auto node = cnode->Body;
|
|
PSymbolTreeNode *childnode;
|
|
ZCC_Enum *enumType = nullptr;
|
|
|
|
// Need to check if the class actually has a body.
|
|
if (node != nullptr) do
|
|
{
|
|
switch (node->NodeType)
|
|
{
|
|
case AST_Struct:
|
|
case AST_ConstantDef:
|
|
case AST_Enum:
|
|
if ((childnode = AddTreeNode(static_cast<ZCC_NamedNode *>(node)->NodeName, node, &cls->TreeNodes)))
|
|
{
|
|
switch (node->NodeType)
|
|
{
|
|
case AST_Enum:
|
|
enumType = static_cast<ZCC_Enum *>(node);
|
|
cls->Enums.Push(enumType);
|
|
break;
|
|
|
|
case AST_Struct:
|
|
ProcessStruct(static_cast<ZCC_Struct *>(node), childnode, cls->cls);
|
|
break;
|
|
|
|
case AST_ConstantDef:
|
|
cls->Constants.Push(static_cast<ZCC_ConstantDef *>(node));
|
|
cls->Constants.Last()->Type = enumType;
|
|
break;
|
|
|
|
default:
|
|
assert(0 && "Default case is just here to make GCC happy. It should never be reached");
|
|
}
|
|
}
|
|
break;
|
|
|
|
case AST_VarDeclarator:
|
|
cls->Fields.Push(static_cast<ZCC_VarDeclarator *>(node));
|
|
break;
|
|
|
|
case AST_EnumTerminator:
|
|
enumType = nullptr;
|
|
break;
|
|
|
|
case AST_States:
|
|
cls->States.Push(static_cast<ZCC_States *>(node));
|
|
break;
|
|
|
|
case AST_FuncDeclarator:
|
|
cls->Functions.Push(static_cast<ZCC_FuncDeclarator *>(node));
|
|
break;
|
|
|
|
case AST_Default:
|
|
cls->Defaults.Push(static_cast<ZCC_Default *>(node));
|
|
break;
|
|
|
|
default:
|
|
assert(0 && "Unhandled AST node type");
|
|
break;
|
|
}
|
|
node = node->SiblingNext;
|
|
}
|
|
while (node != cnode->Body);
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: ProcessStruct
|
|
//
|
|
//==========================================================================
|
|
|
|
void ZCCCompiler::ProcessStruct(ZCC_Struct *cnode, PSymbolTreeNode *treenode, ZCC_Class *outer)
|
|
{
|
|
Structs.Push(new ZCC_StructWork(static_cast<ZCC_Struct *>(cnode), treenode, outer));
|
|
ZCC_StructWork *cls = Structs.Last();
|
|
|
|
auto node = cnode->Body;
|
|
PSymbolTreeNode *childnode;
|
|
ZCC_Enum *enumType = nullptr;
|
|
|
|
// Need to check if the struct actually has a body.
|
|
if (node != nullptr) do
|
|
{
|
|
switch (node->NodeType)
|
|
{
|
|
case AST_ConstantDef:
|
|
case AST_Enum:
|
|
if ((childnode = AddTreeNode(static_cast<ZCC_NamedNode *>(node)->NodeName, node, &cls->TreeNodes)))
|
|
{
|
|
switch (node->NodeType)
|
|
{
|
|
case AST_Enum:
|
|
enumType = static_cast<ZCC_Enum *>(node);
|
|
cls->Enums.Push(enumType);
|
|
break;
|
|
|
|
case AST_ConstantDef:
|
|
cls->Constants.Push(static_cast<ZCC_ConstantDef *>(node));
|
|
cls->Constants.Last()->Type = enumType;
|
|
break;
|
|
|
|
default:
|
|
assert(0 && "Default case is just here to make GCC happy. It should never be reached");
|
|
}
|
|
}
|
|
break;
|
|
|
|
case AST_VarDeclarator:
|
|
cls->Fields.Push(static_cast<ZCC_VarDeclarator *>(node));
|
|
break;
|
|
|
|
case AST_FuncDeclarator:
|
|
cls->Functions.Push(static_cast<ZCC_FuncDeclarator *>(node));
|
|
break;
|
|
|
|
case AST_EnumTerminator:
|
|
enumType = nullptr;
|
|
break;
|
|
|
|
default:
|
|
assert(0 && "Unhandled AST node type");
|
|
break;
|
|
}
|
|
node = node->SiblingNext;
|
|
}
|
|
while (node != cnode->Body);
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler Constructor
|
|
//
|
|
//==========================================================================
|
|
|
|
ZCCCompiler::ZCCCompiler(ZCC_AST &ast, DObject *_outer, PSymbolTable &_symbols, PSymbolTable &_outsymbols, int lumpnum)
|
|
: Outer(_outer), GlobalTreeNodes(&_symbols), OutputSymbols(&_outsymbols), AST(ast), Lump(lumpnum)
|
|
{
|
|
FScriptPosition::ResetErrorCounter();
|
|
// Group top-level nodes by type
|
|
if (ast.TopNode != NULL)
|
|
{
|
|
ZCC_TreeNode *node = ast.TopNode;
|
|
PSymbolTreeNode *tnode;
|
|
PType *enumType = nullptr;
|
|
ZCC_Enum *zenumType = nullptr;
|
|
|
|
do
|
|
{
|
|
switch (node->NodeType)
|
|
{
|
|
case AST_Class:
|
|
// a class extension should not check the tree node symbols.
|
|
if (static_cast<ZCC_Class *>(node)->Flags == ZCC_Extension)
|
|
{
|
|
ProcessClass(static_cast<ZCC_Class *>(node), tnode);
|
|
break;
|
|
}
|
|
case AST_Struct:
|
|
case AST_ConstantDef:
|
|
case AST_Enum:
|
|
if ((tnode = AddTreeNode(static_cast<ZCC_NamedNode *>(node)->NodeName, node, GlobalTreeNodes)))
|
|
{
|
|
switch (node->NodeType)
|
|
{
|
|
case AST_Enum:
|
|
zenumType = static_cast<ZCC_Enum *>(node);
|
|
enumType = NewEnum(zenumType->NodeName, nullptr);
|
|
GlobalSymbols.AddSymbol(new PSymbolType(zenumType->NodeName, enumType));
|
|
break;
|
|
|
|
case AST_Class:
|
|
ProcessClass(static_cast<ZCC_Class *>(node), tnode);
|
|
break;
|
|
|
|
case AST_Struct:
|
|
ProcessStruct(static_cast<ZCC_Struct *>(node), tnode, nullptr);
|
|
break;
|
|
|
|
case AST_ConstantDef:
|
|
Constants.Push(static_cast<ZCC_ConstantDef *>(node));
|
|
Constants.Last()->Type = zenumType;
|
|
break;
|
|
|
|
default:
|
|
assert(0 && "Default case is just here to make GCC happy. It should never be reached");
|
|
}
|
|
}
|
|
break;
|
|
|
|
case AST_EnumTerminator:
|
|
zenumType = nullptr;
|
|
break;
|
|
|
|
default:
|
|
assert(0 && "Unhandled AST node type");
|
|
break;
|
|
}
|
|
node = node->SiblingNext;
|
|
} while (node != ast.TopNode);
|
|
}
|
|
}
|
|
|
|
ZCCCompiler::~ZCCCompiler()
|
|
{
|
|
for (auto s : Structs)
|
|
{
|
|
delete s;
|
|
}
|
|
for (auto c : Classes)
|
|
{
|
|
delete c;
|
|
}
|
|
Structs.Clear();
|
|
Classes.Clear();
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: AddTreeNode
|
|
//
|
|
// Keeps track of definition nodes by their names. Ensures that all names
|
|
// in this scope are unique.
|
|
//
|
|
//==========================================================================
|
|
|
|
PSymbolTreeNode *ZCCCompiler::AddTreeNode(FName name, ZCC_TreeNode *node, PSymbolTable *treenodes, bool searchparents)
|
|
{
|
|
PSymbol *check = treenodes->FindSymbol(name, searchparents);
|
|
if (check != NULL)
|
|
{
|
|
assert(check->IsA(RUNTIME_CLASS(PSymbolTreeNode)));
|
|
Error(node, "Attempt to redefine '%s'", name.GetChars());
|
|
Error(static_cast<PSymbolTreeNode *>(check)->Node, " Original definition is here");
|
|
return nullptr;
|
|
}
|
|
else
|
|
{
|
|
auto sy = new PSymbolTreeNode(name, node);
|
|
FString name;
|
|
treenodes->AddSymbol(sy);
|
|
return sy;
|
|
}
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: Warn
|
|
//
|
|
// Prints a warning message, and increments WarnCount.
|
|
//
|
|
//==========================================================================
|
|
|
|
void ZCCCompiler::Warn(ZCC_TreeNode *node, const char *msg, ...)
|
|
{
|
|
va_list argptr;
|
|
va_start(argptr, msg);
|
|
MessageV(node, TEXTCOLOR_ORANGE, msg, argptr);
|
|
va_end(argptr);
|
|
|
|
FScriptPosition::WarnCounter++;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: Error
|
|
//
|
|
// Prints an error message, and increments ErrorCount.
|
|
//
|
|
//==========================================================================
|
|
|
|
void ZCCCompiler::Error(ZCC_TreeNode *node, const char *msg, ...)
|
|
{
|
|
va_list argptr;
|
|
va_start(argptr, msg);
|
|
MessageV(node, TEXTCOLOR_RED, msg, argptr);
|
|
va_end(argptr);
|
|
|
|
FScriptPosition::ErrorCounter++;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: MessageV
|
|
//
|
|
// Prints a message, annotated with the source location for the tree node.
|
|
//
|
|
//==========================================================================
|
|
|
|
void ZCCCompiler::MessageV(ZCC_TreeNode *node, const char *txtcolor, const char *msg, va_list argptr)
|
|
{
|
|
FString composed;
|
|
|
|
composed.Format("%s%s, line %d: ", txtcolor, node->SourceName->GetChars(), node->SourceLoc);
|
|
composed.VAppendFormat(msg, argptr);
|
|
composed += '\n';
|
|
PrintString(PRINT_HIGH, composed);
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: Compile
|
|
//
|
|
// Compile everything defined at this level.
|
|
//
|
|
//==========================================================================
|
|
|
|
int ZCCCompiler::Compile()
|
|
{
|
|
CreateClassTypes();
|
|
CreateStructTypes();
|
|
CompileAllConstants();
|
|
CompileAllFields();
|
|
InitDefaults();
|
|
InitFunctions();
|
|
CompileStates();
|
|
return FScriptPosition::ErrorCounter;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: CreateStructTypes
|
|
//
|
|
// Creates a PStruct for every struct.
|
|
//
|
|
//==========================================================================
|
|
|
|
void ZCCCompiler::CreateStructTypes()
|
|
{
|
|
for(auto s : Structs)
|
|
{
|
|
s->Outer = s->OuterDef == nullptr? nullptr : s->OuterDef->CType();
|
|
if (s->strct->Flags & ZCC_Native)
|
|
s->strct->Type = NewNativeStruct(s->NodeName(), nullptr);
|
|
else
|
|
s->strct->Type = NewStruct(s->NodeName(), s->Outer);
|
|
s->strct->Symbol = new PSymbolType(s->NodeName(), s->Type());
|
|
GlobalSymbols.AddSymbol(s->strct->Symbol);
|
|
|
|
for (auto e : s->Enums)
|
|
{
|
|
auto etype = NewEnum(e->NodeName, s->Type());
|
|
s->Type()->Symbols.AddSymbol(new PSymbolType(e->NodeName, etype));
|
|
}
|
|
}
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: CreateClassTypes
|
|
//
|
|
// Creates a PClass for every class so that we get access to the symbol table
|
|
// These will be created with unknown size because for that we need to
|
|
// process all fields first, but to do that we need the PClass and some
|
|
// other info depending on the PClass.
|
|
//
|
|
//==========================================================================
|
|
|
|
void ZCCCompiler::CreateClassTypes()
|
|
{
|
|
// we are going to sort the classes array so that entries are sorted in order of inheritance.
|
|
|
|
auto OrigClasses = std::move(Classes);
|
|
Classes.Clear();
|
|
bool donesomething = true;
|
|
while (donesomething)
|
|
{
|
|
donesomething = false;
|
|
for (unsigned i = 0; i<OrigClasses.Size(); i++)
|
|
{
|
|
auto c = OrigClasses[i];
|
|
// Check if we got the parent already defined.
|
|
PClass *parent;
|
|
auto ParentName = c->cls->ParentName;
|
|
|
|
if (ParentName != nullptr && ParentName->SiblingNext == ParentName) parent = PClass::FindClass(ParentName->Id);
|
|
else if (ParentName == nullptr) parent = RUNTIME_CLASS(DObject);
|
|
else
|
|
{
|
|
// The parent is a dotted name which the type system currently does not handle.
|
|
// Once it does this needs to be implemented here.
|
|
auto p = ParentName;
|
|
FString build;
|
|
|
|
do
|
|
{
|
|
if (build.IsNotEmpty()) build += '.';
|
|
build += FName(p->Id);
|
|
p = static_cast<decltype(p)>(p->SiblingNext);
|
|
} while (p != ParentName);
|
|
Error(c->cls, "Qualified name '%s' for base class not supported in '%s'", build.GetChars(), FName(c->NodeName()).GetChars());
|
|
parent = RUNTIME_CLASS(DObject);
|
|
}
|
|
|
|
if (parent != nullptr)
|
|
{
|
|
// The parent exists, we may create a type for this class
|
|
if (c->cls->Flags & ZCC_Native)
|
|
{
|
|
// If this is a native class, its own type must also already exist and not be a runtime class.
|
|
auto me = PClass::FindClass(c->NodeName());
|
|
if (me == nullptr)
|
|
{
|
|
Error(c->cls, "Unknown native class %s", c->NodeName().GetChars());
|
|
// Create a placeholder so that the compiler can continue looking for errors.
|
|
me = parent->FindClassTentative(c->NodeName());
|
|
}
|
|
else if (me->bRuntimeClass)
|
|
{
|
|
Error(c->cls, "%s is not a native class", c->NodeName().GetChars());
|
|
}
|
|
else
|
|
{
|
|
DPrintf(DMSG_SPAMMY, "Registered %s as native with parent %s\n", me->TypeName.GetChars(), parent->TypeName.GetChars());
|
|
}
|
|
c->cls->Type = me;
|
|
auto ac = dyn_cast<PClassActor>(me);
|
|
if (ac != nullptr) ac->SourceLumpName = *c->cls->SourceName;
|
|
}
|
|
else
|
|
{
|
|
// We will never get here if the name is a duplicate, so we can just do the assignment.
|
|
try
|
|
{
|
|
c->cls->Type = parent->CreateDerivedClass(c->NodeName(), TentativeClass);
|
|
if (c->Type() == nullptr)
|
|
{
|
|
Error(c->cls, "Class name %s already exists", c->NodeName().GetChars());
|
|
}
|
|
}
|
|
catch (CRecoverableError &err)
|
|
{
|
|
Error(c->cls, "%s", err.GetMessage());
|
|
// create a placeholder so that the compiler can continue looking for errors.
|
|
c->cls->Type = nullptr;
|
|
}
|
|
}
|
|
if (c->Type() == nullptr) c->cls->Type = parent->FindClassTentative(c->NodeName());
|
|
c->Type()->bExported = true; // this class is accessible to script side type casts. (The reason for this flag is that types like PInt need to be skipped.)
|
|
c->cls->Symbol = new PSymbolType(c->NodeName(), c->Type());
|
|
GlobalSymbols.AddSymbol(c->cls->Symbol);
|
|
Classes.Push(c);
|
|
OrigClasses.Delete(i--);
|
|
donesomething = true;
|
|
}
|
|
else
|
|
{
|
|
// No base class found. Now check if something in the unprocessed classes matches.
|
|
// If not, print an error. If something is found let's retry again in the next iteration.
|
|
bool found = false;
|
|
for (auto d : OrigClasses)
|
|
{
|
|
if (d->NodeName() == c->cls->ParentName->Id)
|
|
{
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found)
|
|
{
|
|
Error(c->cls, "Class %s has unknown base class %s", c->NodeName().GetChars(), FName(c->cls->ParentName->Id).GetChars());
|
|
// create a placeholder so that the compiler can continue looking for errors.
|
|
c->cls->Type = RUNTIME_CLASS(DObject)->FindClassTentative(c->NodeName());
|
|
c->cls->Symbol = new PSymbolType(c->NodeName(), c->Type());
|
|
GlobalSymbols.AddSymbol(c->cls->Symbol);
|
|
Classes.Push(c);
|
|
OrigClasses.Delete(i--);
|
|
donesomething = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// What's left refers to some other class in the list but could not be resolved.
|
|
// This normally means a circular reference.
|
|
for (auto c : OrigClasses)
|
|
{
|
|
Error(c->cls, "Class %s has circular inheritance", FName(c->NodeName()).GetChars());
|
|
c->cls->Type = RUNTIME_CLASS(DObject)->FindClassTentative(c->NodeName());
|
|
c->cls->Symbol = new PSymbolType(c->NodeName(), c->Type());
|
|
GlobalSymbols.AddSymbol(c->cls->Symbol);
|
|
Classes.Push(c);
|
|
}
|
|
|
|
// Last but not least: Now that all classes have been created, we can create the symbols for the internal enums and link the treenode symbol tables and set up replacements
|
|
for (auto cd : Classes)
|
|
{
|
|
for (auto e : cd->Enums)
|
|
{
|
|
auto etype = NewEnum(e->NodeName, cd->Type());
|
|
cd->Type()->Symbols.AddSymbol(new PSymbolType(e->NodeName, etype));
|
|
}
|
|
// Link the tree node tables. We only can do this after we know the class relations.
|
|
for (auto cc : Classes)
|
|
{
|
|
if (cc->Type() == cd->Type()->ParentClass)
|
|
{
|
|
cd->TreeNodes.SetParentTable(&cc->TreeNodes);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (cd->cls->Replaces != nullptr && !static_cast<PClassActor *>(cd->Type())->SetReplacement(cd->cls->Replaces->Id))
|
|
{
|
|
Warn(cd->cls, "Replaced type '%s' not found for %s", FName(cd->cls->Replaces->Id).GetChars(), cd->Type()->TypeName.GetChars());
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: AddConstants
|
|
//
|
|
// Helper for CompileAllConstants
|
|
//
|
|
//==========================================================================
|
|
|
|
void ZCCCompiler::CopyConstants(TArray<ZCC_ConstantWork> &dest, TArray<ZCC_ConstantDef*> &Constants, PSymbolTable *ot)
|
|
{
|
|
for (auto c : Constants)
|
|
{
|
|
dest.Push({ c, ot });
|
|
}
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: CompileAllConstants
|
|
//
|
|
// Make symbols from every constant defined at all levels.
|
|
// Since constants may only depend on other constants this can be done
|
|
// without any more involved processing of the AST as a first step.
|
|
//
|
|
//==========================================================================
|
|
|
|
void ZCCCompiler::CompileAllConstants()
|
|
{
|
|
// put all constants in one list to make resolving this easier.
|
|
TArray<ZCC_ConstantWork> constantwork;
|
|
|
|
CopyConstants(constantwork, Constants, OutputSymbols);
|
|
for (auto c : Classes)
|
|
{
|
|
CopyConstants(constantwork, c->Constants, &c->Type()->Symbols);
|
|
}
|
|
for (auto s : Structs)
|
|
{
|
|
CopyConstants(constantwork, s->Constants, &s->Type()->Symbols);
|
|
}
|
|
|
|
// Before starting to resolve the list, let's create symbols for all already resolved ones first (i.e. all literal constants), to reduce work.
|
|
for (unsigned i = 0; i<constantwork.Size(); i++)
|
|
{
|
|
if (constantwork[i].node->Value->NodeType == AST_ExprConstant)
|
|
{
|
|
AddConstant(constantwork[i]);
|
|
// Remove the constant from the list
|
|
constantwork.Delete(i);
|
|
i--;
|
|
}
|
|
}
|
|
bool donesomething = true;
|
|
// Now go through this list until no more constants can be resolved. The remaining ones will be non-constant values.
|
|
while (donesomething && constantwork.Size() > 0)
|
|
{
|
|
donesomething = false;
|
|
for (unsigned i = 0; i < constantwork.Size(); i++)
|
|
{
|
|
if (CompileConstant(constantwork[i].node, constantwork[i].outputtable))
|
|
{
|
|
AddConstant(constantwork[i]);
|
|
// Remove the constant from the list
|
|
constantwork.Delete(i);
|
|
i--;
|
|
donesomething = true;
|
|
}
|
|
}
|
|
}
|
|
for (unsigned i = 0; i < constantwork.Size(); i++)
|
|
{
|
|
Error(constantwork[i].node, "%s is not a constant", FName(constantwork[i].node->NodeName).GetChars());
|
|
}
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: AddConstant
|
|
//
|
|
// Adds a constant to its assigned symbol table
|
|
//
|
|
//==========================================================================
|
|
|
|
void ZCCCompiler::AddConstant(ZCC_ConstantWork &constant)
|
|
{
|
|
auto def = constant.node;
|
|
auto val = def->Value;
|
|
if (val->NodeType == AST_ExprConstant)
|
|
{
|
|
ZCC_ExprConstant *cval = static_cast<ZCC_ExprConstant *>(val);
|
|
if (cval->Type == TypeString)
|
|
{
|
|
def->Symbol = new PSymbolConstString(def->NodeName, *(cval->StringVal));
|
|
}
|
|
else if (cval->Type->IsA(RUNTIME_CLASS(PInt)))
|
|
{
|
|
// How do we get an Enum type in here without screwing everything up???
|
|
//auto type = def->Type != nullptr ? def->Type : cval->Type;
|
|
def->Symbol = new PSymbolConstNumeric(def->NodeName, cval->Type, cval->IntVal);
|
|
}
|
|
else if (cval->Type->IsA(RUNTIME_CLASS(PFloat)))
|
|
{
|
|
if (def->Type != nullptr)
|
|
{
|
|
Error(def, "Enum members must be integer values");
|
|
}
|
|
def->Symbol = new PSymbolConstNumeric(def->NodeName, cval->Type, cval->DoubleVal);
|
|
}
|
|
else
|
|
{
|
|
Error(def->Value, "Bad type for constant definiton");
|
|
def->Symbol = nullptr;
|
|
}
|
|
|
|
if (def->Symbol == nullptr)
|
|
{
|
|
// Create a dummy constant so we don't make any undefined value warnings.
|
|
def->Symbol = new PSymbolConstNumeric(def->NodeName, TypeError, 0);
|
|
}
|
|
constant.outputtable->ReplaceSymbol(def->Symbol);
|
|
}
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: CompileConstant
|
|
//
|
|
// For every constant definition, evaluate its value (which should result
|
|
// in a constant), and create a symbol for it.
|
|
//
|
|
//==========================================================================
|
|
|
|
bool ZCCCompiler::CompileConstant(ZCC_ConstantDef *def, PSymbolTable *sym)
|
|
{
|
|
assert(def->Symbol == nullptr);
|
|
|
|
ZCC_Expression *val = Simplify(def->Value, sym, true);
|
|
def->Value = val;
|
|
return (val->NodeType == AST_ExprConstant);
|
|
}
|
|
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: Simplify
|
|
//
|
|
// For an expression,
|
|
// Evaluate operators whose arguments are both constants, replacing it
|
|
// with a new constant.
|
|
// For a binary operator with one constant argument, put it on the right-
|
|
// hand operand, where permitted.
|
|
// Perform automatic type promotion.
|
|
//
|
|
//==========================================================================
|
|
|
|
ZCC_Expression *ZCCCompiler::Simplify(ZCC_Expression *root, PSymbolTable *sym, bool wantconstant)
|
|
{
|
|
SimplifyingConstant = wantconstant;
|
|
return DoSimplify(root, sym);
|
|
}
|
|
|
|
ZCC_Expression *ZCCCompiler::DoSimplify(ZCC_Expression *root, PSymbolTable *sym)
|
|
{
|
|
if (root->NodeType == AST_ExprUnary)
|
|
{
|
|
return SimplifyUnary(static_cast<ZCC_ExprUnary *>(root), sym);
|
|
}
|
|
else if (root->NodeType == AST_ExprBinary)
|
|
{
|
|
return SimplifyBinary(static_cast<ZCC_ExprBinary *>(root), sym);
|
|
}
|
|
else if (root->Operation == PEX_ID)
|
|
{
|
|
return IdentifyIdentifier(static_cast<ZCC_ExprID *>(root), sym);
|
|
}
|
|
else if (root->Operation == PEX_MemberAccess)
|
|
{
|
|
return SimplifyMemberAccess(static_cast<ZCC_ExprMemberAccess *>(root), sym);
|
|
}
|
|
else if (root->Operation == PEX_FuncCall)
|
|
{
|
|
return SimplifyFunctionCall(static_cast<ZCC_ExprFuncCall *>(root), sym);
|
|
}
|
|
return root;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: SimplifyUnary
|
|
//
|
|
//==========================================================================
|
|
|
|
ZCC_Expression *ZCCCompiler::SimplifyUnary(ZCC_ExprUnary *unary, PSymbolTable *sym)
|
|
{
|
|
unary->Operand = DoSimplify(unary->Operand, sym);
|
|
if (unary->Operand->Type == nullptr)
|
|
{
|
|
return unary;
|
|
}
|
|
ZCC_OpProto *op = PromoteUnary(unary->Operation, unary->Operand);
|
|
if (op == NULL)
|
|
{ // Oh, poo!
|
|
unary->Type = TypeError;
|
|
}
|
|
else if (unary->Operand->Operation == PEX_ConstValue)
|
|
{
|
|
return op->EvalConst1(static_cast<ZCC_ExprConstant *>(unary->Operand));
|
|
}
|
|
return unary;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: SimplifyBinary
|
|
//
|
|
//==========================================================================
|
|
|
|
ZCC_Expression *ZCCCompiler::SimplifyBinary(ZCC_ExprBinary *binary, PSymbolTable *sym)
|
|
{
|
|
binary->Left = DoSimplify(binary->Left, sym);
|
|
binary->Right = DoSimplify(binary->Right, sym);
|
|
if (binary->Left->Type == nullptr || binary->Right->Type == nullptr)
|
|
{
|
|
// We do not know yet what this is so we cannot promote it (yet.)
|
|
return binary;
|
|
}
|
|
ZCC_OpProto *op = PromoteBinary(binary->Operation, binary->Left, binary->Right);
|
|
if (op == NULL)
|
|
{
|
|
binary->Type = TypeError;
|
|
}
|
|
else if (binary->Left->Operation == PEX_ConstValue &&
|
|
binary->Right->Operation == PEX_ConstValue)
|
|
{
|
|
return op->EvalConst2(static_cast<ZCC_ExprConstant *>(binary->Left),
|
|
static_cast<ZCC_ExprConstant *>(binary->Right), AST.Strings);
|
|
}
|
|
return binary;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: SimplifyMemberAccess
|
|
//
|
|
//==========================================================================
|
|
|
|
ZCC_Expression *ZCCCompiler::SimplifyMemberAccess(ZCC_ExprMemberAccess *dotop, PSymbolTable *symt)
|
|
{
|
|
PSymbolTable *symtable;
|
|
|
|
// TBD: Is it safe to simplify the left side here when not processing a constant?
|
|
dotop->Left = DoSimplify(dotop->Left, symt);
|
|
|
|
if (dotop->Left->Operation == PEX_TypeRef)
|
|
{ // Type refs can be evaluated now.
|
|
PType *ref = static_cast<ZCC_ExprTypeRef *>(dotop->Left)->RefType;
|
|
PSymbol *sym = ref->Symbols.FindSymbolInTable(dotop->Right, symtable);
|
|
if (sym != nullptr)
|
|
{
|
|
ZCC_Expression *expr = NodeFromSymbol(sym, dotop, symtable);
|
|
if (expr != nullptr)
|
|
{
|
|
return expr;
|
|
}
|
|
}
|
|
}
|
|
else if (dotop->Left->Operation == PEX_Super)
|
|
{
|
|
symt = symt->GetParentTable();
|
|
if (symt != nullptr)
|
|
{
|
|
PSymbol *sym = symt->FindSymbolInTable(dotop->Right, symtable);
|
|
if (sym != nullptr)
|
|
{
|
|
ZCC_Expression *expr = NodeFromSymbol(sym, dotop, symtable);
|
|
if (expr != nullptr)
|
|
{
|
|
return expr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return dotop;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: SimplifyFunctionCall
|
|
//
|
|
// This may replace a function call with cast(s), since they look like the
|
|
// same thing to the parser.
|
|
//
|
|
//==========================================================================
|
|
|
|
ZCC_Expression *ZCCCompiler::SimplifyFunctionCall(ZCC_ExprFuncCall *callop, PSymbolTable *sym)
|
|
{
|
|
ZCC_FuncParm *parm;
|
|
int parmcount = 0;
|
|
|
|
parm = callop->Parameters;
|
|
if (parm != NULL)
|
|
{
|
|
do
|
|
{
|
|
parmcount++;
|
|
assert(parm->NodeType == AST_FuncParm);
|
|
parm->Value = DoSimplify(parm->Value, sym);
|
|
parm = static_cast<ZCC_FuncParm *>(parm->SiblingNext);
|
|
}
|
|
while (parm != callop->Parameters);
|
|
}
|
|
// Only simplify the 'function' part if we want to retrieve a constant.
|
|
// This is necessary to evaluate the type casts, but for actual functions
|
|
// the simplification process is destructive and has to be avoided.
|
|
if (SimplifyingConstant)
|
|
{
|
|
callop->Function = DoSimplify(callop->Function, sym);
|
|
}
|
|
// If the left side is a type ref, then this is actually a cast
|
|
// and not a function call.
|
|
if (callop->Function->Operation == PEX_TypeRef)
|
|
{
|
|
if (parmcount != 1)
|
|
{
|
|
Error(callop, "Type cast requires one parameter");
|
|
callop->ToErrorNode();
|
|
}
|
|
else
|
|
{
|
|
PType *dest = static_cast<ZCC_ExprTypeRef *>(callop->Function)->RefType;
|
|
const PType::Conversion *route[CONVERSION_ROUTE_SIZE];
|
|
int routelen = parm->Value->Type->FindConversion(dest, route, countof(route));
|
|
if (routelen < 0)
|
|
{
|
|
///FIXME: Need real type names
|
|
Error(callop, "Cannot convert %s to %s", parm->Value->Type->DescriptiveName(), dest->DescriptiveName());
|
|
callop->ToErrorNode();
|
|
}
|
|
else
|
|
{
|
|
ZCC_Expression *val = ApplyConversion(parm->Value, route, routelen);
|
|
assert(val->Type == dest);
|
|
return val;
|
|
}
|
|
}
|
|
}
|
|
return callop;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: PromoteUnary
|
|
//
|
|
// Converts the operand into a format preferred by the operator.
|
|
//
|
|
//==========================================================================
|
|
|
|
ZCC_OpProto *ZCCCompiler::PromoteUnary(EZCCExprType op, ZCC_Expression *&expr)
|
|
{
|
|
if (expr->Type == TypeError)
|
|
{
|
|
return NULL;
|
|
}
|
|
const PType::Conversion *route[CONVERSION_ROUTE_SIZE];
|
|
int routelen = countof(route);
|
|
ZCC_OpProto *proto = ZCC_OpInfo[op].FindBestProto(expr->Type, route, routelen);
|
|
|
|
if (proto != NULL)
|
|
{
|
|
expr = ApplyConversion(expr, route, routelen);
|
|
}
|
|
return proto;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: PromoteBinary
|
|
//
|
|
// Converts the operands into a format (hopefully) compatible with the
|
|
// operator.
|
|
//
|
|
//==========================================================================
|
|
|
|
ZCC_OpProto *ZCCCompiler::PromoteBinary(EZCCExprType op, ZCC_Expression *&left, ZCC_Expression *&right)
|
|
{
|
|
// If either operand is of type 'error', the result is also 'error'
|
|
if (left->Type == TypeError || right->Type == TypeError)
|
|
{
|
|
return NULL;
|
|
}
|
|
const PType::Conversion *route1[CONVERSION_ROUTE_SIZE], *route2[CONVERSION_ROUTE_SIZE];
|
|
int route1len = countof(route1), route2len = countof(route2);
|
|
ZCC_OpProto *proto = ZCC_OpInfo[op].FindBestProto(left->Type, route1, route1len, right->Type, route2, route2len);
|
|
if (proto != NULL)
|
|
{
|
|
left = ApplyConversion(left, route1, route1len);
|
|
right = ApplyConversion(right, route2, route2len);
|
|
}
|
|
return proto;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: ApplyConversion
|
|
//
|
|
//==========================================================================
|
|
|
|
ZCC_Expression *ZCCCompiler::ApplyConversion(ZCC_Expression *expr, const PType::Conversion **route, int routelen)
|
|
{
|
|
for (int i = 0; i < routelen; ++i)
|
|
{
|
|
if (expr->Operation != PEX_ConstValue)
|
|
{
|
|
expr = AddCastNode(route[i]->TargetType, expr);
|
|
}
|
|
else
|
|
{
|
|
route[i]->ConvertConstant(static_cast<ZCC_ExprConstant *>(expr), AST.Strings);
|
|
}
|
|
}
|
|
return expr;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: AddCastNode
|
|
//
|
|
//==========================================================================
|
|
|
|
ZCC_Expression *ZCCCompiler::AddCastNode(PType *type, ZCC_Expression *expr)
|
|
{
|
|
assert(expr->Operation != PEX_ConstValue && "Expression must not be constant");
|
|
// TODO: add a node here
|
|
return expr;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: IdentifyIdentifier
|
|
//
|
|
// Returns a node that represents what the identifer stands for.
|
|
//
|
|
//==========================================================================
|
|
|
|
ZCC_Expression *ZCCCompiler::IdentifyIdentifier(ZCC_ExprID *idnode, PSymbolTable *symt)
|
|
{
|
|
// Check the symbol table for the identifier.
|
|
PSymbolTable *table;
|
|
PSymbol *sym = symt->FindSymbolInTable(idnode->Identifier, table);
|
|
// GlobalSymbols cannot be the parent of a class's symbol table so we have to look for global symbols explicitly.
|
|
if (sym == nullptr && symt != &GlobalSymbols) sym = GlobalSymbols.FindSymbolInTable(idnode->Identifier, table);
|
|
if (sym != nullptr)
|
|
{
|
|
ZCC_Expression *node = NodeFromSymbol(sym, idnode, table);
|
|
if (node != NULL)
|
|
{
|
|
return node;
|
|
}
|
|
}
|
|
else if (SimplifyingConstant) // leave unknown identifiers alone when simplifying non-constants. It is impossible to know what they are here.
|
|
{
|
|
// Also handle line specials.
|
|
// To call this like a function this needs to be done differently, but for resolving constants this is ok.
|
|
int spec = P_FindLineSpecial(FName(idnode->Identifier).GetChars());
|
|
if (spec != 0)
|
|
{
|
|
ZCC_ExprConstant *val = static_cast<ZCC_ExprConstant *>(AST.InitNode(sizeof(*val), AST_ExprConstant, idnode));
|
|
val->Operation = PEX_ConstValue;
|
|
val->Type = TypeSInt32;
|
|
val->IntVal = spec;
|
|
return val;
|
|
}
|
|
|
|
Error(idnode, "Unknown identifier '%s'", FName(idnode->Identifier).GetChars());
|
|
idnode->ToErrorNode();
|
|
}
|
|
return idnode;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: NodeFromSymbol
|
|
//
|
|
//==========================================================================
|
|
|
|
ZCC_Expression *ZCCCompiler::NodeFromSymbol(PSymbol *sym, ZCC_Expression *source, PSymbolTable *table)
|
|
{
|
|
assert(sym != nullptr);
|
|
|
|
if (sym->IsKindOf(RUNTIME_CLASS(PSymbolConst)))
|
|
{
|
|
return NodeFromSymbolConst(static_cast<PSymbolConst *>(sym), source);
|
|
}
|
|
else if (sym->IsKindOf(RUNTIME_CLASS(PSymbolType)))
|
|
{
|
|
return NodeFromSymbolType(static_cast<PSymbolType *>(sym), source);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: NodeFromSymbolConst
|
|
//
|
|
// Returns a new AST constant node with the symbol's content.
|
|
//
|
|
//==========================================================================
|
|
|
|
ZCC_ExprConstant *ZCCCompiler::NodeFromSymbolConst(PSymbolConst *sym, ZCC_Expression *idnode)
|
|
{
|
|
ZCC_ExprConstant *val = static_cast<ZCC_ExprConstant *>(AST.InitNode(sizeof(*val), AST_ExprConstant, idnode));
|
|
val->Operation = PEX_ConstValue;
|
|
if (sym == NULL)
|
|
{
|
|
val->Type = TypeError;
|
|
val->IntVal = 0;
|
|
}
|
|
else if (sym->IsKindOf(RUNTIME_CLASS(PSymbolConstString)))
|
|
{
|
|
val->StringVal = AST.Strings.Alloc(static_cast<PSymbolConstString *>(sym)->Str);
|
|
val->Type = TypeString;
|
|
}
|
|
else
|
|
{
|
|
val->Type = sym->ValueType;
|
|
if (val->Type != TypeError)
|
|
{
|
|
assert(sym->IsKindOf(RUNTIME_CLASS(PSymbolConstNumeric)));
|
|
if (sym->ValueType->IsKindOf(RUNTIME_CLASS(PInt)))
|
|
{
|
|
val->IntVal = static_cast<PSymbolConstNumeric *>(sym)->Value;
|
|
}
|
|
else
|
|
{
|
|
assert(sym->ValueType->IsKindOf(RUNTIME_CLASS(PFloat)));
|
|
val->DoubleVal = static_cast<PSymbolConstNumeric *>(sym)->Float;
|
|
}
|
|
}
|
|
}
|
|
return val;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: NodeFromSymbolType
|
|
//
|
|
// Returns a new AST type ref node with the symbol's content.
|
|
//
|
|
//==========================================================================
|
|
|
|
ZCC_ExprTypeRef *ZCCCompiler::NodeFromSymbolType(PSymbolType *sym, ZCC_Expression *idnode)
|
|
{
|
|
ZCC_ExprTypeRef *ref = static_cast<ZCC_ExprTypeRef *>(AST.InitNode(sizeof(*ref), AST_ExprTypeRef, idnode));
|
|
ref->Operation = PEX_TypeRef;
|
|
ref->RefType = sym->Type;
|
|
ref->Type = NewClassPointer(RUNTIME_CLASS(PType));
|
|
return ref;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: CompileAllFields
|
|
//
|
|
// builds the internal structure of all classes and structs
|
|
//
|
|
//==========================================================================
|
|
|
|
void ZCCCompiler::CompileAllFields()
|
|
{
|
|
// Create copies of the arrays which can be altered
|
|
auto Classes = this->Classes;
|
|
auto Structs = this->Structs;
|
|
TMap<PClass*, bool> HasNativeChildren;
|
|
|
|
// first step: Look for native classes with native children.
|
|
// These may not have any variables added to them because it'd clash with the native definitions.
|
|
for (unsigned i = 0; i < Classes.Size(); i++)
|
|
{
|
|
auto c = Classes[i];
|
|
|
|
if (c->Type()->Size != TentativeClass && c->Fields.Size() > 0)
|
|
{
|
|
// We need to search the global class table here because not all children may have a scripted definition attached.
|
|
for (auto ac : PClass::AllClasses)
|
|
{
|
|
if (ac->ParentClass == c->Type() && ac->Size != TentativeClass)
|
|
{
|
|
// Only set a marker here, so that we can print a better message when the actual fields get added.
|
|
HasNativeChildren.Insert(ac, true);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
bool donesomething = true;
|
|
while (donesomething && (Structs.Size() > 0 || Classes.Size() > 0))
|
|
{
|
|
donesomething = false;
|
|
for (unsigned i = 0; i < Structs.Size(); i++)
|
|
{
|
|
if (CompileFields(Structs[i]->Type(), Structs[i]->Fields, Structs[i]->Outer, &Structs[i]->TreeNodes, true))
|
|
{
|
|
// Remove from the list if all fields got compiled.
|
|
Structs.Delete(i--);
|
|
donesomething = true;
|
|
}
|
|
}
|
|
for (unsigned i = 0; i < Classes.Size(); i++)
|
|
{
|
|
auto type = Classes[i]->Type();
|
|
if (type->Size == TentativeClass)
|
|
{
|
|
if (type->ParentClass->Size == TentativeClass)
|
|
{
|
|
// we do not know the parent class's size yet, so skip this class for now.
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
// Inherit the size of the parent class
|
|
type->Size = Classes[i]->Type()->ParentClass->Size;
|
|
}
|
|
}
|
|
if (CompileFields(type, Classes[i]->Fields, nullptr, &Classes[i]->TreeNodes, false, !!HasNativeChildren.CheckKey(type)))
|
|
{
|
|
// Remove from the list if all fields got compiled.
|
|
Classes.Delete(i--);
|
|
donesomething = true;
|
|
}
|
|
}
|
|
}
|
|
// This really should never happen, but if it does, let's better print an error.
|
|
for (auto s : Structs)
|
|
{
|
|
Error(s->strct, "Unable to resolve all fields for struct %s", FName(s->NodeName()).GetChars());
|
|
}
|
|
for (auto s : Classes)
|
|
{
|
|
Error(s->cls, "Unable to resolve all fields for class %s", FName(s->NodeName()).GetChars());
|
|
}
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: CompileFields
|
|
//
|
|
// builds the internal structure of a single class or struct
|
|
//
|
|
//==========================================================================
|
|
|
|
bool ZCCCompiler::CompileFields(PStruct *type, TArray<ZCC_VarDeclarator *> &Fields, PClass *Outer, PSymbolTable *TreeNodes, bool forstruct, bool hasnativechildren)
|
|
{
|
|
while (Fields.Size() > 0)
|
|
{
|
|
auto field = Fields[0];
|
|
FieldDesc *fd = nullptr;
|
|
|
|
PType *fieldtype = DetermineType(type, field, field->Names->Name, field->Type, true, true);
|
|
|
|
// For structs only allow 'deprecated', for classes exclude function qualifiers.
|
|
int notallowed = forstruct?
|
|
ZCC_Latent | ZCC_Final | ZCC_Action | ZCC_Static | ZCC_FuncConst | ZCC_Abstract | ZCC_Virtual | ZCC_Override | ZCC_Meta | ZCC_Extension :
|
|
ZCC_Latent | ZCC_Final | ZCC_Action | ZCC_Static | ZCC_FuncConst | ZCC_Abstract | ZCC_Virtual | ZCC_Override | ZCC_Extension;
|
|
|
|
if (field->Flags & notallowed)
|
|
{
|
|
Error(field, "Invalid qualifiers for %s (%s not allowed)", FName(field->Names->Name).GetChars(), FlagsToString(field->Flags & notallowed).GetChars());
|
|
field->Flags &= notallowed;
|
|
}
|
|
uint32_t varflags = 0;
|
|
|
|
// These map directly to implementation flags.
|
|
if (field->Flags & ZCC_Private) varflags |= VARF_Private;
|
|
if (field->Flags & ZCC_Protected) varflags |= VARF_Protected;
|
|
if (field->Flags & ZCC_Deprecated) varflags |= VARF_Deprecated;
|
|
if (field->Flags & ZCC_ReadOnly) varflags |= VARF_ReadOnly;
|
|
|
|
if (field->Flags & ZCC_Native)
|
|
{
|
|
varflags |= VARF_Native | VARF_Transient;
|
|
}
|
|
|
|
if (field->Flags & ZCC_Meta)
|
|
{
|
|
varflags |= VARF_Static|VARF_ReadOnly; // metadata implies readonly
|
|
if (!(field->Flags & ZCC_Native))
|
|
{
|
|
// Non-native meta data is not implemented yet and requires some groundwork in the class copy code.
|
|
Error(field, "Metadata member %s must be native", FName(field->Names->Name).GetChars());
|
|
}
|
|
}
|
|
|
|
if (field->Type->ArraySize != nullptr)
|
|
{
|
|
fieldtype = ResolveArraySize(fieldtype, field->Type->ArraySize, &type->Symbols);
|
|
}
|
|
|
|
auto name = field->Names;
|
|
do
|
|
{
|
|
if (AddTreeNode(name->Name, name, TreeNodes, !forstruct))
|
|
{
|
|
auto thisfieldtype = fieldtype;
|
|
if (name->ArraySize != nullptr)
|
|
{
|
|
thisfieldtype = ResolveArraySize(thisfieldtype, name->ArraySize, &type->Symbols);
|
|
}
|
|
|
|
if (varflags & VARF_Native)
|
|
{
|
|
auto querytype = (varflags & VARF_Static) ? type->GetClass() : type;
|
|
fd = FindField(querytype, FName(name->Name).GetChars());
|
|
if (fd == nullptr)
|
|
{
|
|
Error(field, "The member variable '%s.%s' has not been exported from the executable.", type->TypeName.GetChars(), FName(name->Name).GetChars());
|
|
}
|
|
else if (thisfieldtype->Size != fd->FieldSize && fd->BitValue == 0)
|
|
{
|
|
Error(field, "The member variable '%s.%s' has mismatching sizes in internal and external declaration. (Internal = %d, External = %d)", type->TypeName.GetChars(), FName(name->Name).GetChars(), fd->FieldSize, thisfieldtype->Size);
|
|
}
|
|
// Q: Should we check alignment, too? A mismatch may be an indicator for bad assumptions.
|
|
else
|
|
{
|
|
// for bit fields the type must point to the source variable.
|
|
if (fd->BitValue != 0) thisfieldtype = fd->FieldSize == 1 ? TypeUInt8 : fd->FieldSize == 2 ? TypeUInt16 : TypeUInt32;
|
|
type->AddNativeField(name->Name, thisfieldtype, fd->FieldOffset, varflags, fd->BitValue);
|
|
}
|
|
}
|
|
else if (hasnativechildren)
|
|
{
|
|
Error(field, "Cannot add field %s to %s. %s has native children which means it size may not change.", type->TypeName.GetChars(), fd->FieldSize, FName(name->Name).GetChars());
|
|
}
|
|
else
|
|
{
|
|
type->AddField(name->Name, thisfieldtype, varflags);
|
|
}
|
|
}
|
|
name = static_cast<ZCC_VarName*>(name->SiblingNext);
|
|
} while (name != field->Names);
|
|
Fields.Delete(0);
|
|
}
|
|
return Fields.Size() == 0;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: FieldFlagsToString
|
|
//
|
|
// creates a string for a field's flags
|
|
//
|
|
//==========================================================================
|
|
|
|
FString ZCCCompiler::FlagsToString(uint32_t flags)
|
|
{
|
|
const char *flagnames[] = { "native", "static", "private", "protected", "latent", "final", "meta", "action", "deprecated", "readonly", "funcconst", "abstract" };
|
|
FString build;
|
|
|
|
for (int i = 0; i < 12; i++)
|
|
{
|
|
if (flags & (1 << i))
|
|
{
|
|
if (build.IsNotEmpty()) build += ", ";
|
|
build += flagnames[i];
|
|
}
|
|
}
|
|
return build;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: DetermineType
|
|
//
|
|
// retrieves the type for this field, for arrays the type of a single entry.
|
|
//
|
|
//==========================================================================
|
|
|
|
PType *ZCCCompiler::DetermineType(PType *outertype, ZCC_TreeNode *field, FName name, ZCC_Type *ztype, bool allowarraytypes, bool formember)
|
|
{
|
|
PType *retval = TypeError;
|
|
if (!allowarraytypes && ztype->ArraySize != nullptr)
|
|
{
|
|
Error(field, "%s: Array type not allowed", name.GetChars());
|
|
return TypeError;
|
|
}
|
|
switch (ztype->NodeType)
|
|
{
|
|
case AST_BasicType:
|
|
{
|
|
auto btype = static_cast<ZCC_BasicType *>(ztype);
|
|
switch (btype->Type)
|
|
{
|
|
case ZCC_SInt8:
|
|
retval = formember? TypeSInt8 : (PType*)TypeError;
|
|
break;
|
|
|
|
case ZCC_UInt8:
|
|
retval = formember ? TypeUInt8 : (PType*)TypeError;
|
|
break;
|
|
|
|
case ZCC_SInt16:
|
|
retval = formember ? TypeSInt16 : (PType*)TypeError;
|
|
break;
|
|
|
|
case ZCC_UInt16:
|
|
retval = formember ? TypeUInt16 : (PType*)TypeError;
|
|
break;
|
|
|
|
case ZCC_SInt32:
|
|
case ZCC_IntAuto: // todo: for enums, autoselect appropriately sized int
|
|
retval = TypeSInt32;
|
|
break;
|
|
|
|
case ZCC_UInt32:
|
|
retval = TypeUInt32;
|
|
break;
|
|
|
|
case ZCC_Bool:
|
|
retval = TypeBool;
|
|
break;
|
|
|
|
case ZCC_FloatAuto:
|
|
retval = formember ? TypeFloat32 : TypeFloat64;
|
|
break;
|
|
|
|
case ZCC_Float64:
|
|
retval = TypeFloat64;
|
|
break;
|
|
|
|
case ZCC_String:
|
|
retval = TypeString;
|
|
break;
|
|
|
|
case ZCC_Name:
|
|
retval = TypeName;
|
|
break;
|
|
|
|
case ZCC_Vector2:
|
|
retval = TypeVector2;
|
|
break;
|
|
|
|
case ZCC_Vector3:
|
|
retval = TypeVector3;
|
|
break;
|
|
|
|
case ZCC_State:
|
|
retval = TypeState;
|
|
break;
|
|
|
|
case ZCC_Color:
|
|
retval = TypeColor;
|
|
break;
|
|
|
|
case ZCC_Sound:
|
|
retval = TypeSound;
|
|
break;
|
|
|
|
case ZCC_Let:
|
|
retval = TypeAuto;
|
|
break;
|
|
|
|
case ZCC_UserType:
|
|
// statelabel et.al. are not tokens - there really is no need to, it works just as well as an identifier. Maybe the same should be done for some other types, too?
|
|
switch (btype->UserType->Id)
|
|
{
|
|
case NAME_StateLabel:
|
|
retval = TypeStateLabel;
|
|
break;
|
|
|
|
case NAME_SpriteID:
|
|
retval = TypeSpriteID;
|
|
break;
|
|
|
|
case NAME_TextureID:
|
|
retval = TypeTextureID;
|
|
break;
|
|
|
|
default:
|
|
retval = ResolveUserType(btype, &outertype->Symbols);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case AST_MapType:
|
|
if (allowarraytypes)
|
|
{
|
|
Error(field, "%s: Map types not implemented yet", name.GetChars());
|
|
// Todo: Decide what we allow here and if it makes sense to allow more complex constructs.
|
|
auto mtype = static_cast<ZCC_MapType *>(ztype);
|
|
retval = NewMap(DetermineType(outertype, field, name, mtype->KeyType, false, false), DetermineType(outertype, field, name, mtype->ValueType, false, false));
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case AST_DynArrayType:
|
|
if (allowarraytypes)
|
|
{
|
|
Error(field, "%s: Dynamic array types not implemented yet", name.GetChars());
|
|
auto atype = static_cast<ZCC_DynArrayType *>(ztype);
|
|
retval = NewDynArray(DetermineType(outertype, field, name, atype->ElementType, false, false));
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case AST_ClassType:
|
|
{
|
|
auto ctype = static_cast<ZCC_ClassType *>(ztype);
|
|
if (ctype->Restriction == nullptr)
|
|
{
|
|
retval = NewClassPointer(RUNTIME_CLASS(DObject));
|
|
}
|
|
else
|
|
{
|
|
auto sym = outertype->Symbols.FindSymbol(ctype->Restriction->Id, true);
|
|
if (sym == nullptr) sym = GlobalSymbols.FindSymbol(ctype->Restriction->Id, false);
|
|
if (sym == nullptr)
|
|
{
|
|
Error(field, "%s: Unknown identifier", FName(ctype->Restriction->Id).GetChars());
|
|
return TypeError;
|
|
}
|
|
auto typesym = dyn_cast<PSymbolType>(sym);
|
|
if (typesym == nullptr || !typesym->Type->IsKindOf(RUNTIME_CLASS(PClass)))
|
|
{
|
|
Error(field, "%s does not represent a class type", FName(ctype->Restriction->Id).GetChars());
|
|
return TypeError;
|
|
}
|
|
retval = NewClassPointer(static_cast<PClass *>(typesym->Type));
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
if (retval != TypeError && retval->MemberOnly && !formember)
|
|
{
|
|
Error(field, "Invalid type %s", retval->DescriptiveName());
|
|
return TypeError;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: ResolveUserType
|
|
//
|
|
// resolves a user type and returns a matching PType
|
|
//
|
|
//==========================================================================
|
|
|
|
PType *ZCCCompiler::ResolveUserType(ZCC_BasicType *type, PSymbolTable *symt)
|
|
{
|
|
// Check the symbol table for the identifier.
|
|
PSymbolTable *table;
|
|
PSymbol *sym = symt->FindSymbolInTable(type->UserType->Id, table);
|
|
// GlobalSymbols cannot be the parent of a class's symbol table so we have to look for global symbols explicitly.
|
|
if (sym == nullptr && symt != &GlobalSymbols) sym = GlobalSymbols.FindSymbolInTable(type->UserType->Id, table);
|
|
if (sym != nullptr && sym->IsKindOf(RUNTIME_CLASS(PSymbolType)))
|
|
{
|
|
auto ptype = static_cast<PSymbolType *>(sym)->Type;
|
|
if (ptype->IsKindOf(RUNTIME_CLASS(PEnum)))
|
|
{
|
|
return TypeSInt32; // hack this to an integer until we can resolve the enum mess.
|
|
}
|
|
if (ptype->IsKindOf(RUNTIME_CLASS(PNativeStruct))) // native structs and classes cannot be instantiated, they always get used as reference.
|
|
{
|
|
return NewPointer(ptype, type->isconst);
|
|
}
|
|
return ptype;
|
|
}
|
|
Error(type, "Unable to resolve %s as type.", FName(type->UserType->Id).GetChars());
|
|
return TypeError;
|
|
}
|
|
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: ResolveArraySize
|
|
//
|
|
// resolves the array size and returns a matching type.
|
|
//
|
|
//==========================================================================
|
|
|
|
PType *ZCCCompiler::ResolveArraySize(PType *baseType, ZCC_Expression *arraysize, PSymbolTable *sym)
|
|
{
|
|
TArray<ZCC_Expression *> indices;
|
|
|
|
// Simplify is too broken to resolve this inside the ring list so unravel the list into an array before starting to simplify its components.
|
|
auto node = arraysize;
|
|
do
|
|
{
|
|
indices.Push(node);
|
|
node = static_cast<ZCC_Expression*>(node->SiblingNext);
|
|
} while (node != arraysize);
|
|
|
|
for (auto node : indices)
|
|
{
|
|
auto val = Simplify(node, sym, true);
|
|
if (val->Operation != PEX_ConstValue || !val->Type->IsA(RUNTIME_CLASS(PInt)))
|
|
{
|
|
Error(arraysize, "Array index must be an integer constant");
|
|
return TypeError;
|
|
}
|
|
int size = static_cast<ZCC_ExprConstant *>(val)->IntVal;
|
|
if (size < 1)
|
|
{
|
|
Error(arraysize, "Array size must be positive");
|
|
return TypeError;
|
|
}
|
|
baseType = NewArray(baseType, size);
|
|
}
|
|
return baseType;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// ZCCCompiler :: GetInt - Input must be a constant expression
|
|
//
|
|
//==========================================================================
|
|
|
|
int ZCCCompiler::GetInt(ZCC_Expression *expr)
|
|
{
|
|
if (expr->Type == TypeError)
|
|
{
|
|
return 0;
|
|
}
|
|
const PType::Conversion *route[CONVERSION_ROUTE_SIZE];
|
|
int routelen = expr->Type->FindConversion(TypeSInt32, route, countof(route));
|
|
if (routelen < 0)
|
|
{
|
|
Error(expr, "Cannot convert to integer");
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
if (expr->Type->IsKindOf(RUNTIME_CLASS(PFloat)))
|
|
{
|
|
Warn(expr, "Truncation of floating point value");
|
|
}
|
|
auto ex = static_cast<ZCC_ExprConstant *>(ApplyConversion(expr, route, routelen));
|
|
return ex->IntVal;
|
|
}
|
|
}
|
|
|
|
double ZCCCompiler::GetDouble(ZCC_Expression *expr)
|
|
{
|
|
if (expr->Type == TypeError)
|
|
{
|
|
return 0;
|
|
}
|
|
const PType::Conversion *route[CONVERSION_ROUTE_SIZE];
|
|
int routelen = expr->Type->FindConversion(TypeFloat64, route, countof(route));
|
|
if (routelen < 0)
|
|
{
|
|
Error(expr, "Cannot convert to float");
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
auto ex = static_cast<ZCC_ExprConstant *>(ApplyConversion(expr, route, routelen));
|
|
return ex->DoubleVal;
|
|
}
|
|
}
|
|
|
|
const char *ZCCCompiler::GetString(ZCC_Expression *expr, bool silent)
|
|
{
|
|
if (expr->Type == TypeError)
|
|
{
|
|
return nullptr;
|
|
}
|
|
else if (expr->Type->IsKindOf(RUNTIME_CLASS(PString)))
|
|
{
|
|
return static_cast<ZCC_ExprConstant *>(expr)->StringVal->GetChars();
|
|
}
|
|
else if (expr->Type->IsKindOf(RUNTIME_CLASS(PName)))
|
|
{
|
|
// Ugh... What a mess...
|
|
return FName(ENamedName(static_cast<ZCC_ExprConstant *>(expr)->IntVal)).GetChars();
|
|
}
|
|
else
|
|
{
|
|
if (!silent) Error(expr, "Cannot convert to string");
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// Parses an actor property's parameters and calls the handler
|
|
//
|
|
//==========================================================================
|
|
|
|
void ZCCCompiler::DispatchProperty(FPropertyInfo *prop, ZCC_PropertyStmt *property, AActor *defaults, Baggage &bag)
|
|
{
|
|
static TArray<FPropParam> params;
|
|
static TArray<FString> strings;
|
|
|
|
params.Clear();
|
|
strings.Clear();
|
|
params.Reserve(1);
|
|
params[0].i = 0;
|
|
if (prop->params[0] != '0')
|
|
{
|
|
if (property->Values == nullptr)
|
|
{
|
|
Error(property, "%s: arguments missing", prop->name);
|
|
return;
|
|
}
|
|
property->Values = Simplify(property->Values, &bag.Info->Symbols, true); // need to do this before the loop so that we can find the head node again.
|
|
const char * p = prop->params;
|
|
auto exp = property->Values;
|
|
|
|
while (true)
|
|
{
|
|
FPropParam conv;
|
|
FPropParam pref;
|
|
|
|
if (exp->NodeType != AST_ExprConstant)
|
|
{
|
|
// If we get TypeError, there has already been a message from deeper down so do not print another one.
|
|
if (exp->Type != TypeError) Error(exp, "%s: non-constant parameter", prop->name);
|
|
return;
|
|
}
|
|
conv.s = nullptr;
|
|
pref.s = nullptr;
|
|
pref.i = -1;
|
|
switch ((*p) & 223)
|
|
{
|
|
|
|
case 'X': // Expression in parentheses or number. We only support the constant here. The function will have to be handled by a separate property to get past the parser.
|
|
conv.i = GetInt(exp);
|
|
params.Push(conv);
|
|
conv.exp = nullptr;
|
|
break;
|
|
|
|
case 'I':
|
|
case 'M': // special case for morph styles in DECORATE . This expression-aware parser will not need this.
|
|
case 'N': // special case for thing activations in DECORATE. This expression-aware parser will not need this.
|
|
conv.i = GetInt(exp);
|
|
break;
|
|
|
|
case 'F':
|
|
conv.d = GetDouble(exp);
|
|
break;
|
|
|
|
case 'Z': // an optional string. Does not allow any numeric value.
|
|
if (!GetString(exp, true))
|
|
{
|
|
// apply this expression to the next argument on the list.
|
|
params.Push(conv);
|
|
params[0].i++;
|
|
p++;
|
|
continue;
|
|
}
|
|
conv.s = GetString(exp);
|
|
break;
|
|
|
|
case 'C': // this parser accepts colors only in string form.
|
|
pref.i = 1;
|
|
case 'S':
|
|
case 'T': // a filtered string (ZScript only parses filtered strings so there's nothing to do here.)
|
|
conv.s = GetString(exp);
|
|
break;
|
|
|
|
case 'L': // Either a number or a list of strings
|
|
if (!GetString(exp, true))
|
|
{
|
|
pref.i = 0;
|
|
conv.i = GetInt(exp);
|
|
}
|
|
else
|
|
{
|
|
pref.i = 1;
|
|
params.Push(pref);
|
|
params[0].i++;
|
|
|
|
do
|
|
{
|
|
conv.s = GetString(exp);
|
|
if (conv.s != nullptr)
|
|
{
|
|
params.Push(conv);
|
|
params[0].i++;
|
|
}
|
|
exp = Simplify(static_cast<ZCC_Expression *>(exp->SiblingNext), &bag.Info->Symbols, true);
|
|
} while (exp != property->Values);
|
|
goto endofparm;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
assert(false);
|
|
break;
|
|
|
|
}
|
|
if (pref.i != -1)
|
|
{
|
|
params.Push(pref);
|
|
params[0].i++;
|
|
}
|
|
params.Push(conv);
|
|
params[0].i++;
|
|
exp = Simplify(static_cast<ZCC_Expression *>(exp->SiblingNext), &bag.Info->Symbols, true);
|
|
endofparm:
|
|
p++;
|
|
// Skip the DECORATE 'no comma' marker
|
|
if (*p == '_') p++;
|
|
|
|
if (*p == 0)
|
|
{
|
|
if (exp != property->Values)
|
|
{
|
|
Error(property, "Too many values for '%s'", prop->name);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
else if (exp == property->Values)
|
|
{
|
|
if (*p < 'a')
|
|
{
|
|
Error(property, "Insufficient parameters for %s", prop->name);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// call the handler
|
|
try
|
|
{
|
|
prop->Handler(defaults, bag.Info, bag, ¶ms[0]);
|
|
}
|
|
catch (CRecoverableError &error)
|
|
{
|
|
Error(property, "%s", error.GetMessage());
|
|
}
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// Parses an actor property
|
|
//
|
|
//==========================================================================
|
|
|
|
void ZCCCompiler::ProcessDefaultProperty(PClassActor *cls, ZCC_PropertyStmt *prop, Baggage &bag)
|
|
{
|
|
auto namenode = prop->Prop;
|
|
FString propname;
|
|
|
|
if (namenode->SiblingNext == namenode)
|
|
{
|
|
if (namenode->Id == NAME_DamageFunction)
|
|
{
|
|
auto x = ConvertNode(prop->Values);
|
|
CreateDamageFunction(cls, (AActor *)bag.Info->Defaults, x, false, Lump);
|
|
((AActor *)bag.Info->Defaults)->DamageVal = -1;
|
|
return;
|
|
}
|
|
|
|
// a one-name property
|
|
propname = FName(namenode->Id);
|
|
|
|
}
|
|
else if (namenode->SiblingNext->SiblingNext == namenode)
|
|
{
|
|
// a two-name property
|
|
propname << FName(namenode->Id) << "." << FName(static_cast<ZCC_Identifier *>(namenode->SiblingNext)->Id);
|
|
}
|
|
else
|
|
{
|
|
Error(prop, "Property name may at most contain two parts");
|
|
return;
|
|
}
|
|
|
|
|
|
FPropertyInfo *property = FindProperty(propname);
|
|
|
|
if (property != nullptr && property->category != CAT_INFO)
|
|
{
|
|
if (cls->IsDescendantOf(*property->cls))
|
|
{
|
|
DispatchProperty(property, prop, (AActor *)bag.Info->Defaults, bag);
|
|
}
|
|
else
|
|
{
|
|
Error(prop, "'%s' requires an actor of type '%s'\n", propname.GetChars(), (*property->cls)->TypeName.GetChars());
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Error(prop, "'%s' is an unknown actor property\n", propname.GetChars());
|
|
}
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// Finds a flag and sets or clears it
|
|
//
|
|
//==========================================================================
|
|
|
|
void ZCCCompiler::ProcessDefaultFlag(PClassActor *cls, ZCC_FlagStmt *flg)
|
|
{
|
|
auto namenode = flg->name;
|
|
const char *n1 = FName(namenode->Id).GetChars(), *n2;
|
|
|
|
if (namenode->SiblingNext == namenode)
|
|
{
|
|
// a one-name flag
|
|
n2 = nullptr;
|
|
}
|
|
else if (namenode->SiblingNext->SiblingNext == namenode)
|
|
{
|
|
// a two-name flag
|
|
n2 = FName(static_cast<ZCC_Identifier *>(namenode->SiblingNext)->Id).GetChars();
|
|
}
|
|
else
|
|
{
|
|
Error(flg, "Flag name may at most contain two parts");
|
|
return;
|
|
}
|
|
|
|
auto fd = FindFlag(cls, n1, n2, true);
|
|
if (fd != nullptr)
|
|
{
|
|
if (fd->varflags & VARF_Deprecated)
|
|
{
|
|
Warn(flg, "Deprecated flag '%s%s%s' used", n1, n2 ? "." : "", n2 ? n2 : "");
|
|
}
|
|
if (fd->structoffset == -1)
|
|
{
|
|
HandleDeprecatedFlags((AActor*)cls->Defaults, cls, flg->set, fd->flagbit);
|
|
}
|
|
else
|
|
{
|
|
ModActorFlag((AActor*)cls->Defaults, fd, flg->set);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Error(flg, "Unknown flag '%s%s%s'", n1, n2 ? "." : "", n2 ? n2 : "");
|
|
}
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// Parses the default list
|
|
//
|
|
//==========================================================================
|
|
|
|
void ZCCCompiler::InitDefaults()
|
|
{
|
|
for (auto c : Classes)
|
|
{
|
|
// This may be removed if the conditions change, but right now only subclasses of Actor can define a Default block.
|
|
if (!c->Type()->IsDescendantOf(RUNTIME_CLASS(AActor)))
|
|
{
|
|
if (c->Defaults.Size()) Error(c->cls, "%s: Non-actor classes may not have defaults", c->Type()->TypeName.GetChars());
|
|
if (c->Type()->ParentClass) c->Type()->ParentClass->DeriveData(c->Type());
|
|
}
|
|
else
|
|
{
|
|
// This should never happen.
|
|
if (c->Type()->Defaults != nullptr)
|
|
{
|
|
Error(c->cls, "%s already has defaults", c->Type()->TypeName.GetChars());
|
|
}
|
|
// This can only occur if a native parent is not initialized. In all other cases the sorting of the class list should prevent this from ever happening.
|
|
else if (c->Type()->ParentClass->Defaults == nullptr && c->Type() != RUNTIME_CLASS(AActor))
|
|
{
|
|
Error(c->cls, "Parent class %s of %s is not initialized", c->Type()->ParentClass->TypeName.GetChars(), c->Type()->TypeName.GetChars());
|
|
}
|
|
else
|
|
{
|
|
// Copy the parent's defaults and meta data.
|
|
auto ti = static_cast<PClassActor *>(c->Type());
|
|
|
|
ti->InitializeDefaults();
|
|
ti->ParentClass->DeriveData(ti);
|
|
|
|
// We need special treatment for this one field in AActor's defaults which cannot be made visible to DECORATE as a property.
|
|
// It's better to do this here under controlled conditions than deeper down in the class type classes.
|
|
if (ti == RUNTIME_CLASS(AActor))
|
|
{
|
|
((AActor*)ti->Defaults)->ConversationRoot = 1;
|
|
}
|
|
|
|
Baggage bag;
|
|
#ifdef _DEBUG
|
|
bag.ClassName = c->Type()->TypeName;
|
|
#endif
|
|
bag.Info = ti;
|
|
bag.DropItemSet = false;
|
|
bag.StateSet = false;
|
|
bag.fromDecorate = false;
|
|
bag.CurrentState = 0;
|
|
bag.Lumpnum = c->cls->SourceLump;
|
|
bag.DropItemList = nullptr;
|
|
// The actual script position needs to be set per property.
|
|
|
|
for (auto d : c->Defaults)
|
|
{
|
|
auto content = d->Content;
|
|
if (content != nullptr) do
|
|
{
|
|
switch (content->NodeType)
|
|
{
|
|
case AST_PropertyStmt:
|
|
bag.ScriptPosition.FileName = *content->SourceName;
|
|
bag.ScriptPosition.ScriptLine = content->SourceLoc;
|
|
ProcessDefaultProperty(ti, static_cast<ZCC_PropertyStmt *>(content), bag);
|
|
break;
|
|
|
|
case AST_FlagStmt:
|
|
ProcessDefaultFlag(ti, static_cast<ZCC_FlagStmt *>(content));
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
content = static_cast<decltype(content)>(content->SiblingNext);
|
|
} while (content != d->Content);
|
|
}
|
|
if (bag.DropItemSet)
|
|
{
|
|
bag.Info->SetDropItems(bag.DropItemList);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void ZCCCompiler::CompileFunction(ZCC_StructWork *c, ZCC_FuncDeclarator *f, bool forclass)
|
|
{
|
|
TArray<PType *> rets(1);
|
|
TArray<PType *> args;
|
|
TArray<uint32_t> argflags;
|
|
TArray<VMValue> argdefaults;
|
|
TArray<FName> argnames;
|
|
|
|
rets.Clear();
|
|
args.Clear();
|
|
argflags.Clear();
|
|
bool hasdefault = false;
|
|
// For the time being, let's not allow overloading. This may be reconsidered later but really just adds an unnecessary amount of complexity here.
|
|
if (AddTreeNode(f->Name, f, &c->TreeNodes, false))
|
|
{
|
|
auto t = f->Type;
|
|
if (t != nullptr)
|
|
{
|
|
do
|
|
{
|
|
auto type = DetermineType(c->Type(), f, f->Name, t, false, false);
|
|
if (type->IsKindOf(RUNTIME_CLASS(PStruct)) && type != TypeVector2 && type != TypeVector3)
|
|
{
|
|
// structs and classes only get passed by pointer.
|
|
type = NewPointer(type);
|
|
}
|
|
// TBD: disallow certain types? For now, let everything pass that isn't an array.
|
|
rets.Push(type);
|
|
t = static_cast<decltype(t)>(t->SiblingNext);
|
|
} while (t != f->Type);
|
|
}
|
|
|
|
int notallowed = ZCC_Latent | ZCC_Meta | ZCC_ReadOnly | ZCC_FuncConst | ZCC_Abstract;
|
|
|
|
if (f->Flags & notallowed)
|
|
{
|
|
Error(f, "Invalid qualifiers for %s (%s not allowed)", FName(f->Name).GetChars(), FlagsToString(f->Flags & notallowed).GetChars());
|
|
f->Flags &= notallowed;
|
|
}
|
|
uint32_t varflags = VARF_Method;
|
|
int implicitargs = 1;
|
|
AFuncDesc *afd = nullptr;
|
|
int useflags = SUF_ACTOR | SUF_OVERLAY | SUF_WEAPON | SUF_ITEM;
|
|
if (f->UseFlags != nullptr)
|
|
{
|
|
useflags = 0;
|
|
auto p = f->UseFlags;
|
|
do
|
|
{
|
|
switch (p->Id)
|
|
{
|
|
case NAME_Actor:
|
|
useflags |= SUF_ACTOR;
|
|
break;
|
|
case NAME_Overlay:
|
|
useflags |= SUF_OVERLAY;
|
|
break;
|
|
case NAME_Weapon:
|
|
useflags |= SUF_WEAPON;
|
|
break;
|
|
case NAME_Item:
|
|
useflags |= SUF_ITEM;
|
|
break;
|
|
default:
|
|
Error(p, "Unknown Action qualifier %s", FName(p->Id).GetChars());
|
|
break;
|
|
}
|
|
|
|
p = static_cast<decltype(p)>(p->SiblingNext);
|
|
} while (p != f->UseFlags);
|
|
}
|
|
|
|
// map to implementation flags.
|
|
if (f->Flags & ZCC_Private) varflags |= VARF_Private;
|
|
if (f->Flags & ZCC_Protected) varflags |= VARF_Protected;
|
|
if (f->Flags & ZCC_Deprecated) varflags |= VARF_Deprecated;
|
|
if (f->Flags & ZCC_Virtual) varflags |= VARF_Virtual;
|
|
if (f->Flags & ZCC_Override) varflags |= VARF_Override;
|
|
if (f->Flags & ZCC_Action)
|
|
{
|
|
// Non-Actors cannot have action functions.
|
|
if (!c->Type()->IsKindOf(RUNTIME_CLASS(PClassActor)))
|
|
{
|
|
Error(f, "'Action' can only be used in child classes of Actor");
|
|
}
|
|
|
|
varflags |= VARF_Final; // Action implies Final.
|
|
if (useflags & (SUF_OVERLAY | SUF_WEAPON | SUF_ITEM))
|
|
{
|
|
varflags |= VARF_Action;
|
|
implicitargs = 3;
|
|
}
|
|
else
|
|
{
|
|
implicitargs = 1;
|
|
}
|
|
}
|
|
if (f->Flags & ZCC_Static) varflags = (varflags & ~VARF_Method) | VARF_Final, implicitargs = 0; // Static implies Final.
|
|
|
|
|
|
if (varflags & VARF_Override) varflags &= ~VARF_Virtual; // allow 'virtual override'.
|
|
// Only one of these flags may be used.
|
|
static int exclude[] = { ZCC_Virtual, ZCC_Override, ZCC_Action, ZCC_Static };
|
|
static const char * print[] = { "virtual", "override", "action", "static" };
|
|
int fc = 0;
|
|
FString build;
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
if (f->Flags & exclude[i])
|
|
{
|
|
fc++;
|
|
if (build.Len() > 0) build += ", ";
|
|
build += print[i];
|
|
}
|
|
}
|
|
if (fc > 1)
|
|
{
|
|
Error(f, "Invalid combination of qualifiers %s on function %s.", FName(f->Name).GetChars(), build.GetChars());
|
|
varflags |= VARF_Method;
|
|
}
|
|
if (varflags & VARF_Override) varflags |= VARF_Virtual; // Now that the flags are checked, make all override functions virtual as well.
|
|
|
|
if (f->Flags & ZCC_Native)
|
|
{
|
|
varflags |= VARF_Native;
|
|
afd = FindFunction(c->Type(), FName(f->Name).GetChars());
|
|
if (afd == nullptr)
|
|
{
|
|
Error(f, "The function '%s.%s' has not been exported from the executable.", c->Type()->TypeName.GetChars(), FName(f->Name).GetChars());
|
|
}
|
|
else
|
|
{
|
|
(*afd->VMPointer)->ImplicitArgs = BYTE(implicitargs);
|
|
}
|
|
}
|
|
SetImplicitArgs(&args, &argflags, &argnames, c->Type(), varflags, useflags);
|
|
argdefaults.Resize(argnames.Size());
|
|
auto p = f->Params;
|
|
bool hasoptionals = false;
|
|
if (p != nullptr)
|
|
{
|
|
do
|
|
{
|
|
int elementcount = 1;
|
|
VMValue vmval[3]; // default is REGT_NIL which means 'no default value' here.
|
|
if (p->Type != nullptr)
|
|
{
|
|
auto type = DetermineType(c->Type(), p, f->Name, p->Type, false, false);
|
|
int flags = 0;
|
|
if (type->IsA(RUNTIME_CLASS(PStruct)) && type != TypeVector2 && type != TypeVector3)
|
|
{
|
|
// Structs are being passed by pointer, but unless marked 'out' that pointer must be readonly.
|
|
type = NewPointer(type /*, !(p->Flags & ZCC_Out)*/);
|
|
flags |= VARF_Ref;
|
|
}
|
|
else if (type->GetRegType() != REGT_NIL)
|
|
{
|
|
if (p->Flags & ZCC_Out) flags |= VARF_Out;
|
|
if (type == TypeVector2)
|
|
{
|
|
elementcount = 2;
|
|
}
|
|
else if (type == TypeVector3)
|
|
{
|
|
elementcount = 3;
|
|
}
|
|
}
|
|
if (type->GetRegType() == REGT_NIL && type != TypeVector2 && type != TypeVector3)
|
|
{
|
|
Error(p, "Invalid type %s for function parameter", type->DescriptiveName());
|
|
}
|
|
else if (p->Default != nullptr)
|
|
{
|
|
flags |= VARF_Optional;
|
|
hasoptionals = true;
|
|
// The simplifier is not suited to convert the constant into something usable.
|
|
// All it does is reduce the expression to a constant but we still got to do proper type checking and conversion.
|
|
// It will also lose important type info about enums, once these get implemented
|
|
// The code generator can do this properly for us.
|
|
FxExpression *x = new FxTypeCast(ConvertNode(p->Default), type, false);
|
|
FCompileContext ctx(c->Type(), false);
|
|
x = x->Resolve(ctx);
|
|
|
|
if (x != nullptr)
|
|
{
|
|
// Vectors need special treatment because they use more than one entry in the Defaults and do not report as actual constants
|
|
if (type == TypeVector2 && x->ExprType == EFX_VectorValue && static_cast<FxVectorValue *>(x)->isConstVector(2))
|
|
{
|
|
auto vx = static_cast<FxVectorValue *>(x);
|
|
vmval[0] = static_cast<FxConstant *>(vx->xyz[0])->GetValue().GetFloat();
|
|
vmval[1] = static_cast<FxConstant *>(vx->xyz[1])->GetValue().GetFloat();
|
|
}
|
|
else if (type == TypeVector3 && x->ExprType == EFX_VectorValue && static_cast<FxVectorValue *>(x)->isConstVector(3))
|
|
{
|
|
auto vx = static_cast<FxVectorValue *>(x);
|
|
vmval[0] = static_cast<FxConstant *>(vx->xyz[0])->GetValue().GetFloat();
|
|
vmval[1] = static_cast<FxConstant *>(vx->xyz[1])->GetValue().GetFloat();
|
|
vmval[2] = static_cast<FxConstant *>(vx->xyz[2])->GetValue().GetFloat();
|
|
}
|
|
else if (!x->isConstant())
|
|
{
|
|
Error(p, "Default parameter %s is not constant in %s", FName(p->Name).GetChars(), FName(f->Name).GetChars());
|
|
}
|
|
else if (x->ValueType != type)
|
|
{
|
|
Error(p, "Default parameter %s could not be converted to target type %s", FName(p->Name).GetChars(), c->Type()->TypeName.GetChars());
|
|
}
|
|
else
|
|
{
|
|
auto cnst = static_cast<FxConstant *>(x);
|
|
hasdefault = true;
|
|
switch (type->GetRegType())
|
|
{
|
|
case REGT_INT:
|
|
vmval[0] = cnst->GetValue().GetInt();
|
|
break;
|
|
|
|
case REGT_FLOAT:
|
|
vmval[0] = cnst->GetValue().GetFloat();
|
|
break;
|
|
|
|
case REGT_POINTER:
|
|
if (type->IsKindOf(RUNTIME_CLASS(PClassPointer)))
|
|
vmval[0] = (DObject*)cnst->GetValue().GetPointer();
|
|
else
|
|
vmval[0] = cnst->GetValue().GetPointer();
|
|
break;
|
|
|
|
case REGT_STRING:
|
|
vmval[0] = cnst->GetValue().GetString();
|
|
break;
|
|
|
|
default:
|
|
assert(0 && "no valid type for constant");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (x != nullptr) delete x;
|
|
}
|
|
else if (hasoptionals)
|
|
{
|
|
Error(p, "All arguments after the first optional one need also be optional.");
|
|
}
|
|
// TBD: disallow certain types? For now, let everything pass that isn't an array.
|
|
args.Push(type);
|
|
argflags.Push(flags);
|
|
argnames.Push(p->Name);
|
|
|
|
}
|
|
else
|
|
{
|
|
args.Push(nullptr);
|
|
argflags.Push(0);
|
|
argnames.Push(NAME_None);
|
|
}
|
|
for (int i = 0; i<elementcount; i++) argdefaults.Push(vmval[i]);
|
|
p = static_cast<decltype(p)>(p->SiblingNext);
|
|
} while (p != f->Params);
|
|
}
|
|
|
|
PFunction *sym = new PFunction(c->Type(), f->Name);
|
|
sym->AddVariant(NewPrototype(rets, args), argflags, argnames, afd == nullptr ? nullptr : *(afd->VMPointer), varflags, useflags);
|
|
c->Type()->Symbols.ReplaceSymbol(sym);
|
|
|
|
auto cls = dyn_cast<PClass>(c->Type());
|
|
PFunction *virtsym = nullptr;
|
|
if (cls != nullptr && cls->ParentClass != nullptr) virtsym = dyn_cast<PFunction>(cls->ParentClass->Symbols.FindSymbol(FName(f->Name), true));
|
|
unsigned vindex = ~0u;
|
|
if (virtsym != nullptr) vindex = virtsym->Variants[0].Implementation->VirtualIndex;
|
|
|
|
if (vindex != ~0u || (varflags & VARF_Virtual))
|
|
{
|
|
// Todo: Check if the declaration is legal.
|
|
|
|
// First step: compare prototypes - if they do not match the virtual base method does not apply.
|
|
|
|
// Second step: Check flags. Possible cases:
|
|
// 1. Base method is final: Error.
|
|
// 2. This method is override: Base virtual method must exist
|
|
// 3. This method is virtual but not override: Base may not have a virtual method with the same prototype.
|
|
}
|
|
|
|
|
|
if (!(f->Flags & ZCC_Native))
|
|
{
|
|
if (f->Body == nullptr)
|
|
{
|
|
Error(f, "Empty function %s", FName(f->Name).GetChars());
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
auto code = ConvertAST(c->Type(), f->Body);
|
|
if (code != nullptr)
|
|
{
|
|
FunctionBuildList.AddFunction(sym, code, FStringf("%s.%s", c->Type()->TypeName.GetChars(), FName(f->Name).GetChars()), false, -1, 0, Lump);
|
|
}
|
|
}
|
|
}
|
|
if (sym->Variants[0].Implementation != nullptr && hasdefault) // do not copy empty default lists, they only waste space and processing time.
|
|
{
|
|
sym->Variants[0].Implementation->DefaultArgs = std::move(argdefaults);
|
|
}
|
|
|
|
if (varflags & VARF_Virtual)
|
|
{
|
|
if (sym->Variants[0].Implementation == nullptr)
|
|
{
|
|
Error(f, "Virtual function %s.%s not present.", c->Type()->TypeName.GetChars(), FName(f->Name).GetChars());
|
|
return;
|
|
}
|
|
if (varflags & VARF_Final)
|
|
{
|
|
sym->Variants[0].Implementation->Final = true;
|
|
}
|
|
if (forclass)
|
|
{
|
|
PClass *clstype = static_cast<PClass *>(c->Type());
|
|
int vindex = clstype->FindVirtualIndex(sym->SymbolName, sym->Variants[0].Proto);
|
|
// specifying 'override' is necessary to prevent one of the biggest problem spots with virtual inheritance: Mismatching argument types.
|
|
if (varflags & VARF_Override)
|
|
{
|
|
if (vindex == -1)
|
|
{
|
|
Error(f, "Attempt to override non-existent virtual function %s", FName(f->Name).GetChars());
|
|
}
|
|
else
|
|
{
|
|
auto oldfunc = clstype->Virtuals[vindex];
|
|
if (oldfunc->Final)
|
|
{
|
|
Error(f, "Attempt to override final function %s", FName(f->Name).GetChars());
|
|
}
|
|
clstype->Virtuals[vindex] = sym->Variants[0].Implementation;
|
|
sym->Variants[0].Implementation->VirtualIndex = vindex;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (vindex != -1)
|
|
{
|
|
Error(f, "Function %s attempts to override parent function without 'override' qualifier", FName(f->Name).GetChars());
|
|
}
|
|
sym->Variants[0].Implementation->VirtualIndex = clstype->Virtuals.Push(sym->Variants[0].Implementation);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Error(p, "Virtual functions can only be defined for classes");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// Parses the functions list
|
|
//
|
|
//==========================================================================
|
|
|
|
void ZCCCompiler::InitFunctions()
|
|
{
|
|
for (auto s : Structs)
|
|
{
|
|
for (auto f : s->Functions)
|
|
{
|
|
CompileFunction(s, f, false);
|
|
}
|
|
}
|
|
|
|
for (auto c : Classes)
|
|
{
|
|
// cannot be done earlier because it requires the parent class to be processed by this code, too.
|
|
if (c->Type()->ParentClass != nullptr)
|
|
{
|
|
c->Type()->Virtuals = c->Type()->ParentClass->Virtuals;
|
|
}
|
|
for (auto f : c->Functions)
|
|
{
|
|
CompileFunction(c, f, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// very complicated check for random duration.
|
|
//
|
|
//==========================================================================
|
|
|
|
static bool CheckRandom(ZCC_Expression *duration)
|
|
{
|
|
if (duration->NodeType != AST_ExprFuncCall) return false;
|
|
auto func = static_cast<ZCC_ExprFuncCall *>(duration);
|
|
if (func->Function == nullptr) return false;
|
|
if (func->Function->NodeType != AST_ExprID) return false;
|
|
auto f2 = static_cast<ZCC_ExprID *>(func->Function);
|
|
return f2->Identifier == NAME_Random;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// Sets up the action function call
|
|
//
|
|
//==========================================================================
|
|
FxExpression *ZCCCompiler::SetupActionFunction(PClass *cls, ZCC_TreeNode *af, int StateFlags)
|
|
{
|
|
// We have 3 cases to consider here:
|
|
// 1. A function without parameters. This can be called directly
|
|
// 2. A functon with parameters. This needs to be wrapped into a helper function to set everything up.
|
|
// 3. An anonymous function.
|
|
|
|
// 1. and 2. are exposed through AST_ExprFunctionCall
|
|
if (af->NodeType == AST_ExprFuncCall)
|
|
{
|
|
auto fc = static_cast<ZCC_ExprFuncCall *>(af);
|
|
assert(fc->Function->NodeType == AST_ExprID);
|
|
auto id = static_cast<ZCC_ExprID *>(fc->Function);
|
|
|
|
// We must skip ACS_NamedExecuteWithResult here, because this name both exists as an action function and as a builtin.
|
|
// The code which gets called from here can easily make use of the builtin, so let's just pass this name without any checks.
|
|
// The actual action function is still needed by DECORATE:
|
|
if (id->Identifier != NAME_ACS_NamedExecuteWithResult)
|
|
{
|
|
PFunction *afd = dyn_cast<PFunction>(cls->Symbols.FindSymbol(id->Identifier, true));
|
|
if (afd != nullptr)
|
|
{
|
|
if (fc->Parameters == nullptr && !(afd->Variants[0].Flags & VARF_Virtual))
|
|
{
|
|
FArgumentList argumentlist;
|
|
// We can use this function directly without wrapping it in a caller.
|
|
auto selfclass = dyn_cast<PClass>(afd->Variants[0].SelfClass);
|
|
assert(selfclass != nullptr); // non classes are not supposed to get here.
|
|
|
|
int comboflags = afd->Variants[0].UseFlags & StateFlags;
|
|
if (comboflags == StateFlags) // the function must satisfy all the flags the state requires
|
|
{
|
|
return new FxVMFunctionCall(new FxSelf(*af), afd, argumentlist, *af, false);
|
|
}
|
|
else
|
|
{
|
|
Error(af, "Cannot use non-action function %s here.", FName(id->Identifier).GetChars());
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// it may also be an action special so check that first before printing an error.
|
|
if (!P_FindLineSpecial(FName(id->Identifier).GetChars()))
|
|
{
|
|
Error(af, "%s: action function not found in %s", FName(id->Identifier).GetChars(), cls->TypeName.GetChars());
|
|
return nullptr;
|
|
}
|
|
// Action specials fall through to the code generator.
|
|
}
|
|
}
|
|
}
|
|
return ConvertAST(cls, af);
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// Compile the states
|
|
//
|
|
//==========================================================================
|
|
|
|
void ZCCCompiler::CompileStates()
|
|
{
|
|
for (auto c : Classes)
|
|
{
|
|
|
|
if (!c->Type()->IsDescendantOf(RUNTIME_CLASS(AActor)))
|
|
{
|
|
if (c->States.Size()) Error(c->cls, "%s: States can only be defined for actors.", c->Type()->TypeName.GetChars());
|
|
continue;
|
|
}
|
|
|
|
// Same here, hack in the DVMObject as they weren't in the list originally
|
|
// TODO: process them in a non hackish way obviously
|
|
if (c->Type()->bRuntimeClass == true && c->Type()->ParentClass->bRuntimeClass == false)
|
|
{
|
|
auto vmtype = static_cast<PClassActor *>(c->Type()->ParentClass);
|
|
if (vmtype->StateList == nullptr)
|
|
{
|
|
FStateDefinitions vmstates;
|
|
vmstates.MakeStateDefines(dyn_cast<PClassActor>(vmtype->ParentClass));
|
|
vmtype->Finalize(vmstates);
|
|
}
|
|
}
|
|
|
|
FString statename; // The state builder wants the label as one complete string, not separated into tokens.
|
|
FStateDefinitions statedef;
|
|
statedef.MakeStateDefines(dyn_cast<PClassActor>(c->Type()->ParentClass));
|
|
int numframes = 0;
|
|
|
|
for (auto s : c->States)
|
|
{
|
|
int flags;
|
|
if (s->Flags != nullptr)
|
|
{
|
|
flags = 0;
|
|
auto p = s->Flags;
|
|
do
|
|
{
|
|
switch (p->Id)
|
|
{
|
|
case NAME_Actor:
|
|
flags |= SUF_ACTOR;
|
|
break;
|
|
case NAME_Overlay:
|
|
flags |= SUF_OVERLAY;
|
|
break;
|
|
case NAME_Weapon:
|
|
flags |= SUF_WEAPON;
|
|
break;
|
|
case NAME_Item:
|
|
flags |= SUF_ITEM;
|
|
break;
|
|
default:
|
|
Error(p, "Unknown States qualifier %s", FName(p->Id).GetChars());
|
|
break;
|
|
}
|
|
|
|
p = static_cast<decltype(p)>(p->SiblingNext);
|
|
} while (p != s->Flags);
|
|
}
|
|
else
|
|
{
|
|
flags = static_cast<PClassActor *>(c->Type())->DefaultStateUsage;
|
|
}
|
|
auto st = s->Body;
|
|
if (st != nullptr) do
|
|
{
|
|
switch (st->NodeType)
|
|
{
|
|
case AST_StateLabel:
|
|
{
|
|
auto sl = static_cast<ZCC_StateLabel *>(st);
|
|
statename = FName(sl->Label);
|
|
statedef.AddStateLabel(statename);
|
|
break;
|
|
}
|
|
case AST_StateLine:
|
|
{
|
|
auto sl = static_cast<ZCC_StateLine *>(st);
|
|
FState state;
|
|
memset(&state, 0, sizeof(state));
|
|
state.UseFlags = flags;
|
|
if (sl->Sprite->Len() != 4)
|
|
{
|
|
Error(sl, "Sprite name must be exactly 4 characters. Found '%s'", sl->Sprite->GetChars());
|
|
}
|
|
else
|
|
{
|
|
state.sprite = GetSpriteIndex(sl->Sprite->GetChars());
|
|
}
|
|
// It is important to call CheckRandom before Simplify, because Simplify will resolve the function's name to nonsense
|
|
if (CheckRandom(sl->Duration))
|
|
{
|
|
auto func = static_cast<ZCC_ExprFuncCall *>(sl->Duration);
|
|
if (func->Parameters == func->Parameters->SiblingNext || func->Parameters != func->Parameters->SiblingNext->SiblingNext)
|
|
{
|
|
Error(sl, "Random duration requires exactly 2 parameters");
|
|
}
|
|
auto p1 = Simplify(func->Parameters->Value, &c->Type()->Symbols, true);
|
|
auto p2 = Simplify(static_cast<ZCC_FuncParm *>(func->Parameters->SiblingNext)->Value, &c->Type()->Symbols, true);
|
|
int v1 = GetInt(p1);
|
|
int v2 = GetInt(p2);
|
|
if (v1 > v2) std::swap(v1, v2);
|
|
state.Tics = (int16_t)clamp<int>(v1, 0, INT16_MAX);
|
|
state.TicRange = (uint16_t)clamp<int>(v2 - v1, 0, UINT16_MAX);
|
|
}
|
|
else
|
|
{
|
|
auto duration = Simplify(sl->Duration, &c->Type()->Symbols, true);
|
|
if (duration->Operation == PEX_ConstValue)
|
|
{
|
|
state.Tics = (int16_t)clamp<int>(GetInt(duration), -1, INT16_MAX);
|
|
state.TicRange = 0;
|
|
}
|
|
else
|
|
{
|
|
Error(sl, "Duration is not a constant");
|
|
}
|
|
}
|
|
if (sl->bBright) state.StateFlags |= STF_FULLBRIGHT;
|
|
if (sl->bFast) state.StateFlags |= STF_FAST;
|
|
if (sl->bSlow) state.StateFlags |= STF_SLOW;
|
|
if (sl->bCanRaise) state.StateFlags |= STF_CANRAISE;
|
|
if (sl->bNoDelay) state.StateFlags |= STF_NODELAY;
|
|
if (sl->bNoDelay)
|
|
{
|
|
if (statedef.GetStateLabelIndex(NAME_Spawn) != statedef.GetStateCount())
|
|
{
|
|
Warn(sl, "NODELAY only has an effect on the first state after 'Spawn:'");
|
|
}
|
|
}
|
|
if (sl->Offset != nullptr)
|
|
{
|
|
auto o1 = static_cast<ZCC_Expression *>(Simplify(sl->Offset, &c->Type()->Symbols, true));
|
|
auto o2 = static_cast<ZCC_Expression *>(Simplify(static_cast<ZCC_Expression *>(o1->SiblingNext), &c->Type()->Symbols, true));
|
|
|
|
if (o1->Operation != PEX_ConstValue || o2->Operation != PEX_ConstValue)
|
|
{
|
|
Error(o1, "State offsets must be constant");
|
|
}
|
|
else
|
|
{
|
|
state.Misc1 = GetInt(o1);
|
|
state.Misc2 = GetInt(o2);
|
|
}
|
|
}
|
|
#ifdef DYNLIGHT
|
|
if (sl->Lights != nullptr)
|
|
{
|
|
auto l = sl->Lights;
|
|
do
|
|
{
|
|
AddStateLight(&state, GetString(l));
|
|
l = static_cast<decltype(l)>(l->SiblingNext);
|
|
} while (l != sl->Lights);
|
|
}
|
|
#endif
|
|
|
|
if (sl->Action != nullptr)
|
|
{
|
|
auto code = SetupActionFunction(static_cast<PClassActor *>(c->Type()), sl->Action, state.UseFlags);
|
|
if (code != nullptr)
|
|
{
|
|
auto funcsym = CreateAnonymousFunction(c->Type(), nullptr, state.UseFlags);
|
|
state.ActionFunc = FunctionBuildList.AddFunction(funcsym, code, FStringf("%s.StateFunction.%d", c->Type()->TypeName.GetChars(), statedef.GetStateCount()), false, statedef.GetStateCount(), (int)sl->Frames->Len(), Lump);
|
|
}
|
|
}
|
|
|
|
int count = statedef.AddStates(&state, sl->Frames->GetChars(), *sl);
|
|
if (count < 0)
|
|
{
|
|
Error(sl, "Invalid frame character string '%s'", sl->Frames->GetChars());
|
|
count = -count;
|
|
}
|
|
break;
|
|
}
|
|
case AST_StateGoto:
|
|
{
|
|
auto sg = static_cast<ZCC_StateGoto *>(st);
|
|
statename = "";
|
|
if (sg->Qualifier != nullptr)
|
|
{
|
|
statename << FName(sg->Qualifier->Id) << "::";
|
|
}
|
|
auto part = sg->Label;
|
|
do
|
|
{
|
|
statename << FName(part->Id) << '.';
|
|
part = static_cast<decltype(part)>(part->SiblingNext);
|
|
} while (part != sg->Label);
|
|
statename.Truncate((long)statename.Len() - 1); // remove the last '.' in the label name
|
|
if (sg->Offset != nullptr)
|
|
{
|
|
auto ofs = Simplify(sg->Offset, &c->Type()->Symbols, true);
|
|
if (ofs->Operation != PEX_ConstValue)
|
|
{
|
|
Error(sg, "Constant offset expected for GOTO");
|
|
}
|
|
else
|
|
{
|
|
int offset = GetInt(ofs);
|
|
if (offset < 0)
|
|
{
|
|
Error(sg, "GOTO offset must be positive");
|
|
offset = 0;
|
|
}
|
|
if (offset > 0)
|
|
{
|
|
statename.AppendFormat("+%d", offset);
|
|
}
|
|
}
|
|
}
|
|
if (!statedef.SetGotoLabel(statename))
|
|
{
|
|
Error(sg, "GOTO before first state");
|
|
}
|
|
break;
|
|
}
|
|
case AST_StateFail:
|
|
case AST_StateWait:
|
|
if (!statedef.SetWait())
|
|
{
|
|
Error(st, "%s before first state", st->NodeType == AST_StateFail ? "Fail" : "Wait");
|
|
continue;
|
|
}
|
|
break;
|
|
|
|
case AST_StateLoop:
|
|
if (!statedef.SetLoop())
|
|
{
|
|
Error(st, "LOOP before first state");
|
|
continue;
|
|
}
|
|
break;
|
|
|
|
case AST_StateStop:
|
|
if (!statedef.SetStop())
|
|
{
|
|
Error(st, "STOP before first state");
|
|
}
|
|
break;
|
|
|
|
default:
|
|
assert(0 && "Bad AST node in state");
|
|
}
|
|
st = static_cast<decltype(st)>(st->SiblingNext);
|
|
} while (st != s->Body);
|
|
}
|
|
try
|
|
{
|
|
static_cast<PClassActor *>(c->Type())->Finalize(statedef);
|
|
}
|
|
catch (CRecoverableError &err)
|
|
{
|
|
Error(c->cls, "%s", err.GetMessage());
|
|
}
|
|
}
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// Convert the AST data for the code generator.
|
|
//
|
|
//==========================================================================
|
|
|
|
FxExpression *ZCCCompiler::ConvertAST(PStruct *cls, ZCC_TreeNode *ast)
|
|
{
|
|
ConvertClass = cls;
|
|
// there are two possibilities here: either a single function call or a compound statement. For a compound statement we also need to check if the last thing added was a return.
|
|
if (ast->NodeType == AST_ExprFuncCall)
|
|
{
|
|
auto cp = new FxCompoundStatement(*ast);
|
|
cp->Add(new FxReturnStatement(ConvertNode(ast), *ast));
|
|
return cp;
|
|
}
|
|
else
|
|
{
|
|
// This must be done here so that we can check for a trailing return statement.
|
|
auto x = new FxCompoundStatement(*ast);
|
|
auto compound = static_cast<ZCC_CompoundStmt *>(ast);
|
|
//bool isreturn = false;
|
|
auto node = compound->Content;
|
|
if (node != nullptr) do
|
|
{
|
|
x->Add(ConvertNode(node));
|
|
//isreturn = node->NodeType == AST_ReturnStmt;
|
|
node = static_cast<decltype(node)>(node->SiblingNext);
|
|
} while (node != compound->Content);
|
|
//if (!isreturn) x->Add(new FxReturnStatement(nullptr, *ast));
|
|
return x;
|
|
}
|
|
}
|
|
|
|
|
|
#define xx(a,z) z,
|
|
static int Pex2Tok[] = {
|
|
#include "zcc_exprlist.h"
|
|
};
|
|
|
|
//==========================================================================
|
|
//
|
|
// Helper for modify/assign operators
|
|
//
|
|
//==========================================================================
|
|
|
|
static FxExpression *ModifyAssign(FxBinary *operation, FxExpression *left)
|
|
{
|
|
auto assignself = static_cast<FxAssignSelf *>(operation->left);
|
|
auto assignment = new FxAssign(left, operation, true);
|
|
assignself->Assignment = assignment;
|
|
return assignment;
|
|
}
|
|
|
|
|
|
//==========================================================================
|
|
//
|
|
// Convert an AST node and its children
|
|
//
|
|
//==========================================================================
|
|
|
|
FxExpression *ZCCCompiler::ConvertNode(ZCC_TreeNode *ast)
|
|
{
|
|
if (ast == nullptr) return nullptr;
|
|
|
|
// Note: Do not call 'Simplify' here because that function tends to destroy identifiers due to lack of context in which to resolve them.
|
|
// The Fx nodes created here will be better suited for that.
|
|
switch (ast->NodeType)
|
|
{
|
|
case AST_ExprFuncCall:
|
|
{
|
|
auto fcall = static_cast<ZCC_ExprFuncCall *>(ast);
|
|
|
|
// function names can either be
|
|
// - plain identifiers
|
|
// - class members
|
|
// - array syntax for random() calls.
|
|
// Everything else coming here is a syntax error.
|
|
FArgumentList args;
|
|
switch (fcall->Function->NodeType)
|
|
{
|
|
case AST_ExprID:
|
|
// The function name is a simple identifier.
|
|
return new FxFunctionCall(static_cast<ZCC_ExprID *>(fcall->Function)->Identifier, NAME_None, ConvertNodeList(args, fcall->Parameters), *ast);
|
|
|
|
case AST_ExprMemberAccess:
|
|
{
|
|
auto ema = static_cast<ZCC_ExprMemberAccess *>(fcall->Function);
|
|
return new FxMemberFunctionCall(ConvertNode(ema->Left), ema->Right, ConvertNodeList(args, fcall->Parameters), *ast);
|
|
}
|
|
|
|
case AST_ExprBinary:
|
|
// Array syntax for randoms. They are internally stored as ExprBinary with both an identifier on the left and right side.
|
|
if (fcall->Function->Operation == PEX_ArrayAccess)
|
|
{
|
|
auto binary = static_cast<ZCC_ExprBinary *>(fcall->Function);
|
|
if (binary->Left->NodeType == AST_ExprID && binary->Right->NodeType == AST_ExprID)
|
|
{
|
|
return new FxFunctionCall(static_cast<ZCC_ExprID *>(binary->Left)->Identifier, static_cast<ZCC_ExprID *>(binary->Right)->Identifier, ConvertNodeList(args, fcall->Parameters), *ast);
|
|
}
|
|
}
|
|
// fall through if this isn't an array access node.
|
|
|
|
default:
|
|
Error(fcall, "Invalid function identifier");
|
|
return new FxNop(*ast); // return something so that the compiler can continue.
|
|
}
|
|
break;
|
|
}
|
|
|
|
case AST_ClassCast:
|
|
{
|
|
auto cc = static_cast<ZCC_ClassCast *>(ast);
|
|
if (cc->Parameters == nullptr || cc->Parameters->SiblingNext != cc->Parameters)
|
|
{
|
|
Error(cc, "Class type cast requires exactly one parameter");
|
|
return new FxNop(*ast); // return something so that the compiler can continue.
|
|
}
|
|
auto cls = PClass::FindClass(cc->ClassName);
|
|
if (cls == nullptr)
|
|
{
|
|
Error(cc, "Unknown class %s", FName(cc->ClassName).GetChars());
|
|
return new FxNop(*ast); // return something so that the compiler can continue.
|
|
}
|
|
return new FxClassPtrCast(cls, ConvertNode(cc->Parameters));
|
|
}
|
|
|
|
case AST_StaticArrayStatement:
|
|
{
|
|
auto sas = static_cast<ZCC_StaticArrayStatement *>(ast);
|
|
PType *ztype = DetermineType(ConvertClass, sas, sas->Id, sas->Type, false, false);
|
|
FArgumentList args;
|
|
ConvertNodeList(args, sas->Values);
|
|
// This has to let the code generator resolve the constants, not the Simplifier, which lacks all the necessary type info.
|
|
return new FxStaticArray(ztype, sas->Id, args, *ast);
|
|
}
|
|
|
|
case AST_ExprMemberAccess:
|
|
{
|
|
auto memaccess = static_cast<ZCC_ExprMemberAccess *>(ast);
|
|
return new FxMemberIdentifier(ConvertNode(memaccess->Left), memaccess->Right, *ast);
|
|
}
|
|
|
|
case AST_FuncParm:
|
|
{
|
|
auto fparm = static_cast<ZCC_FuncParm *>(ast);
|
|
auto node = ConvertNode(fparm->Value);
|
|
if (fparm->Label != NAME_None) node = new FxNamedNode(fparm->Label, node, *ast);
|
|
return node;
|
|
}
|
|
|
|
case AST_ExprID:
|
|
{
|
|
auto id = static_cast<ZCC_ExprID *>(ast);
|
|
return new FxIdentifier(id->Identifier, *ast);
|
|
}
|
|
|
|
case AST_ExprConstant:
|
|
{
|
|
auto cnst = static_cast<ZCC_ExprConstant *>(ast);
|
|
if (cnst->Type->IsA(RUNTIME_CLASS(PName)))
|
|
{
|
|
return new FxConstant(FName(ENamedName(cnst->IntVal)), *ast);
|
|
}
|
|
else if (cnst->Type->IsA(RUNTIME_CLASS(PInt)))
|
|
{
|
|
return new FxConstant(cnst->IntVal, *ast);
|
|
}
|
|
else if (cnst->Type->IsA(RUNTIME_CLASS(PBool)))
|
|
{
|
|
return new FxConstant(!!cnst->IntVal, *ast);
|
|
}
|
|
else if (cnst->Type->IsA(RUNTIME_CLASS(PFloat)))
|
|
{
|
|
return new FxConstant(cnst->DoubleVal, *ast);
|
|
}
|
|
else if (cnst->Type->IsA(RUNTIME_CLASS(PString)))
|
|
{
|
|
return new FxConstant(*cnst->StringVal, *ast);
|
|
}
|
|
else if (cnst->Type == TypeNullPtr)
|
|
{
|
|
return new FxConstant(*ast);
|
|
}
|
|
else
|
|
{
|
|
// can there be other types?
|
|
Error(cnst, "Unknown constant type %s", cnst->Type->DescriptiveName());
|
|
return new FxConstant(0, *ast);
|
|
}
|
|
}
|
|
|
|
case AST_ExprUnary:
|
|
{
|
|
auto unary = static_cast<ZCC_ExprUnary *>(ast);
|
|
auto operand = ConvertNode(unary->Operand);
|
|
auto op = unary->Operation;
|
|
switch (op)
|
|
{
|
|
case PEX_PostDec:
|
|
case PEX_PostInc:
|
|
return new FxPostIncrDecr(operand, Pex2Tok[op]);
|
|
|
|
case PEX_PreDec:
|
|
case PEX_PreInc:
|
|
return new FxPreIncrDecr(operand, Pex2Tok[op]);
|
|
|
|
case PEX_Negate:
|
|
return new FxMinusSign(operand);
|
|
|
|
case PEX_AntiNegate:
|
|
return new FxPlusSign(operand);
|
|
|
|
case PEX_BitNot:
|
|
return new FxUnaryNotBitwise(operand);
|
|
|
|
case PEX_BoolNot:
|
|
return new FxUnaryNotBoolean(operand);
|
|
|
|
case PEX_SizeOf:
|
|
case PEX_AlignOf:
|
|
return new FxSizeAlign(operand, Pex2Tok[op]);
|
|
|
|
default:
|
|
assert(0 && "Unknown unary operator."); // should never happen
|
|
Error(unary, "Unknown unary operator ID #%d", op);
|
|
return new FxNop(*ast);
|
|
}
|
|
break;
|
|
}
|
|
|
|
|
|
case AST_ExprBinary:
|
|
{
|
|
auto binary = static_cast<ZCC_ExprBinary *>(ast);
|
|
auto left = ConvertNode(binary->Left);
|
|
auto right = ConvertNode(binary->Right);
|
|
auto op = binary->Operation;
|
|
auto tok = Pex2Tok[op];
|
|
switch (op)
|
|
{
|
|
case PEX_Add:
|
|
case PEX_Sub:
|
|
return new FxAddSub(tok, left, right);
|
|
|
|
case PEX_Mul:
|
|
case PEX_Div:
|
|
case PEX_Mod:
|
|
return new FxMulDiv(tok, left, right);
|
|
|
|
case PEX_Pow:
|
|
return new FxPow(left, right);
|
|
|
|
case PEX_LeftShift:
|
|
case PEX_RightShift:
|
|
case PEX_URightShift:
|
|
return new FxShift(tok, left, right);
|
|
|
|
case PEX_BitAnd:
|
|
case PEX_BitOr:
|
|
case PEX_BitXor:
|
|
return new FxBitOp(tok, left, right);
|
|
|
|
case PEX_BoolOr:
|
|
case PEX_BoolAnd:
|
|
return new FxBinaryLogical(tok, left, right);
|
|
|
|
case PEX_LT:
|
|
case PEX_LTEQ:
|
|
case PEX_GT:
|
|
case PEX_GTEQ:
|
|
return new FxCompareRel(tok, left, right);
|
|
|
|
case PEX_EQEQ:
|
|
case PEX_NEQ:
|
|
case PEX_APREQ:
|
|
return new FxCompareEq(tok, left, right);
|
|
|
|
case PEX_Assign:
|
|
return new FxAssign(left, right);
|
|
|
|
case PEX_AddAssign:
|
|
case PEX_SubAssign:
|
|
return ModifyAssign(new FxAddSub(tok, new FxAssignSelf(*ast), right), left);
|
|
|
|
case PEX_MulAssign:
|
|
case PEX_DivAssign:
|
|
case PEX_ModAssign:
|
|
return ModifyAssign(new FxMulDiv(tok, new FxAssignSelf(*ast), right), left);
|
|
|
|
case PEX_LshAssign:
|
|
case PEX_RshAssign:
|
|
case PEX_URshAssign:
|
|
return ModifyAssign(new FxShift(tok, new FxAssignSelf(*ast), right), left);
|
|
|
|
case PEX_AndAssign:
|
|
case PEX_OrAssign:
|
|
case PEX_XorAssign:
|
|
return ModifyAssign(new FxBitOp(tok, new FxAssignSelf(*ast), right), left);
|
|
|
|
case PEX_LTGTEQ:
|
|
return new FxLtGtEq(left, right);
|
|
|
|
case PEX_ArrayAccess:
|
|
return new FxArrayElement(left, right);
|
|
|
|
case PEX_CrossProduct:
|
|
case PEX_DotProduct:
|
|
return new FxDotCross(tok, left, right);
|
|
|
|
case PEX_Is:
|
|
return new FxTypeCheck(left, right);
|
|
|
|
case PEX_Concat:
|
|
return new FxConcat(left, right);
|
|
|
|
default:
|
|
I_Error("Binary operator %d not implemented yet", op);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case AST_ExprTrinary:
|
|
{
|
|
auto trinary = static_cast<ZCC_ExprTrinary *>(ast);
|
|
auto condition = ConvertNode(trinary->Test);
|
|
auto left = ConvertNode(trinary->Left);
|
|
auto right = ConvertNode(trinary->Right);
|
|
|
|
return new FxConditional(condition, left, right);
|
|
}
|
|
|
|
case AST_VectorValue:
|
|
{
|
|
auto vecini = static_cast<ZCC_VectorValue *>(ast);
|
|
auto xx = ConvertNode(vecini->X);
|
|
auto yy = ConvertNode(vecini->Y);
|
|
auto zz = ConvertNode(vecini->Z);
|
|
return new FxVectorValue(xx, yy, zz, *ast);
|
|
}
|
|
|
|
case AST_LocalVarStmt:
|
|
{
|
|
auto loc = static_cast<ZCC_LocalVarStmt *>(ast);
|
|
auto node = loc->Vars;
|
|
FxSequence *list = new FxSequence(*ast);
|
|
|
|
PType *ztype = DetermineType(ConvertClass, node, node->Name, loc->Type, true, false);
|
|
|
|
if (loc->Type->ArraySize != nullptr)
|
|
{
|
|
ztype = ResolveArraySize(ztype, loc->Type->ArraySize, &ConvertClass->Symbols);
|
|
}
|
|
|
|
do
|
|
{
|
|
PType *type;
|
|
|
|
if (node->ArraySize != nullptr)
|
|
{
|
|
type = ResolveArraySize(ztype, node->ArraySize, &ConvertClass->Symbols);
|
|
}
|
|
else
|
|
{
|
|
type = ztype;
|
|
}
|
|
|
|
FxExpression *val;
|
|
if (node->InitIsArray)
|
|
{
|
|
Error(node, "Compound initializer not implemented yet");
|
|
val = nullptr;
|
|
}
|
|
else
|
|
{
|
|
val = node->Init ? ConvertNode(node->Init) : nullptr;
|
|
}
|
|
list->Add(new FxLocalVariableDeclaration(type, node->Name, val, 0, *node)); // todo: Handle flags in the grammar.
|
|
|
|
node = static_cast<decltype(node)>(node->SiblingNext);
|
|
} while (node != loc->Vars);
|
|
return list;
|
|
}
|
|
|
|
case AST_Expression:
|
|
{
|
|
auto ret = static_cast<ZCC_Expression *>(ast);
|
|
if (ret->Operation == PEX_Super)
|
|
{
|
|
return new FxSuper(*ast);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case AST_ExpressionStmt:
|
|
return ConvertNode(static_cast<ZCC_ExpressionStmt *>(ast)->Expression);
|
|
|
|
case AST_ReturnStmt:
|
|
{
|
|
auto ret = static_cast<ZCC_ReturnStmt *>(ast);
|
|
FArgumentList args;
|
|
ConvertNodeList(args, ret->Values);
|
|
if (args.Size() == 0)
|
|
{
|
|
return new FxReturnStatement(nullptr, *ast);
|
|
}
|
|
else if (args.Size() == 1)
|
|
{
|
|
auto arg = args[0];
|
|
args[0] = nullptr;
|
|
return new FxReturnStatement(arg, *ast);
|
|
}
|
|
else
|
|
{
|
|
Error(ast, "Return with multiple values not implemented yet.");
|
|
return new FxReturnStatement(nullptr, *ast);
|
|
}
|
|
}
|
|
|
|
case AST_BreakStmt:
|
|
case AST_ContinueStmt:
|
|
return new FxJumpStatement(ast->NodeType == AST_BreakStmt ? TK_Break : TK_Continue, *ast);
|
|
|
|
case AST_IfStmt:
|
|
{
|
|
auto iff = static_cast<ZCC_IfStmt *>(ast);
|
|
return new FxIfStatement(ConvertNode(iff->Condition), ConvertNode(iff->TruePath), ConvertNode(iff->FalsePath), *ast);
|
|
}
|
|
|
|
case AST_IterationStmt:
|
|
{
|
|
auto iter = static_cast<ZCC_IterationStmt *>(ast);
|
|
if (iter->CheckAt == ZCC_IterationStmt::End)
|
|
{
|
|
assert(iter->LoopBumper == nullptr);
|
|
return new FxDoWhileLoop(ConvertNode(iter->LoopCondition), ConvertNode(iter->LoopStatement), *ast);
|
|
}
|
|
else if (iter->LoopBumper != nullptr)
|
|
{
|
|
return new FxForLoop(nullptr, ConvertNode(iter->LoopCondition), ConvertNode(iter->LoopBumper), ConvertNode(iter->LoopStatement), *ast);
|
|
}
|
|
else
|
|
{
|
|
return new FxWhileLoop(ConvertNode(iter->LoopCondition), ConvertNode(iter->LoopStatement), *ast);
|
|
}
|
|
}
|
|
|
|
// not yet done
|
|
case AST_SwitchStmt:
|
|
{
|
|
auto swtch = static_cast<ZCC_SwitchStmt *>(ast);
|
|
if (swtch->Content->NodeType != AST_CompoundStmt)
|
|
{
|
|
Error(ast, "Expecting { after 'switch'");
|
|
return new FxNop(*ast); // allow compiler to continue looking for errors.
|
|
}
|
|
else
|
|
{
|
|
// The switch content is wrapped into a compound statement which needs to be unraveled here.
|
|
auto cmpnd = static_cast<ZCC_CompoundStmt *>(swtch->Content);
|
|
FArgumentList args;
|
|
return new FxSwitchStatement(ConvertNode(swtch->Condition), ConvertNodeList(args, cmpnd->Content), *ast);
|
|
}
|
|
}
|
|
|
|
case AST_CaseStmt:
|
|
{
|
|
auto cases = static_cast<ZCC_CaseStmt *>(ast);
|
|
return new FxCaseStatement(ConvertNode(cases->Condition), *ast);
|
|
}
|
|
|
|
case AST_CompoundStmt:
|
|
{
|
|
auto x = new FxCompoundStatement(*ast);
|
|
auto compound = static_cast<ZCC_CompoundStmt *>(ast);
|
|
auto node = compound->Content;
|
|
if (node != nullptr) do
|
|
{
|
|
x->Add(ConvertNode(node));
|
|
node = static_cast<decltype(node)>(node->SiblingNext);
|
|
} while (node != compound->Content);
|
|
return x;
|
|
}
|
|
|
|
case AST_AssignStmt:
|
|
{
|
|
auto ass = static_cast<ZCC_AssignStmt *>(ast);
|
|
FArgumentList args;
|
|
ConvertNodeList(args, ass->Dests);
|
|
assert(ass->Sources->SiblingNext == ass->Sources); // right side should be a single function call - nothing else
|
|
if (ass->Sources->NodeType != AST_ExprFuncCall)
|
|
{
|
|
// don't let this through to the code generator. This node is only used to assign multiple returns of a function to more than one variable.
|
|
Error(ass, "Right side of multi-assignment must be a function call");
|
|
return new FxNop(*ast); // allow compiler to continue looking for errors.
|
|
}
|
|
return new FxMultiAssign(args, ConvertNode(ass->Sources), *ast);
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
// only for development. I_Error is more convenient here than a normal error.
|
|
I_Error("ConvertNode encountered unsupported node of type %d", ast->NodeType);
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
FArgumentList &ZCCCompiler::ConvertNodeList(FArgumentList &args, ZCC_TreeNode *head)
|
|
{
|
|
if (head != nullptr)
|
|
{
|
|
auto node = head;
|
|
do
|
|
{
|
|
args.Push(ConvertNode(node));
|
|
node = node->SiblingNext;
|
|
} while (node != head);
|
|
}
|
|
return args;
|
|
}
|