gzdoom-gles/src/gl/system/gl_swframebuffer.cpp
2016-10-16 23:18:16 +02:00

3631 lines
94 KiB
C++

/*
** gl_swframebuffer.cpp
** Code to let ZDoom use OpenGL as a simple framebuffer
**
**---------------------------------------------------------------------------
** Copyright 1998-2011 Randy Heit
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
** This file does _not_ implement hardware-acclerated 3D rendering. It is
** just a means of getting the pixel data to the screen in a more reliable
** method on modern hardware by copying the entire frame to a texture,
** drawing that to the screen, and presenting.
**
** That said, it does implement hardware-accelerated 2D rendering.
*/
#include "gl/system/gl_system.h"
#include "files.h"
#include "m_swap.h"
#include "v_video.h"
#include "doomstat.h"
#include "m_png.h"
#include "m_crc32.h"
#include "vectors.h"
#include "v_palette.h"
#include "templates.h"
#include "c_dispatch.h"
#include "templates.h"
#include "i_system.h"
#include "i_video.h"
#include "i_input.h"
#include "v_pfx.h"
#include "stats.h"
#include "doomerrors.h"
#include "r_main.h"
#include "r_data/r_translate.h"
#include "f_wipe.h"
#include "sbar.h"
#include "w_wad.h"
#include "r_data/colormaps.h"
#include "gl/system/gl_interface.h"
#include "gl/system/gl_swframebuffer.h"
#include "gl/data/gl_data.h"
#include "gl/utility/gl_clock.h"
#include "gl/utility/gl_templates.h"
#include "gl/gl_functions.h"
#include "gl_debug.h"
CVAR(Int, gl_showpacks, 0, 0)
#ifndef WIN32 // Defined in fb_d3d9 for Windows
CVAR(Bool, vid_hwaalines, true, CVAR_ARCHIVE | CVAR_GLOBALCONFIG)
CUSTOM_CVAR(Bool, vid_hw2d, true, CVAR_NOINITCALL)
{
V_SetBorderNeedRefresh();
ST_SetNeedRefresh();
}
#else
EXTERN_CVAR(Bool, vid_hwaalines)
EXTERN_CVAR(Bool, vid_hw2d)
#endif
EXTERN_CVAR(Bool, fullscreen)
EXTERN_CVAR(Float, Gamma)
EXTERN_CVAR(Bool, vid_vsync)
EXTERN_CVAR(Float, transsouls)
EXTERN_CVAR(Int, vid_refreshrate)
CVAR(Int, vid_max_width, 0, CVAR_ARCHIVE | CVAR_GLOBALCONFIG)
CVAR(Int, vid_max_height, 0, CVAR_ARCHIVE | CVAR_GLOBALCONFIG)
namespace
{
int ClampWidth(int width) { return (vid_max_width == 0 || width < vid_max_width) ? width : vid_max_width; }
int ClampHeight(int height) { return (vid_max_height == 0 || height < vid_max_height) ? height : vid_max_height; }
}
#ifdef WIN32
extern cycle_t BlitCycles;
#endif
void gl_LoadExtensions();
void gl_PrintStartupLog();
#ifndef WIN32
// This has to be in this file because system headers conflict Doom headers
DFrameBuffer *CreateGLSWFrameBuffer(int width, int height, bool bgra, bool fullscreen)
{
return new OpenGLSWFrameBuffer(NULL, width, height, 32, 60, fullscreen, bgra);
}
#endif
IMPLEMENT_CLASS(OpenGLSWFrameBuffer)
const char *const OpenGLSWFrameBuffer::ShaderDefines[OpenGLSWFrameBuffer::NUM_SHADERS] =
{
"#define ENORMALCOLOR", // NormalColor
"#define ENORMALCOLOR\n#define PALTEX", // NormalColorPal
"#define ENORMALCOLOR\n#define INVERT", // NormalColorInv
"#define ENORMALCOLOR\n#define PALTEX\n#define INVERT", // NormalColorPalInv
"#define EREDTOALPHA", // RedToAlpha
"#define EREDTOALPHA\n#define INVERT", // RedToAlphaInv
"#define EVERTEXCOLOR", // VertexColor
"#define ESPECIALCOLORMAP\n", // SpecialColormap
"#define ESPECIALCOLORMAP\n#define PALTEX", // SpecialColorMapPal
"#define EINGAMECOLORMAP", // InGameColormap
"#define EINGAMECOLORMAP\n#define DESAT", // InGameColormapDesat
"#define EINGAMECOLORMAP\n#define INVERT", // InGameColormapInv
"#define EINGAMECOLORMAP\n#define INVERT\n#define DESAT", // InGameColormapInvDesat
"#define EINGAMECOLORMAP\n#define PALTEX\n", // InGameColormapPal
"#define EINGAMECOLORMAP\n#define PALTEX\n#define DESAT", // InGameColormapPalDesat
"#define EINGAMECOLORMAP\n#define PALTEX\n#define INVERT", // InGameColormapPalInv
"#define EINGAMECOLORMAP\n#define PALTEX\n#define INVERT\n#define DESAT", // InGameColormapPalInvDesat
"#define EBURNWIPE", // BurnWipe
"#define EGAMMACORRECTION", // GammaCorrection
};
OpenGLSWFrameBuffer::OpenGLSWFrameBuffer(void *hMonitor, int width, int height, int bits, int refreshHz, bool fullscreen, bool bgra) :
Super(hMonitor, ClampWidth(width), ClampHeight(height), bits, refreshHz, fullscreen, bgra)
{
// To do: this needs to cooperate with the same static in OpenGLFrameBuffer::InitializeState
static bool first = true;
if (first)
{
ogl_LoadFunctions();
}
gl_LoadExtensions();
InitializeState();
if (first)
{
gl_PrintStartupLog();
first = false;
}
// SetVSync needs to be at the very top to workaround a bug in Nvidia's OpenGL driver.
// If wglSwapIntervalEXT is called after glBindFramebuffer in a frame the setting is not changed!
Super::SetVSync(vid_vsync);
Debug = std::make_shared<FGLDebug>();
Debug->Update();
VertexBuffer = nullptr;
IndexBuffer = nullptr;
FBTexture = nullptr;
InitialWipeScreen = nullptr;
ScreenshotTexture = nullptr;
FinalWipeScreen = nullptr;
PaletteTexture = nullptr;
for (int i = 0; i < NUM_SHADERS; ++i)
{
Shaders[i] = nullptr;
}
VSync = vid_vsync;
BlendingRect.left = 0;
BlendingRect.top = 0;
BlendingRect.right = Width;
BlendingRect.bottom = Height;
In2D = 0;
Palettes = nullptr;
Textures = nullptr;
Accel2D = true;
GatheringWipeScreen = false;
ScreenWipe = nullptr;
InScene = false;
QuadExtra = new BufferedTris[MAX_QUAD_BATCH];
memset(QuadExtra, 0, sizeof(BufferedTris) * MAX_QUAD_BATCH);
Atlases = nullptr;
PixelDoubling = 0;
Gamma = 1.0;
FlashColor0 = 0;
FlashColor1 = 0xFFFFFFFF;
FlashColor = 0;
FlashAmount = 0;
NeedGammaUpdate = false;
NeedPalUpdate = false;
if (MemBuffer == nullptr)
{
return;
}
memcpy(SourcePalette, GPalette.BaseColors, sizeof(PalEntry) * 256);
//Windowed = !(static_cast<Win32Video *>(Video)->GoFullscreen(fullscreen));
TrueHeight = height;
CreateResources();
SetInitialState();
}
OpenGLSWFrameBuffer::~OpenGLSWFrameBuffer()
{
ReleaseResources();
delete[] QuadExtra;
}
void *OpenGLSWFrameBuffer::MapBuffer(int target, int size)
{
if (glMapBufferRange)
{
return (FBVERTEX*)glMapBufferRange(target, 0, size, GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT);
}
else
{
glBufferData(target, size, nullptr, GL_STREAM_DRAW);
return glMapBuffer(target, GL_WRITE_ONLY);
}
}
OpenGLSWFrameBuffer::HWFrameBuffer::~HWFrameBuffer()
{
if (Framebuffer != 0) glDeleteFramebuffers(1, (GLuint*)&Framebuffer);
delete Texture;
}
OpenGLSWFrameBuffer::HWTexture::~HWTexture()
{
if (Texture != 0) glDeleteTextures(1, (GLuint*)&Texture);
if (Buffers[0] != 0) glDeleteBuffers(2, (GLuint*)Buffers);
}
OpenGLSWFrameBuffer::HWVertexBuffer::~HWVertexBuffer()
{
if (VertexArray != 0) glDeleteVertexArrays(1, (GLuint*)&VertexArray);
if (Buffer != 0) glDeleteBuffers(1, (GLuint*)&Buffer);
}
OpenGLSWFrameBuffer::FBVERTEX *OpenGLSWFrameBuffer::HWVertexBuffer::Lock()
{
glBindBuffer(GL_ARRAY_BUFFER, Buffer);
return (FBVERTEX*)MapBuffer(GL_ARRAY_BUFFER, Size);
}
void OpenGLSWFrameBuffer::HWVertexBuffer::Unlock()
{
glUnmapBuffer(GL_ARRAY_BUFFER);
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
OpenGLSWFrameBuffer::HWIndexBuffer::~HWIndexBuffer()
{
if (Buffer != 0) glDeleteBuffers(1, (GLuint*)&Buffer);
}
uint16_t *OpenGLSWFrameBuffer::HWIndexBuffer::Lock()
{
glGetIntegerv(GL_ELEMENT_ARRAY_BUFFER_BINDING, &LockedOldBinding);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, Buffer);
return (uint16_t*)MapBuffer(GL_ELEMENT_ARRAY_BUFFER, Size);
}
void OpenGLSWFrameBuffer::HWIndexBuffer::Unlock()
{
glUnmapBuffer(GL_ELEMENT_ARRAY_BUFFER);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, LockedOldBinding);
}
OpenGLSWFrameBuffer::HWPixelShader::~HWPixelShader()
{
if (Program != 0) glDeleteProgram(Program);
if (VertexShader != 0) glDeleteShader(VertexShader);
if (FragmentShader != 0) glDeleteShader(FragmentShader);
}
bool OpenGLSWFrameBuffer::CreateFrameBuffer(const FString &name, int width, int height, HWFrameBuffer **outFramebuffer)
{
auto fb = std::make_unique<HWFrameBuffer>();
if (!CreateTexture(name, width, height, 1, GL_RGBA16F, &fb->Texture))
{
outFramebuffer = nullptr;
return false;
}
glGenFramebuffers(1, (GLuint*)&fb->Framebuffer);
GLint oldFramebufferBinding = 0, oldTextureBinding = 0;
glGetIntegerv(GL_FRAMEBUFFER_BINDING, &oldFramebufferBinding);
glGetIntegerv(GL_TEXTURE_BINDING_2D, &oldTextureBinding);
glBindFramebuffer(GL_FRAMEBUFFER, fb->Framebuffer);
FGLDebug::LabelObject(GL_FRAMEBUFFER, fb->Framebuffer, name);
glBindTexture(GL_TEXTURE_2D, fb->Texture->Texture);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, fb->Texture->Texture, 0);
GLenum result = glCheckFramebufferStatus(GL_FRAMEBUFFER);
glBindFramebuffer(GL_FRAMEBUFFER, oldFramebufferBinding);
glBindTexture(GL_TEXTURE_2D, oldTextureBinding);
if (result != GL_FRAMEBUFFER_COMPLETE)
{
//Printf("Framebuffer is not complete");
outFramebuffer = nullptr;
return false;
}
*outFramebuffer = fb.release();
return true;
}
bool OpenGLSWFrameBuffer::CreatePixelShader(FString vertexsrc, FString fragmentsrc, const FString &defines, HWPixelShader **outShader)
{
auto shader = std::make_unique<HWPixelShader>();
shader->Program = glCreateProgram();
shader->VertexShader = glCreateShader(GL_VERTEX_SHADER);
shader->FragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
int maxGlslVersion = 330;
int shaderVersion = MIN((int)round(gl.glslversion * 10) * 10, maxGlslVersion);
FString prefix;
prefix.AppendFormat("#version %d\n%s\n#line 0\n", shaderVersion, defines.GetChars());
vertexsrc = prefix + vertexsrc;
fragmentsrc = prefix + fragmentsrc;
{
int lengths[1] = { (int)vertexsrc.Len() };
const char *sources[1] = { vertexsrc.GetChars() };
glShaderSource(shader->VertexShader, 1, sources, lengths);
glCompileShader(shader->VertexShader);
}
{
int lengths[1] = { (int)fragmentsrc.Len() };
const char *sources[1] = { fragmentsrc.GetChars() };
glShaderSource(shader->FragmentShader, 1, sources, lengths);
glCompileShader(shader->FragmentShader);
}
GLint status = 0;
int errorShader = shader->VertexShader;
glGetShaderiv(shader->VertexShader, GL_COMPILE_STATUS, &status);
if (status != GL_FALSE) { errorShader = shader->FragmentShader; glGetShaderiv(shader->FragmentShader, GL_COMPILE_STATUS, &status); }
if (status == GL_FALSE)
{
static char buffer[10000];
GLsizei length = 0;
buffer[0] = 0;
glGetShaderInfoLog(errorShader, 10000, &length, buffer);
//Printf("Shader compile failed: %s", buffer);
*outShader = nullptr;
return false;
}
glAttachShader(shader->Program, shader->VertexShader);
glAttachShader(shader->Program, shader->FragmentShader);
glBindFragDataLocation(shader->Program, 0, "FragColor");
glBindAttribLocation(shader->Program, 0, "AttrPosition");
glBindAttribLocation(shader->Program, 1, "AttrColor0");
glBindAttribLocation(shader->Program, 2, "AttrColor1");
glBindAttribLocation(shader->Program, 3, "AttrTexCoord0");
glLinkProgram(shader->Program);
glGetProgramiv(shader->Program, GL_LINK_STATUS, &status);
if (status == GL_FALSE)
{
static char buffer[10000];
GLsizei length = 0;
buffer[0] = 0;
glGetProgramInfoLog(shader->Program, 10000, &length, buffer);
//Printf("Shader compile failed: %s", buffer);
*outShader = nullptr;
return false;
}
shader->ConstantLocations[PSCONST_Desaturation] = glGetUniformLocation(shader->Program, "Desaturation");
shader->ConstantLocations[PSCONST_PaletteMod] = glGetUniformLocation(shader->Program, "PaletteMod");
shader->ConstantLocations[PSCONST_Weights] = glGetUniformLocation(shader->Program, "Weights");
shader->ConstantLocations[PSCONST_Gamma] = glGetUniformLocation(shader->Program, "Gamma");
shader->ConstantLocations[PSCONST_ScreenSize] = glGetUniformLocation(shader->Program, "ScreenSize");
shader->ImageLocation = glGetUniformLocation(shader->Program, "Image");
shader->PaletteLocation = glGetUniformLocation(shader->Program, "Palette");
shader->NewScreenLocation = glGetUniformLocation(shader->Program, "NewScreen");
shader->BurnLocation = glGetUniformLocation(shader->Program, "Burn");
*outShader = shader.release();
return true;
}
bool OpenGLSWFrameBuffer::CreateVertexBuffer(int size, HWVertexBuffer **outVertexBuffer)
{
auto obj = std::make_unique<HWVertexBuffer>();
obj->Size = size;
GLint oldBinding = 0;
glGetIntegerv(GL_VERTEX_ARRAY_BINDING, &oldBinding);
glGenVertexArrays(1, (GLuint*)&obj->VertexArray);
glGenBuffers(1, (GLuint*)&obj->Buffer);
glBindVertexArray(obj->VertexArray);
glBindBuffer(GL_ARRAY_BUFFER, obj->Buffer);
FGLDebug::LabelObject(GL_BUFFER, obj->Buffer, "VertexBuffer");
glBufferData(GL_ARRAY_BUFFER, size, nullptr, GL_STREAM_DRAW);
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
glEnableVertexAttribArray(2);
glEnableVertexAttribArray(3);
glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, sizeof(FBVERTEX), (const GLvoid*)offsetof(FBVERTEX, x));
glVertexAttribPointer(1, 4, GL_UNSIGNED_BYTE, GL_TRUE, sizeof(FBVERTEX), (const GLvoid*)offsetof(FBVERTEX, color0));
glVertexAttribPointer(2, 4, GL_UNSIGNED_BYTE, GL_TRUE, sizeof(FBVERTEX), (const GLvoid*)offsetof(FBVERTEX, color1));
glVertexAttribPointer(3, 2, GL_FLOAT, GL_FALSE, sizeof(FBVERTEX), (const GLvoid*)offsetof(FBVERTEX, tu));
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(oldBinding);
*outVertexBuffer = obj.release();
return true;
}
bool OpenGLSWFrameBuffer::CreateIndexBuffer(int size, HWIndexBuffer **outIndexBuffer)
{
auto obj = std::make_unique<HWIndexBuffer>();
obj->Size = size;
GLint oldBinding = 0;
glGetIntegerv(GL_ELEMENT_ARRAY_BUFFER_BINDING, &oldBinding);
glGenBuffers(1, (GLuint*)&obj->Buffer);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, obj->Buffer);
FGLDebug::LabelObject(GL_BUFFER, obj->Buffer, "IndexBuffer");
glBufferData(GL_ELEMENT_ARRAY_BUFFER, size, nullptr, GL_STREAM_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, oldBinding);
*outIndexBuffer = obj.release();
return true;
}
bool OpenGLSWFrameBuffer::CreateTexture(const FString &name, int width, int height, int levels, int format, HWTexture **outTexture)
{
auto obj = std::make_unique<HWTexture>();
obj->Format = format;
GLint oldBinding = 0;
glGetIntegerv(GL_TEXTURE_BINDING_2D, &oldBinding);
glGenTextures(1, (GLuint*)&obj->Texture);
glBindTexture(GL_TEXTURE_2D, obj->Texture);
GLenum srcformat;
switch (format)
{
case GL_R8: srcformat = GL_RED; break;
case GL_RGBA8: srcformat = GL_BGRA; break;
case GL_RGBA16F: srcformat = GL_RGBA; break;
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT: srcformat = GL_RGB; break;
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT: srcformat = GL_RGBA; break;
case GL_COMPRESSED_RGBA_S3TC_DXT3_EXT: srcformat = GL_RGBA; break;
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT: srcformat = GL_RGBA; break;
default:
I_FatalError("Unknown format passed to CreateTexture");
return false;
}
glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, srcformat, GL_UNSIGNED_BYTE, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
FGLDebug::LabelObject(GL_TEXTURE, obj->Texture, name);
glBindTexture(GL_TEXTURE_2D, oldBinding);
*outTexture = obj.release();
return true;
}
OpenGLSWFrameBuffer::HWTexture *OpenGLSWFrameBuffer::CopyCurrentScreen()
{
auto obj = std::make_unique<HWTexture>();
obj->Format = GL_RGBA16F;
GLint oldBinding = 0;
glGetIntegerv(GL_TEXTURE_BINDING_2D, &oldBinding);
glGenTextures(1, (GLuint*)&obj->Texture);
glBindTexture(GL_TEXTURE_2D, obj->Texture);
glCopyTexImage2D(GL_TEXTURE_2D, 0, obj->Format, 0, 0, Width, Height, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
FGLDebug::LabelObject(GL_TEXTURE, obj->Texture, "CopyCurrentScreen");
glBindTexture(GL_TEXTURE_2D, oldBinding);
return obj.release();
}
void OpenGLSWFrameBuffer::SetGammaRamp(const GammaRamp *ramp)
{
}
void OpenGLSWFrameBuffer::SetPixelShaderConstantF(int uniformIndex, const float *data, int vec4fcount)
{
assert(uniformIndex < NumPSCONST && vec4fcount == 1); // This emulation of d3d9 only works for very simple stuff
for (int i = 0; i < 4; i++)
ShaderConstants[uniformIndex * 4 + i] = data[i];
if (CurrentShader && CurrentShader->ConstantLocations[uniformIndex] != -1)
glUniform4fv(CurrentShader->ConstantLocations[uniformIndex], vec4fcount, data);
}
void OpenGLSWFrameBuffer::SetHWPixelShader(HWPixelShader *shader)
{
if (shader != CurrentShader)
{
if (shader)
{
glUseProgram(shader->Program);
for (int i = 0; i < NumPSCONST; i++)
{
if (shader->ConstantLocations[i] != -1)
glUniform4fv(shader->ConstantLocations[i], 1, &ShaderConstants[i * 4]);
}
}
else
{
glUseProgram(0);
}
}
CurrentShader = shader;
}
void OpenGLSWFrameBuffer::SetStreamSource(HWVertexBuffer *vertexBuffer)
{
if (vertexBuffer)
glBindVertexArray(vertexBuffer->VertexArray);
else
glBindVertexArray(0);
}
void OpenGLSWFrameBuffer::SetIndices(HWIndexBuffer *indexBuffer)
{
if (indexBuffer)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBuffer->Buffer);
else
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
void OpenGLSWFrameBuffer::DrawTriangleFans(int count, const FBVERTEX *vertices)
{
count = 2 + count;
GLint oldBinding = 0;
glGetIntegerv(GL_VERTEX_ARRAY_BINDING, &oldBinding);
if (!StreamVertexBuffer)
{
StreamVertexBuffer = std::make_unique<HWVertexBuffer>();
glGenVertexArrays(1, (GLuint*)&StreamVertexBuffer->VertexArray);
glGenBuffers(1, (GLuint*)&StreamVertexBuffer->Buffer);
glBindVertexArray(StreamVertexBuffer->VertexArray);
glBindBuffer(GL_ARRAY_BUFFER, StreamVertexBuffer->Buffer);
glBufferData(GL_ARRAY_BUFFER, count * sizeof(FBVERTEX), vertices, GL_STREAM_DRAW);
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
glEnableVertexAttribArray(2);
glEnableVertexAttribArray(3);
glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, sizeof(FBVERTEX), (const GLvoid*)offsetof(FBVERTEX, x));
glVertexAttribPointer(1, 4, GL_UNSIGNED_BYTE, GL_TRUE, sizeof(FBVERTEX), (const GLvoid*)offsetof(FBVERTEX, color0));
glVertexAttribPointer(2, 4, GL_UNSIGNED_BYTE, GL_TRUE, sizeof(FBVERTEX), (const GLvoid*)offsetof(FBVERTEX, color1));
glVertexAttribPointer(3, 2, GL_FLOAT, GL_FALSE, sizeof(FBVERTEX), (const GLvoid*)offsetof(FBVERTEX, tu));
}
else
{
glBindVertexArray(StreamVertexBuffer->VertexArray);
glBindBuffer(GL_ARRAY_BUFFER, StreamVertexBuffer->Buffer);
glBufferData(GL_ARRAY_BUFFER, count * sizeof(FBVERTEX), vertices, GL_STREAM_DRAW);
}
glDrawArrays(GL_TRIANGLE_FAN, 0, count);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(oldBinding);
}
void OpenGLSWFrameBuffer::DrawTriangleFans(int count, const BURNVERTEX *vertices)
{
count = 2 + count;
GLint oldBinding = 0;
glGetIntegerv(GL_VERTEX_ARRAY_BINDING, &oldBinding);
if (!StreamVertexBufferBurn)
{
StreamVertexBufferBurn = std::make_unique<HWVertexBuffer>();
glGenVertexArrays(1, (GLuint*)&StreamVertexBufferBurn->VertexArray);
glGenBuffers(1, (GLuint*)&StreamVertexBufferBurn->Buffer);
glBindVertexArray(StreamVertexBufferBurn->VertexArray);
glBindBuffer(GL_ARRAY_BUFFER, StreamVertexBufferBurn->Buffer);
glBufferData(GL_ARRAY_BUFFER, count * sizeof(BURNVERTEX), vertices, GL_STREAM_DRAW);
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, sizeof(BURNVERTEX), (const GLvoid*)offsetof(BURNVERTEX, x));
glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, sizeof(BURNVERTEX), (const GLvoid*)offsetof(BURNVERTEX, tu0));
}
else
{
glBindVertexArray(StreamVertexBufferBurn->VertexArray);
glBindBuffer(GL_ARRAY_BUFFER, StreamVertexBufferBurn->Buffer);
glBufferData(GL_ARRAY_BUFFER, count * sizeof(BURNVERTEX), vertices, GL_STREAM_DRAW);
}
glDrawArrays(GL_TRIANGLE_FAN, 0, count);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(oldBinding);
}
void OpenGLSWFrameBuffer::DrawPoints(int count, const FBVERTEX *vertices)
{
GLint oldBinding = 0;
glGetIntegerv(GL_VERTEX_ARRAY_BINDING, &oldBinding);
if (!StreamVertexBuffer)
{
StreamVertexBuffer = std::make_unique<HWVertexBuffer>();
glGenVertexArrays(1, (GLuint*)&StreamVertexBuffer->VertexArray);
glGenBuffers(1, (GLuint*)&StreamVertexBuffer->Buffer);
glBindVertexArray(StreamVertexBuffer->VertexArray);
glBindBuffer(GL_ARRAY_BUFFER, StreamVertexBuffer->Buffer);
glBufferData(GL_ARRAY_BUFFER, count * sizeof(FBVERTEX), vertices, GL_STREAM_DRAW);
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
glEnableVertexAttribArray(2);
glEnableVertexAttribArray(3);
glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, sizeof(FBVERTEX), (const GLvoid*)offsetof(FBVERTEX, x));
glVertexAttribPointer(1, 4, GL_UNSIGNED_BYTE, GL_TRUE, sizeof(FBVERTEX), (const GLvoid*)offsetof(FBVERTEX, color0));
glVertexAttribPointer(2, 4, GL_UNSIGNED_BYTE, GL_TRUE, sizeof(FBVERTEX), (const GLvoid*)offsetof(FBVERTEX, color1));
glVertexAttribPointer(3, 2, GL_FLOAT, GL_FALSE, sizeof(FBVERTEX), (const GLvoid*)offsetof(FBVERTEX, tu));
}
else
{
glBindVertexArray(StreamVertexBuffer->VertexArray);
glBindBuffer(GL_ARRAY_BUFFER, StreamVertexBuffer->Buffer);
glBufferData(GL_ARRAY_BUFFER, count * sizeof(FBVERTEX), vertices, GL_STREAM_DRAW);
}
glDrawArrays(GL_POINTS, 0, count);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(oldBinding);
}
void OpenGLSWFrameBuffer::DrawLineList(int count)
{
glDrawArrays(GL_LINES, 0, count * 2);
}
void OpenGLSWFrameBuffer::DrawTriangleList(int minIndex, int numVertices, int startIndex, int primitiveCount)
{
glDrawRangeElements(GL_TRIANGLES, minIndex, minIndex + numVertices - 1, primitiveCount * 3, GL_UNSIGNED_SHORT, (const void*)(startIndex * sizeof(uint16_t)));
}
void OpenGLSWFrameBuffer::Present()
{
int clientWidth = GetClientWidth();
int clientHeight = GetClientHeight();
if (clientWidth > 0 && clientHeight > 0)
{
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glViewport(0, 0, clientWidth, clientHeight);
float scale = MIN(clientWidth / (float)Width, clientHeight / (float)Height);
int letterboxWidth = (int)round(Width * scale);
int letterboxHeight = (int)round(Height * scale);
int letterboxX = (clientWidth - letterboxWidth) / 2;
int letterboxY = (clientHeight - letterboxHeight) / 2;
DrawLetterbox(letterboxX, letterboxY, letterboxWidth, letterboxHeight);
glViewport(letterboxX, letterboxY, letterboxWidth, letterboxHeight);
FBVERTEX verts[4];
CalcFullscreenCoords(verts, false, 0, 0xFFFFFFFF);
SetTexture(0, OutputFB->Texture);
SetPixelShader(Shaders[SHADER_GammaCorrection]);
SetAlphaBlend(0);
EnableAlphaTest(false);
DrawTriangleFans(2, verts);
}
SwapBuffers();
Debug->Update();
float screensize[4] = { (float)Width, (float)Height, 1.0f, 1.0f };
SetPixelShaderConstantF(PSCONST_ScreenSize, screensize, 1);
glBindFramebuffer(GL_FRAMEBUFFER, OutputFB->Framebuffer);
glViewport(0, 0, Width, Height);
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: SetInitialState
//
// Called after initial device creation and reset, when everything is set
// to OpenGL's defaults.
//
//==========================================================================
void OpenGLSWFrameBuffer::SetInitialState()
{
AlphaBlendEnabled = false;
AlphaBlendOp = GL_FUNC_ADD;
AlphaSrcBlend = 0;
AlphaDestBlend = 0;
CurPixelShader = nullptr;
memset(Constant, 0, sizeof(Constant));
for (unsigned i = 0; i < countof(Texture); ++i)
{
Texture[i] = nullptr;
SamplerWrapS[i] = GL_CLAMP_TO_EDGE;
SamplerWrapT[i] = GL_CLAMP_TO_EDGE;
}
NeedGammaUpdate = true;
NeedPalUpdate = true;
// This constant is used for grayscaling weights (.xyz) and color inversion (.w)
float weights[4] = { 77 / 256.f, 143 / 256.f, 37 / 256.f, 1 };
SetPixelShaderConstantF(PSCONST_Weights, weights, 1);
float screensize[4] = { (float)Width, (float)Height, 1.0f, 1.0f };
SetPixelShaderConstantF(PSCONST_ScreenSize, screensize, 1);
AlphaTestEnabled = false;
CurBorderColor = 0;
// Clear to black, just in case it wasn't done already.
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: CreateResources
//
//==========================================================================
bool OpenGLSWFrameBuffer::CreateResources()
{
Atlases = nullptr;
if (!LoadShaders())
{
return false;
}
if (!CreateFrameBuffer("OutputFB", Width, Height, &OutputFB))
return false;
glBindFramebuffer(GL_FRAMEBUFFER, OutputFB->Framebuffer);
if (!CreateFBTexture() ||
!CreatePaletteTexture())
{
return false;
}
if (!CreateVertexes())
{
return false;
}
return true;
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: LoadShaders
//
// Returns true if all required shaders were loaded. (Gamma and burn wipe
// are the only ones not considered "required".)
//
//==========================================================================
bool OpenGLSWFrameBuffer::LoadShaders()
{
int lumpvert = Wads.CheckNumForFullName("shaders/glsl/swshader.vp");
int lumpfrag = Wads.CheckNumForFullName("shaders/glsl/swshader.fp");
if (lumpvert < 0 || lumpfrag < 0)
return false;
FString vertsource = Wads.ReadLump(lumpvert).GetString();
FString fragsource = Wads.ReadLump(lumpfrag).GetString();
FString shaderdir, shaderpath;
unsigned int i;
for (i = 0; i < NUM_SHADERS; ++i)
{
shaderpath = shaderdir;
if (!CreatePixelShader(vertsource, fragsource, ShaderDefines[i], &Shaders[i]) && i < SHADER_BurnWipe)
{
break;
}
glUseProgram(Shaders[i]->Program);
if (Shaders[i]->ImageLocation != -1) glUniform1i(Shaders[i]->ImageLocation, 0);
if (Shaders[i]->PaletteLocation != -1) glUniform1i(Shaders[i]->PaletteLocation, 1);
if (Shaders[i]->NewScreenLocation != -1) glUniform1i(Shaders[i]->NewScreenLocation, 0);
if (Shaders[i]->BurnLocation != -1) glUniform1i(Shaders[i]->BurnLocation, 1);
glUseProgram(0);
}
if (i == NUM_SHADERS)
{ // Success!
return true;
}
// Failure. Release whatever managed to load (which is probably nothing.)
for (i = 0; i < NUM_SHADERS; ++i)
{
SafeRelease(Shaders[i]);
}
return false;
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: ReleaseResources
//
//==========================================================================
void OpenGLSWFrameBuffer::ReleaseResources()
{
#ifdef WIN32
I_SaveWindowedPos();
#endif
KillNativeTexs();
KillNativePals();
ReleaseDefaultPoolItems();
SafeRelease(ScreenshotTexture);
SafeRelease(PaletteTexture);
for (int i = 0; i < NUM_SHADERS; ++i)
{
SafeRelease(Shaders[i]);
}
if (ScreenWipe != nullptr)
{
delete ScreenWipe;
ScreenWipe = nullptr;
}
Atlas *pack, *next;
for (pack = Atlases; pack != nullptr; pack = next)
{
next = pack->Next;
delete pack;
}
GatheringWipeScreen = false;
}
void OpenGLSWFrameBuffer::ReleaseDefaultPoolItems()
{
SafeRelease(FBTexture);
SafeRelease(FinalWipeScreen);
SafeRelease(InitialWipeScreen);
SafeRelease(VertexBuffer);
SafeRelease(IndexBuffer);
SafeRelease(OutputFB);
}
bool OpenGLSWFrameBuffer::Reset()
{
ReleaseDefaultPoolItems();
if (!CreateFrameBuffer("OutputFB", Width, Height, &OutputFB) || !CreateFBTexture() || !CreateVertexes())
{
return false;
}
glBindFramebuffer(GL_FRAMEBUFFER, OutputFB->Framebuffer);
glViewport(0, 0, Width, Height);
SetInitialState();
return true;
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: KillNativePals
//
// Frees all native palettes.
//
//==========================================================================
void OpenGLSWFrameBuffer::KillNativePals()
{
while (Palettes != nullptr)
{
delete Palettes;
}
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: KillNativeTexs
//
// Frees all native textures.
//
//==========================================================================
void OpenGLSWFrameBuffer::KillNativeTexs()
{
while (Textures != nullptr)
{
delete Textures;
}
}
bool OpenGLSWFrameBuffer::CreateFBTexture()
{
return CreateTexture("FBTexture", Width, Height, 1, IsBgra() ? GL_RGBA8 : GL_R8, &FBTexture);
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: CreatePaletteTexture
//
//==========================================================================
bool OpenGLSWFrameBuffer::CreatePaletteTexture()
{
return CreateTexture("PaletteTexture", 256, 1, 1, GL_RGBA8, &PaletteTexture);
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: CreateVertexes
//
//==========================================================================
bool OpenGLSWFrameBuffer::CreateVertexes()
{
VertexPos = -1;
IndexPos = -1;
QuadBatchPos = -1;
BatchType = BATCH_None;
if (!CreateVertexBuffer(sizeof(FBVERTEX)*NUM_VERTS, &VertexBuffer))
{
return false;
}
if (!CreateIndexBuffer(sizeof(uint16_t)*NUM_INDEXES, &IndexBuffer))
{
return false;
}
return true;
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: CalcFullscreenCoords
//
//==========================================================================
void OpenGLSWFrameBuffer::CalcFullscreenCoords(FBVERTEX verts[4], bool viewarea_only, uint32_t color0, uint32_t color1) const
{
float mxl, mxr, myt, myb, tmxl, tmxr, tmyt, tmyb;
if (viewarea_only)
{ // Just calculate vertices for the viewarea/BlendingRect
mxl = float(BlendingRect.left);
mxr = float(BlendingRect.right);
myt = float(BlendingRect.top);
myb = float(BlendingRect.bottom);
tmxl = float(BlendingRect.left) / float(Width);
tmxr = float(BlendingRect.right) / float(Width);
tmyt = float(BlendingRect.top) / float(Height);
tmyb = float(BlendingRect.bottom) / float(Height);
}
else
{ // Calculate vertices for the whole screen
mxl = 0.0f;
mxr = float(Width);
myt = 0.0f;
myb = float(Height);
tmxl = 0;
tmxr = 1.0f;
tmyt = 0;
tmyb = 1.0f;
}
//{ mxl, myt, 0, 1, 0, 0xFFFFFFFF, tmxl, tmyt },
//{ mxr, myt, 0, 1, 0, 0xFFFFFFFF, tmxr, tmyt },
//{ mxr, myb, 0, 1, 0, 0xFFFFFFFF, tmxr, tmyb },
//{ mxl, myb, 0, 1, 0, 0xFFFFFFFF, tmxl, tmyb },
verts[0].x = mxl;
verts[0].y = myt;
verts[0].z = 0;
verts[0].rhw = 1;
verts[0].color0 = color0;
verts[0].color1 = color1;
verts[0].tu = tmxl;
verts[0].tv = tmyt;
verts[1].x = mxr;
verts[1].y = myt;
verts[1].z = 0;
verts[1].rhw = 1;
verts[1].color0 = color0;
verts[1].color1 = color1;
verts[1].tu = tmxr;
verts[1].tv = tmyt;
verts[2].x = mxr;
verts[2].y = myb;
verts[2].z = 0;
verts[2].rhw = 1;
verts[2].color0 = color0;
verts[2].color1 = color1;
verts[2].tu = tmxr;
verts[2].tv = tmyb;
verts[3].x = mxl;
verts[3].y = myb;
verts[3].z = 0;
verts[3].rhw = 1;
verts[3].color0 = color0;
verts[3].color1 = color1;
verts[3].tu = tmxl;
verts[3].tv = tmyb;
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: GetPageCount
//
//==========================================================================
int OpenGLSWFrameBuffer::GetPageCount()
{
return 1;
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: IsValid
//
//==========================================================================
bool OpenGLSWFrameBuffer::IsValid()
{
return true;
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: Lock
//
//==========================================================================
bool OpenGLSWFrameBuffer::Lock(bool buffered)
{
if (LockCount++ > 0)
{
return false;
}
assert(!In2D);
Accel2D = vid_hw2d;
Buffer = MemBuffer;
return false;
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: Unlock
//
//==========================================================================
void OpenGLSWFrameBuffer::Unlock()
{
if (LockCount == 0)
{
return;
}
if (UpdatePending && LockCount == 1)
{
Update();
}
else if (--LockCount == 0)
{
Buffer = nullptr;
}
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: Update
//
// When In2D == 0: Copy buffer to screen and present
// When In2D == 1: Copy buffer to screen but do not present
// When In2D == 2: Set up for 2D drawing but do not draw anything
// When In2D == 3: Present and set In2D to 0
//
//==========================================================================
void OpenGLSWFrameBuffer::Update()
{
if (In2D == 3)
{
if (InScene)
{
DrawRateStuff();
DrawPackedTextures(gl_showpacks);
EndBatch(); // Make sure all batched primitives are drawn.
Flip();
}
In2D = 0;
return;
}
if (LockCount != 1)
{
I_FatalError("Framebuffer must have exactly 1 lock to be updated");
if (LockCount > 0)
{
UpdatePending = true;
--LockCount;
}
return;
}
if (In2D == 0)
{
DrawRateStuff();
}
if (NeedGammaUpdate)
{
float psgamma[4];
float igamma;
NeedGammaUpdate = false;
igamma = 1 / Gamma;
if (IsFullscreen())
{
GammaRamp ramp;
for (int i = 0; i < 256; ++i)
{
ramp.blue[i] = ramp.green[i] = ramp.red[i] = uint16_t(65535.f * powf(i / 255.f, igamma));
}
SetGammaRamp(&ramp);
}
psgamma[2] = psgamma[1] = psgamma[0] = igamma;
psgamma[3] = 0.5; // For SM14 version
SetPixelShaderConstantF(PSCONST_Gamma, psgamma, 1);
}
if (NeedPalUpdate)
{
UploadPalette();
NeedPalUpdate = false;
}
#ifdef WIN32
BlitCycles.Reset();
BlitCycles.Clock();
#endif
LockCount = 0;
Draw3DPart(In2D <= 1);
if (In2D == 0)
{
Flip();
}
#ifdef WIN32
BlitCycles.Unclock();
//LOG1 ("cycles = %d\n", BlitCycles);
#endif
Buffer = nullptr;
UpdatePending = false;
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: Flip
//
//==========================================================================
void OpenGLSWFrameBuffer::Flip()
{
assert(InScene);
Present();
InScene = false;
if (!IsFullscreen())
{
int clientWidth = ClampWidth(GetClientWidth());
int clientHeight = ClampHeight(GetClientHeight());
if (clientWidth > 0 && clientHeight > 0 && (Width != clientWidth || Height != clientHeight))
{
Resize(clientWidth, clientHeight);
TrueHeight = Height;
PixelDoubling = 0;
Reset();
V_OutputResized(Width, Height);
}
}
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: PaintToWindow
//
//==========================================================================
#ifdef WIN32
bool OpenGLSWFrameBuffer::PaintToWindow()
{
if (LockCount != 0)
{
return false;
}
Draw3DPart(true);
return true;
}
#endif
//==========================================================================
//
// OpenGLSWFrameBuffer :: Draw3DPart
//
// The software 3D part, to be exact.
//
//==========================================================================
void OpenGLSWFrameBuffer::Draw3DPart(bool copy3d)
{
if (copy3d)
{
int pixelsize = IsBgra() ? 4 : 1;
int size = Width * Height * pixelsize;
if (FBTexture->Buffers[0] == 0)
{
glGenBuffers(2, (GLuint*)FBTexture->Buffers);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, FBTexture->Buffers[0]);
glBufferData(GL_PIXEL_UNPACK_BUFFER, size, nullptr, GL_STREAM_DRAW);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, FBTexture->Buffers[1]);
glBufferData(GL_PIXEL_UNPACK_BUFFER, size, nullptr, GL_STREAM_DRAW);
}
else
{
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, FBTexture->Buffers[FBTexture->CurrentBuffer]);
FBTexture->CurrentBuffer = (FBTexture->CurrentBuffer + 1) & 1;
}
uint8_t *dest = (uint8_t*)MapBuffer(GL_PIXEL_UNPACK_BUFFER, size);
if (dest)
{
if (Pitch == Width)
{
memcpy(dest, MemBuffer, Width * Height * pixelsize);
}
else
{
uint8_t *src = MemBuffer;
for (int y = 0; y < Height; y++)
{
memcpy(dest, src, Width * pixelsize);
dest += Width * pixelsize;
src += Pitch * pixelsize;
}
}
glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER);
GLint oldBinding = 0;
glGetIntegerv(GL_TEXTURE_BINDING_2D, &oldBinding);
glBindTexture(GL_TEXTURE_2D, FBTexture->Texture);
if (IsBgra())
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, Width, Height, GL_BGRA, GL_UNSIGNED_BYTE, 0);
else
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, Width, Height, GL_RED, GL_UNSIGNED_BYTE, 0);
glBindTexture(GL_TEXTURE_2D, oldBinding);
}
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
}
InScene = true;
if (vid_hwaalines)
glEnable(GL_LINE_SMOOTH);
else
glDisable(GL_LINE_SMOOTH);
SetTexture(0, FBTexture);
SetPaletteTexture(PaletteTexture, 256, BorderColor);
memset(Constant, 0, sizeof(Constant));
SetAlphaBlend(0);
EnableAlphaTest(false);
if (IsBgra())
SetPixelShader(Shaders[SHADER_NormalColor]);
else
SetPixelShader(Shaders[SHADER_NormalColorPal]);
if (copy3d)
{
FBVERTEX verts[4];
uint32_t color0, color1;
if (Accel2D)
{
if (realfixedcolormap == nullptr)
{
color0 = 0;
color1 = 0xFFFFFFF;
}
else
{
color0 = ColorValue(realfixedcolormap->ColorizeStart[0] / 2, realfixedcolormap->ColorizeStart[1] / 2, realfixedcolormap->ColorizeStart[2] / 2, 0);
color1 = ColorValue(realfixedcolormap->ColorizeEnd[0] / 2, realfixedcolormap->ColorizeEnd[1] / 2, realfixedcolormap->ColorizeEnd[2] / 2, 1);
if (IsBgra())
SetPixelShader(Shaders[SHADER_SpecialColormap]);
else
SetPixelShader(Shaders[SHADER_SpecialColormapPal]);
}
}
else
{
color0 = FlashColor0;
color1 = FlashColor1;
}
CalcFullscreenCoords(verts, Accel2D, color0, color1);
DrawTriangleFans(2, verts);
}
if (IsBgra())
SetPixelShader(Shaders[SHADER_NormalColor]);
else
SetPixelShader(Shaders[SHADER_NormalColorPal]);
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: DrawLetterbox
//
// Draws the black bars at the top and bottom of the screen for letterboxed
// modes.
//
//==========================================================================
void OpenGLSWFrameBuffer::DrawLetterbox(int x, int y, int width, int height)
{
int clientWidth = GetClientWidth();
int clientHeight = GetClientHeight();
if (clientWidth == 0 || clientHeight == 0)
return;
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glEnable(GL_SCISSOR_TEST);
if (y > 0)
{
glScissor(0, 0, clientWidth, y);
glClear(GL_COLOR_BUFFER_BIT);
}
if (clientHeight - y - height > 0)
{
glScissor(0, y + height, clientWidth, clientHeight - y - height);
glClear(GL_COLOR_BUFFER_BIT);
}
if (x > 0)
{
glScissor(0, y, x, height);
glClear(GL_COLOR_BUFFER_BIT);
}
if (clientWidth - x - width > 0)
{
glScissor(x + width, y, clientWidth - x - width, height);
glClear(GL_COLOR_BUFFER_BIT);
}
glDisable(GL_SCISSOR_TEST);
}
void OpenGLSWFrameBuffer::UploadPalette()
{
if (PaletteTexture->Buffers[0] == 0)
{
glGenBuffers(2, (GLuint*)PaletteTexture->Buffers);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, PaletteTexture->Buffers[0]);
glBufferData(GL_PIXEL_UNPACK_BUFFER, 256 * 4, nullptr, GL_STREAM_DRAW);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, PaletteTexture->Buffers[1]);
glBufferData(GL_PIXEL_UNPACK_BUFFER, 256 * 4, nullptr, GL_STREAM_DRAW);
}
else
{
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, PaletteTexture->Buffers[PaletteTexture->CurrentBuffer]);
PaletteTexture->CurrentBuffer = (PaletteTexture->CurrentBuffer + 1) & 1;
}
uint8_t *pix = (uint8_t*)MapBuffer(GL_PIXEL_UNPACK_BUFFER, 256 * 4);
if (pix)
{
int i;
for (i = 0; i < 256; ++i, pix += 4)
{
pix[0] = SourcePalette[i].b;
pix[1] = SourcePalette[i].g;
pix[2] = SourcePalette[i].r;
pix[3] = (i == 0 ? 0 : 255);
// To let masked textures work, the first palette entry's alpha is 0.
}
pix += 4;
for (; i < 255; ++i, pix += 4)
{
pix[0] = SourcePalette[i].b;
pix[1] = SourcePalette[i].g;
pix[2] = SourcePalette[i].r;
pix[3] = 255;
}
glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER);
GLint oldBinding = 0;
glGetIntegerv(GL_TEXTURE_BINDING_2D, &oldBinding);
glBindTexture(GL_TEXTURE_2D, PaletteTexture->Texture);
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 256, 1, GL_BGRA, GL_UNSIGNED_BYTE, 0);
glBindTexture(GL_TEXTURE_2D, oldBinding);
BorderColor = ColorXRGB(SourcePalette[255].r, SourcePalette[255].g, SourcePalette[255].b);
}
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
}
PalEntry *OpenGLSWFrameBuffer::GetPalette()
{
return SourcePalette;
}
void OpenGLSWFrameBuffer::UpdatePalette()
{
NeedPalUpdate = true;
}
bool OpenGLSWFrameBuffer::SetGamma(float gamma)
{
Gamma = gamma;
NeedGammaUpdate = true;
return true;
}
bool OpenGLSWFrameBuffer::SetFlash(PalEntry rgb, int amount)
{
FlashColor = rgb;
FlashAmount = amount;
// Fill in the constants for the pixel shader to do linear interpolation between the palette and the flash:
float r = rgb.r / 255.f, g = rgb.g / 255.f, b = rgb.b / 255.f, a = amount / 256.f;
FlashColor0 = ColorValue(r * a, g * a, b * a, 0);
a = 1 - a;
FlashColor1 = ColorValue(a, a, a, 1);
return true;
}
void OpenGLSWFrameBuffer::GetFlash(PalEntry &rgb, int &amount)
{
rgb = FlashColor;
amount = FlashAmount;
}
void OpenGLSWFrameBuffer::GetFlashedPalette(PalEntry pal[256])
{
memcpy(pal, SourcePalette, 256 * sizeof(PalEntry));
if (FlashAmount)
{
DoBlending(pal, pal, 256, FlashColor.r, FlashColor.g, FlashColor.b, FlashAmount);
}
}
void OpenGLSWFrameBuffer::SetVSync(bool vsync)
{
if (VSync != vsync)
{
VSync = vsync;
Reset();
}
Super::SetVSync(vsync);
}
void OpenGLSWFrameBuffer::NewRefreshRate()
{
if (IsFullscreen())
{
Reset();
}
}
void OpenGLSWFrameBuffer::SetBlendingRect(int x1, int y1, int x2, int y2)
{
BlendingRect.left = x1;
BlendingRect.top = y1;
BlendingRect.right = x2;
BlendingRect.bottom = y2;
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: GetScreenshotBuffer
//
// Returns a pointer into a surface holding the current screen data.
//
//==========================================================================
void OpenGLSWFrameBuffer::GetScreenshotBuffer(const uint8_t *&buffer, int &pitch, ESSType &color_type)
{
Super::GetScreenshotBuffer(buffer, pitch, color_type);
/*
LockedRect lrect;
if (!Accel2D)
{
Super::GetScreenshotBuffer(buffer, pitch, color_type);
return;
}
buffer = nullptr;
if ((ScreenshotTexture = GetCurrentScreen()) != nullptr)
{
if (!ScreenshotTexture->GetSurfaceLevel(0, &ScreenshotSurface))
{
delete ScreenshotTexture;
ScreenshotTexture = nullptr;
}
else if (!ScreenshotSurface->LockRect(&lrect, nullptr, false))
{
delete ScreenshotSurface;
ScreenshotSurface = nullptr;
delete ScreenshotTexture;
ScreenshotTexture = nullptr;
}
else
{
buffer = (const uint8_t *)lrect.pBits;
pitch = lrect.Pitch;
color_type = SS_BGRA;
}
}
*/
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: ReleaseScreenshotBuffer
//
//==========================================================================
void OpenGLSWFrameBuffer::ReleaseScreenshotBuffer()
{
if (LockCount > 0)
{
Super::ReleaseScreenshotBuffer();
}
SafeRelease(ScreenshotTexture);
}
/**************************************************************************/
/* 2D Stuff */
/**************************************************************************/
//==========================================================================
//
// OpenGLSWFrameBuffer :: DrawPackedTextures
//
// DEBUG: Draws the texture atlases to the screen, starting with the
// 1-based packnum. Ignores atlases that are flagged for use by one
// texture only.
//
//==========================================================================
void OpenGLSWFrameBuffer::DrawPackedTextures(int packnum)
{
uint32_t empty_colors[8] =
{
0x50FF0000, 0x5000FF00, 0x500000FF, 0x50FFFF00,
0x50FF00FF, 0x5000FFFF, 0x50FF8000, 0x500080FF
};
Atlas *pack;
int x = 8, y = 8;
if (packnum <= 0)
{
return;
}
pack = Atlases;
// Find the first texture atlas that is an actual atlas.
while (pack != nullptr && pack->OneUse)
{ // Skip textures that aren't used as atlases
pack = pack->Next;
}
// Skip however many atlases we would have otherwise drawn
// until we've skipped <packnum> of them.
while (pack != nullptr && packnum != 1)
{
if (!pack->OneUse)
{ // Skip textures that aren't used as atlases
packnum--;
}
pack = pack->Next;
}
// Draw atlases until we run out of room on the screen.
while (pack != nullptr)
{
if (pack->OneUse)
{ // Skip textures that aren't used as atlases
pack = pack->Next;
continue;
}
AddColorOnlyRect(x - 1, y - 1, 258, 258, ColorXRGB(255, 255, 0));
int back = 0;
for (PackedTexture *box = pack->UsedList; box != nullptr; box = box->Next)
{
AddColorOnlyQuad(
x + box->Area.left * 256 / pack->Width,
y + box->Area.top * 256 / pack->Height,
(box->Area.right - box->Area.left) * 256 / pack->Width,
(box->Area.bottom - box->Area.top) * 256 / pack->Height, empty_colors[back]);
back = (back + 1) & 7;
}
// AddColorOnlyQuad(x, y-LBOffsetI, 256, 256, ColorARGB(180,0,0,0));
CheckQuadBatch();
BufferedTris *quad = &QuadExtra[QuadBatchPos];
FBVERTEX *vert = &VertexData[VertexPos];
quad->ClearSetup();
if (pack->Format == GL_R8/* && !tex->IsGray*/)
{
quad->Flags = BQF_WrapUV | BQF_GamePalette/* | BQF_DisableAlphaTest*/;
quad->ShaderNum = BQS_PalTex;
}
else
{
quad->Flags = BQF_WrapUV/* | BQF_DisableAlphaTest*/;
quad->ShaderNum = BQS_Plain;
}
quad->Palette = nullptr;
quad->Texture = pack->Tex;
quad->NumVerts = 4;
quad->NumTris = 2;
float x0 = float(x);
float y0 = float(y);
float x1 = x0 + 256.f;
float y1 = y0 + 256.f;
vert[0].x = x0;
vert[0].y = y0;
vert[0].z = 0;
vert[0].rhw = 1;
vert[0].color0 = 0;
vert[0].color1 = 0xFFFFFFFF;
vert[0].tu = 0;
vert[0].tv = 0;
vert[1].x = x1;
vert[1].y = y0;
vert[1].z = 0;
vert[1].rhw = 1;
vert[1].color0 = 0;
vert[1].color1 = 0xFFFFFFFF;
vert[1].tu = 1;
vert[1].tv = 0;
vert[2].x = x1;
vert[2].y = y1;
vert[2].z = 0;
vert[2].rhw = 1;
vert[2].color0 = 0;
vert[2].color1 = 0xFFFFFFFF;
vert[2].tu = 1;
vert[2].tv = 1;
vert[3].x = x0;
vert[3].y = y1;
vert[3].z = 0;
vert[3].rhw = 1;
vert[3].color0 = 0;
vert[3].color1 = 0xFFFFFFFF;
vert[3].tu = 0;
vert[3].tv = 1;
IndexData[IndexPos] = VertexPos;
IndexData[IndexPos + 1] = VertexPos + 1;
IndexData[IndexPos + 2] = VertexPos + 2;
IndexData[IndexPos + 3] = VertexPos;
IndexData[IndexPos + 4] = VertexPos + 2;
IndexData[IndexPos + 5] = VertexPos + 3;
QuadBatchPos++;
VertexPos += 4;
IndexPos += 6;
x += 256 + 8;
if (x > Width - 256)
{
x = 8;
y += 256 + 8;
if (y > Height - 256)
{
return;
}
}
pack = pack->Next;
}
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: AllocPackedTexture
//
// Finds space to pack an image inside a texture atlas and returns it.
// Large images and those that need to wrap always get their own textures.
//
//==========================================================================
OpenGLSWFrameBuffer::PackedTexture *OpenGLSWFrameBuffer::AllocPackedTexture(int w, int h, bool wrapping, int format)
{
Atlas *pack;
Rect box;
bool padded;
// The - 2 to account for padding
if (w > 256 - 2 || h > 256 - 2 || wrapping)
{ // Create a new texture atlas.
pack = new Atlas(this, w, h, format);
pack->OneUse = true;
box = pack->Packer.Insert(w, h);
padded = false;
}
else
{ // Try to find space in an existing texture atlas.
w += 2; // Add padding
h += 2;
for (pack = Atlases; pack != nullptr; pack = pack->Next)
{
// Use the first atlas it fits in.
if (pack->Format == format)
{
box = pack->Packer.Insert(w, h);
if (box.width != 0)
{
break;
}
}
}
if (pack == nullptr)
{ // Create a new texture atlas.
pack = new Atlas(this, DEF_ATLAS_WIDTH, DEF_ATLAS_HEIGHT, format);
box = pack->Packer.Insert(w, h);
}
padded = true;
}
assert(box.width != 0 && box.height != 0);
return pack->AllocateImage(box, padded);
}
//==========================================================================
//
// Atlas Constructor
//
//==========================================================================
OpenGLSWFrameBuffer::Atlas::Atlas(OpenGLSWFrameBuffer *fb, int w, int h, int format)
: Packer(w, h, true)
{
Tex = nullptr;
Format = format;
UsedList = nullptr;
OneUse = false;
Width = 0;
Height = 0;
Next = nullptr;
// Attach to the end of the atlas list
Atlas **prev = &fb->Atlases;
while (*prev != nullptr)
{
prev = &((*prev)->Next);
}
*prev = this;
fb->CreateTexture("Atlas", w, h, 1, format, &Tex);
Width = w;
Height = h;
}
//==========================================================================
//
// Atlas Destructor
//
//==========================================================================
OpenGLSWFrameBuffer::Atlas::~Atlas()
{
PackedTexture *box, *next;
SafeRelease(Tex);
for (box = UsedList; box != nullptr; box = next)
{
next = box->Next;
delete box;
}
}
//==========================================================================
//
// Atlas :: AllocateImage
//
// Moves the box from the empty list to the used list, sizing it to the
// requested dimensions and adding additional boxes to the empty list if
// needed.
//
// The passed box *MUST* be in this texture atlas's empty list.
//
//==========================================================================
OpenGLSWFrameBuffer::PackedTexture *OpenGLSWFrameBuffer::Atlas::AllocateImage(const Rect &rect, bool padded)
{
PackedTexture *box = new PackedTexture;
box->Owner = this;
box->Area.left = rect.x;
box->Area.top = rect.y;
box->Area.right = rect.x + rect.width;
box->Area.bottom = rect.y + rect.height;
box->Left = float(box->Area.left + padded) / Width;
box->Right = float(box->Area.right - padded) / Width;
box->Top = float(box->Area.top + padded) / Height;
box->Bottom = float(box->Area.bottom - padded) / Height;
box->Padded = padded;
// Add it to the used list.
box->Next = UsedList;
if (box->Next != nullptr)
{
box->Next->Prev = &box->Next;
}
UsedList = box;
box->Prev = &UsedList;
return box;
}
//==========================================================================
//
// Atlas :: FreeBox
//
// Removes a box from the used list and deletes it. Space is returned to the
// waste list. Once all boxes for this atlas are freed, the entire bin
// packer is reinitialized for maximum efficiency.
//
//==========================================================================
void OpenGLSWFrameBuffer::Atlas::FreeBox(OpenGLSWFrameBuffer::PackedTexture *box)
{
*(box->Prev) = box->Next;
if (box->Next != nullptr)
{
box->Next->Prev = box->Prev;
}
Rect waste;
waste.x = box->Area.left;
waste.y = box->Area.top;
waste.width = box->Area.right - box->Area.left;
waste.height = box->Area.bottom - box->Area.top;
box->Owner->Packer.AddWaste(waste);
delete box;
if (UsedList == nullptr)
{
Packer.Init(Width, Height, true);
}
}
//==========================================================================
//
// OpenGLTex Constructor
//
//==========================================================================
OpenGLSWFrameBuffer::OpenGLTex::OpenGLTex(FTexture *tex, OpenGLSWFrameBuffer *fb, bool wrapping)
{
// Attach to the texture list for the OpenGLSWFrameBuffer
Next = fb->Textures;
if (Next != nullptr)
{
Next->Prev = &Next;
}
Prev = &fb->Textures;
fb->Textures = this;
GameTex = tex;
Box = nullptr;
IsGray = false;
Create(fb, wrapping);
}
//==========================================================================
//
// OpenGLTex Destructor
//
//==========================================================================
OpenGLSWFrameBuffer::OpenGLTex::~OpenGLTex()
{
if (Box != nullptr)
{
Box->Owner->FreeBox(Box);
Box = nullptr;
}
// Detach from the texture list
*Prev = Next;
if (Next != nullptr)
{
Next->Prev = Prev;
}
// Remove link from the game texture
if (GameTex != nullptr)
{
GameTex->Native = nullptr;
}
}
//==========================================================================
//
// OpenGLTex :: CheckWrapping
//
// Returns true if the texture is compatible with the specified wrapping
// mode.
//
//==========================================================================
bool OpenGLSWFrameBuffer::OpenGLTex::CheckWrapping(bool wrapping)
{
// If it doesn't need to wrap, then it works.
if (!wrapping)
{
return true;
}
// If it needs to wrap, then it can't be packed inside another texture.
return Box->Owner->OneUse;
}
//==========================================================================
//
// OpenGLTex :: Create
//
// Creates an HWTexture for the texture and copies the image data
// to it. Note that unlike FTexture, this image is row-major.
//
//==========================================================================
bool OpenGLSWFrameBuffer::OpenGLTex::Create(OpenGLSWFrameBuffer *fb, bool wrapping)
{
assert(Box == nullptr);
if (Box != nullptr)
{
Box->Owner->FreeBox(Box);
}
Box = fb->AllocPackedTexture(GameTex->GetWidth(), GameTex->GetHeight(), wrapping, GetTexFormat());
if (Box == nullptr)
{
return false;
}
if (!Update())
{
Box->Owner->FreeBox(Box);
Box = nullptr;
return false;
}
return true;
}
//==========================================================================
//
// OpenGLTex :: Update
//
// Copies image data from the underlying FTexture to the OpenGL texture.
//
//==========================================================================
bool OpenGLSWFrameBuffer::OpenGLTex::Update()
{
LTRBRect rect;
uint8_t *dest;
assert(Box != nullptr);
assert(Box->Owner != nullptr);
assert(Box->Owner->Tex != nullptr);
assert(GameTex != nullptr);
int format = Box->Owner->Tex->Format;
rect = Box->Area;
if (Box->Owner->Tex->Buffers[0] == 0)
glGenBuffers(2, (GLuint*)Box->Owner->Tex->Buffers);
int bytesPerPixel = 4;
switch (format)
{
case GL_R8: bytesPerPixel = 1; break;
case GL_RGBA8: bytesPerPixel = 4; break;
default: return false;
}
int buffersize = (rect.right - rect.left) * (rect.bottom - rect.top) * bytesPerPixel;
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, Box->Owner->Tex->Buffers[Box->Owner->Tex->CurrentBuffer]);
glBufferData(GL_PIXEL_UNPACK_BUFFER, buffersize, nullptr, GL_STREAM_DRAW);
Box->Owner->Tex->CurrentBuffer = (Box->Owner->Tex->CurrentBuffer + 1) & 1;
int pitch = (rect.right - rect.left) * bytesPerPixel;
uint8_t *bits = (uint8_t *)MapBuffer(GL_PIXEL_UNPACK_BUFFER, buffersize);
dest = bits;
if (!dest)
{
return false;
}
if (Box->Padded)
{
dest += pitch + (format == GL_R8 ? 1 : 4);
}
GameTex->FillBuffer(dest, pitch, GameTex->GetHeight(), ToTexFmt(format));
if (Box->Padded)
{
// Clear top padding row.
dest = bits;
int numbytes = GameTex->GetWidth() + 2;
if (format != GL_R8)
{
numbytes <<= 2;
}
memset(dest, 0, numbytes);
dest += pitch;
// Clear left and right padding columns.
if (format == GL_R8)
{
for (int y = Box->Area.bottom - Box->Area.top - 2; y > 0; --y)
{
dest[0] = 0;
dest[numbytes - 1] = 0;
dest += pitch;
}
}
else
{
for (int y = Box->Area.bottom - Box->Area.top - 2; y > 0; --y)
{
*(uint32_t *)dest = 0;
*(uint32_t *)(dest + numbytes - 4) = 0;
dest += pitch;
}
}
// Clear bottom padding row.
memset(dest, 0, numbytes);
}
glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER);
GLint oldBinding = 0;
glGetIntegerv(GL_TEXTURE_BINDING_2D, &oldBinding);
glBindTexture(GL_TEXTURE_2D, Box->Owner->Tex->Texture);
if (format == GL_RGBA8)
glTexSubImage2D(GL_TEXTURE_2D, 0, rect.left, rect.top, rect.right - rect.left, rect.bottom - rect.top, GL_BGRA, GL_UNSIGNED_BYTE, 0);
else
glTexSubImage2D(GL_TEXTURE_2D, 0, rect.left, rect.top, rect.right - rect.left, rect.bottom - rect.top, GL_RED, GL_UNSIGNED_BYTE, 0);
glBindTexture(GL_TEXTURE_2D, oldBinding);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
return true;
}
//==========================================================================
//
// OpenGLTex :: GetTexFormat
//
// Returns the texture format that would best fit this texture.
//
//==========================================================================
int OpenGLSWFrameBuffer::OpenGLTex::GetTexFormat()
{
FTextureFormat fmt = GameTex->GetFormat();
IsGray = false;
switch (fmt)
{
case TEX_Pal: return GL_R8;
case TEX_Gray: IsGray = true; return GL_R8;
case TEX_RGB: return GL_RGBA8;
case TEX_DXT1: return GL_COMPRESSED_RGB_S3TC_DXT1_EXT;
case TEX_DXT2: return GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
case TEX_DXT3: return GL_COMPRESSED_RGBA_S3TC_DXT3_EXT;
case TEX_DXT4: return GL_COMPRESSED_RGBA_S3TC_DXT5_EXT; // Doesn't exist in OpenGL. Closest match is DXT5.
case TEX_DXT5: return GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
default: I_FatalError("GameTex->GetFormat() returned invalid format.");
}
return GL_R8;
}
//==========================================================================
//
// OpenGLTex :: ToTexFmt
//
// Converts an OpenGL internal format constant to something the FTexture system
// understands.
//
//==========================================================================
FTextureFormat OpenGLSWFrameBuffer::OpenGLTex::ToTexFmt(int fmt)
{
switch (fmt)
{
case GL_R8: return IsGray ? TEX_Gray : TEX_Pal;
case GL_RGBA8: return TEX_RGB;
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT: return TEX_DXT1;
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT: return TEX_DXT2;
case GL_COMPRESSED_RGBA_S3TC_DXT3_EXT: return TEX_DXT3;
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT: return TEX_DXT5;
default:
assert(0); // LOL WUT?
return TEX_Pal;
}
}
//==========================================================================
//
// OpenGLPal Constructor
//
//==========================================================================
OpenGLSWFrameBuffer::OpenGLPal::OpenGLPal(FRemapTable *remap, OpenGLSWFrameBuffer *fb)
: Tex(nullptr), Remap(remap)
{
int count;
// Attach to the palette list for the OpenGLSWFrameBuffer
Next = fb->Palettes;
if (Next != nullptr)
{
Next->Prev = &Next;
}
Prev = &fb->Palettes;
fb->Palettes = this;
int pow2count;
// Round up to the nearest power of 2.
for (pow2count = 1; pow2count < remap->NumEntries; pow2count <<= 1)
{
}
count = pow2count;
DoColorSkip = false;
BorderColor = 0;
RoundedPaletteSize = count;
if (fb->CreateTexture("Pal", count, 1, 1, GL_RGBA8, &Tex))
{
if (!Update())
{
delete Tex;
Tex = nullptr;
}
}
}
//==========================================================================
//
// OpenGLPal Destructor
//
//==========================================================================
OpenGLSWFrameBuffer::OpenGLPal::~OpenGLPal()
{
SafeRelease(Tex);
// Detach from the palette list
*Prev = Next;
if (Next != nullptr)
{
Next->Prev = Prev;
}
// Remove link from the remap table
if (Remap != nullptr)
{
Remap->Native = nullptr;
}
}
//==========================================================================
//
// OpenGLPal :: Update
//
// Copies the palette to the texture.
//
//==========================================================================
bool OpenGLSWFrameBuffer::OpenGLPal::Update()
{
uint32_t *buff;
const PalEntry *pal;
int skipat, i;
assert(Tex != nullptr);
if (Tex->Buffers[0] == 0)
{
glGenBuffers(2, (GLuint*)Tex->Buffers);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, Tex->Buffers[0]);
glBufferData(GL_PIXEL_UNPACK_BUFFER, Remap->NumEntries * 4, nullptr, GL_STREAM_DRAW);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, Tex->Buffers[1]);
glBufferData(GL_PIXEL_UNPACK_BUFFER, Remap->NumEntries * 4, nullptr, GL_STREAM_DRAW);
}
else
{
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, Tex->Buffers[Tex->CurrentBuffer]);
Tex->CurrentBuffer = (Tex->CurrentBuffer + 1) & 1;
}
buff = (uint32_t *)MapBuffer(GL_PIXEL_UNPACK_BUFFER, Remap->NumEntries * 4);
if (buff == nullptr)
{
return false;
}
pal = Remap->Palette;
// See explanation in UploadPalette() for skipat rationale.
skipat = MIN(Remap->NumEntries, DoColorSkip ? 256 - 8 : 256);
for (i = 0; i < skipat; ++i)
{
buff[i] = ColorARGB(pal[i].a, pal[i].r, pal[i].g, pal[i].b);
}
for (++i; i < Remap->NumEntries; ++i)
{
buff[i] = ColorARGB(pal[i].a, pal[i - 1].r, pal[i - 1].g, pal[i - 1].b);
}
BorderColor = ColorARGB(pal[i].a, pal[i - 1].r, pal[i - 1].g, pal[i - 1].b);
glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER);
GLint oldBinding = 0;
glGetIntegerv(GL_TEXTURE_BINDING_2D, &oldBinding);
glBindTexture(GL_TEXTURE_2D, Tex->Texture);
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, Remap->NumEntries, 1, GL_BGRA, GL_UNSIGNED_BYTE, 0);
glBindTexture(GL_TEXTURE_2D, oldBinding);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
return true;
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: Begin2D
//
// Begins 2D mode drawing operations. In particular, DrawTexture is
// rerouted to use Direct3D instead of the software renderer.
//
//==========================================================================
bool OpenGLSWFrameBuffer::Begin2D(bool copy3d)
{
if (!Accel2D)
{
return false;
}
if (In2D)
{
return true;
}
In2D = 2 - copy3d;
Update();
In2D = 3;
return true;
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: DrawBlendingRect
//
// Call after Begin2D to blend the 3D view.
//
//==========================================================================
void OpenGLSWFrameBuffer::DrawBlendingRect()
{
if (!In2D || !Accel2D)
{
return;
}
Dim(FlashColor, FlashAmount / 256.f, viewwindowx, viewwindowy, viewwidth, viewheight);
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: CreateTexture
//
// Returns a native texture that wraps a FTexture.
//
//==========================================================================
FNativeTexture *OpenGLSWFrameBuffer::CreateTexture(FTexture *gametex, bool wrapping)
{
OpenGLTex *tex = new OpenGLTex(gametex, this, wrapping);
if (tex->Box == nullptr)
{
delete tex;
return nullptr;
}
return tex;
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: CreatePalette
//
// Returns a native texture that contains a palette.
//
//==========================================================================
FNativePalette *OpenGLSWFrameBuffer::CreatePalette(FRemapTable *remap)
{
OpenGLPal *tex = new OpenGLPal(remap, this);
if (tex->Tex == nullptr)
{
delete tex;
return nullptr;
}
return tex;
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: Clear
//
// Fills the specified region with a color.
//
//==========================================================================
void OpenGLSWFrameBuffer::Clear(int left, int top, int right, int bottom, int palcolor, uint32 color)
{
if (In2D < 2)
{
Super::Clear(left, top, right, bottom, palcolor, color);
return;
}
if (!InScene)
{
return;
}
if (palcolor >= 0 && color == 0)
{
color = GPalette.BaseColors[palcolor];
}
else if (APART(color) < 255)
{
Dim(color, APART(color) / 255.f, left, top, right - left, bottom - top);
return;
}
AddColorOnlyQuad(left, top, right - left, bottom - top, color | 0xFF000000);
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: Dim
//
//==========================================================================
void OpenGLSWFrameBuffer::Dim(PalEntry color, float amount, int x1, int y1, int w, int h)
{
if (amount <= 0)
{
return;
}
if (In2D < 2)
{
Super::Dim(color, amount, x1, y1, w, h);
return;
}
if (!InScene)
{
return;
}
if (amount > 1)
{
amount = 1;
}
AddColorOnlyQuad(x1, y1, w, h, color | (int(amount * 255) << 24));
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: BeginLineBatch
//
//==========================================================================
void OpenGLSWFrameBuffer::BeginLineBatch()
{
if (In2D < 2 || !InScene || BatchType == BATCH_Lines)
{
return;
}
EndQuadBatch(); // Make sure all quads have been drawn first.
VertexData = VertexBuffer->Lock();
VertexPos = 0;
BatchType = BATCH_Lines;
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: EndLineBatch
//
//==========================================================================
void OpenGLSWFrameBuffer::EndLineBatch()
{
if (In2D < 2 || !InScene || BatchType != BATCH_Lines)
{
return;
}
VertexBuffer->Unlock();
if (VertexPos > 0)
{
SetPixelShader(Shaders[SHADER_VertexColor]);
SetAlphaBlend(GL_FUNC_ADD, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
SetStreamSource(VertexBuffer);
DrawLineList(VertexPos / 2);
}
VertexPos = -1;
BatchType = BATCH_None;
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: DrawLine
//
//==========================================================================
void OpenGLSWFrameBuffer::DrawLine(int x0, int y0, int x1, int y1, int palcolor, uint32 color)
{
if (In2D < 2)
{
Super::DrawLine(x0, y0, x1, y1, palcolor, color);
return;
}
if (!InScene)
{
return;
}
if (BatchType != BATCH_Lines)
{
BeginLineBatch();
}
if (VertexPos == NUM_VERTS)
{ // Flush the buffer and refill it.
EndLineBatch();
BeginLineBatch();
}
// Add the endpoints to the vertex buffer.
VertexData[VertexPos].x = float(x0);
VertexData[VertexPos].y = float(y0);
VertexData[VertexPos].z = 0;
VertexData[VertexPos].rhw = 1;
VertexData[VertexPos].color0 = color;
VertexData[VertexPos].color1 = 0;
VertexData[VertexPos].tu = 0;
VertexData[VertexPos].tv = 0;
VertexData[VertexPos + 1].x = float(x1);
VertexData[VertexPos + 1].y = float(y1);
VertexData[VertexPos + 1].z = 0;
VertexData[VertexPos + 1].rhw = 1;
VertexData[VertexPos + 1].color0 = color;
VertexData[VertexPos + 1].color1 = 0;
VertexData[VertexPos + 1].tu = 0;
VertexData[VertexPos + 1].tv = 0;
VertexPos += 2;
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: DrawPixel
//
//==========================================================================
void OpenGLSWFrameBuffer::DrawPixel(int x, int y, int palcolor, uint32 color)
{
if (In2D < 2)
{
Super::DrawPixel(x, y, palcolor, color);
return;
}
if (!InScene)
{
return;
}
FBVERTEX pt =
{
float(x), float(y), 0, 1, color
};
EndBatch(); // Draw out any batched operations.
SetPixelShader(Shaders[SHADER_VertexColor]);
SetAlphaBlend(GL_FUNC_ADD, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
DrawPoints(1, &pt);
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: DrawTextureV
//
// If not in 2D mode, just call the normal software version.
// If in 2D mode, then use Direct3D calls to perform the drawing.
//
//==========================================================================
void OpenGLSWFrameBuffer::DrawTextureParms(FTexture *img, DrawParms &parms)
{
if (In2D < 2)
{
Super::DrawTextureParms(img, parms);
return;
}
if (!InScene)
{
return;
}
OpenGLTex *tex = static_cast<OpenGLTex *>(img->GetNative(false));
if (tex == nullptr)
{
assert(tex != nullptr);
return;
}
CheckQuadBatch();
double xscale = parms.destwidth / parms.texwidth;
double yscale = parms.destheight / parms.texheight;
double x0 = parms.x - parms.left * xscale;
double y0 = parms.y - parms.top * yscale;
double x1 = x0 + parms.destwidth;
double y1 = y0 + parms.destheight;
float u0 = tex->Box->Left;
float v0 = tex->Box->Top;
float u1 = tex->Box->Right;
float v1 = tex->Box->Bottom;
double uscale = 1.f / tex->Box->Owner->Width;
bool scissoring = false;
FBVERTEX *vert;
if (parms.flipX)
{
swapvalues(u0, u1);
}
if (parms.windowleft > 0 || parms.windowright < parms.texwidth)
{
double wi = MIN(parms.windowright, parms.texwidth);
x0 += parms.windowleft * xscale;
u0 = float(u0 + parms.windowleft * uscale);
x1 -= (parms.texwidth - wi) * xscale;
u1 = float(u1 - (parms.texwidth - wi) * uscale);
}
#if 0
float vscale = 1.f / tex->Box->Owner->Height / yscale;
if (y0 < parms.uclip)
{
v0 += (float(parms.uclip) - y0) * vscale;
y0 = float(parms.uclip);
}
if (y1 > parms.dclip)
{
v1 -= (y1 - float(parms.dclip)) * vscale;
y1 = float(parms.dclip);
}
if (x0 < parms.lclip)
{
u0 += float(parms.lclip - x0) * uscale / xscale * 2;
x0 = float(parms.lclip);
}
if (x1 > parms.rclip)
{
u1 -= (x1 - parms.rclip) * uscale / xscale * 2;
x1 = float(parms.rclip);
}
#else
// Use a scissor test because the math above introduces some jitter
// that is noticeable at low resolutions. Unfortunately, this means this
// quad has to be in a batch by itself.
if (y0 < parms.uclip || y1 > parms.dclip || x0 < parms.lclip || x1 > parms.rclip)
{
scissoring = true;
if (QuadBatchPos > 0)
{
EndQuadBatch();
BeginQuadBatch();
}
glEnable(GL_SCISSOR_TEST);
glScissor(parms.lclip, parms.uclip, parms.rclip - parms.lclip, parms.dclip - parms.uclip);
}
#endif
parms.bilinear = false;
uint32_t color0, color1;
BufferedTris *quad = &QuadExtra[QuadBatchPos];
if (!SetStyle(tex, parms, color0, color1, *quad))
{
goto done;
}
quad->Texture = tex->Box->Owner->Tex;
if (parms.bilinear)
{
quad->Flags |= BQF_Bilinear;
}
quad->NumTris = 2;
quad->NumVerts = 4;
vert = &VertexData[VertexPos];
// Fill the vertex buffer.
vert[0].x = float(x0);
vert[0].y = float(y0);
vert[0].z = 0;
vert[0].rhw = 1;
vert[0].color0 = color0;
vert[0].color1 = color1;
vert[0].tu = u0;
vert[0].tv = v0;
vert[1].x = float(x1);
vert[1].y = float(y0);
vert[1].z = 0;
vert[1].rhw = 1;
vert[1].color0 = color0;
vert[1].color1 = color1;
vert[1].tu = u1;
vert[1].tv = v0;
vert[2].x = float(x1);
vert[2].y = float(y1);
vert[2].z = 0;
vert[2].rhw = 1;
vert[2].color0 = color0;
vert[2].color1 = color1;
vert[2].tu = u1;
vert[2].tv = v1;
vert[3].x = float(x0);
vert[3].y = float(y1);
vert[3].z = 0;
vert[3].rhw = 1;
vert[3].color0 = color0;
vert[3].color1 = color1;
vert[3].tu = u0;
vert[3].tv = v1;
// Fill the vertex index buffer.
IndexData[IndexPos] = VertexPos;
IndexData[IndexPos + 1] = VertexPos + 1;
IndexData[IndexPos + 2] = VertexPos + 2;
IndexData[IndexPos + 3] = VertexPos;
IndexData[IndexPos + 4] = VertexPos + 2;
IndexData[IndexPos + 5] = VertexPos + 3;
// Batch the quad.
QuadBatchPos++;
VertexPos += 4;
IndexPos += 6;
done:
if (scissoring)
{
EndQuadBatch();
glDisable(GL_SCISSOR_TEST);
}
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: FlatFill
//
// Fills an area with a repeating copy of the texture.
//
//==========================================================================
void OpenGLSWFrameBuffer::FlatFill(int left, int top, int right, int bottom, FTexture *src, bool local_origin)
{
if (In2D < 2)
{
Super::FlatFill(left, top, right, bottom, src, local_origin);
return;
}
if (!InScene)
{
return;
}
OpenGLTex *tex = static_cast<OpenGLTex *>(src->GetNative(true));
if (tex == nullptr)
{
return;
}
float x0 = float(left);
float y0 = float(top);
float x1 = float(right);
float y1 = float(bottom);
float itw = 1.f / float(src->GetWidth());
float ith = 1.f / float(src->GetHeight());
float xo = local_origin ? x0 : 0;
float yo = local_origin ? y0 : 0;
float u0 = (x0 - xo) * itw;
float v0 = (y0 - yo) * ith;
float u1 = (x1 - xo) * itw;
float v1 = (y1 - yo) * ith;
CheckQuadBatch();
BufferedTris *quad = &QuadExtra[QuadBatchPos];
FBVERTEX *vert = &VertexData[VertexPos];
quad->ClearSetup();
if (tex->GetTexFormat() == GL_R8 && !tex->IsGray)
{
quad->Flags = BQF_WrapUV | BQF_GamePalette; // | BQF_DisableAlphaTest;
quad->ShaderNum = BQS_PalTex;
}
else
{
quad->Flags = BQF_WrapUV; // | BQF_DisableAlphaTest;
quad->ShaderNum = BQS_Plain;
}
quad->Palette = nullptr;
quad->Texture = tex->Box->Owner->Tex;
quad->NumVerts = 4;
quad->NumTris = 2;
vert[0].x = x0;
vert[0].y = y0;
vert[0].z = 0;
vert[0].rhw = 1;
vert[0].color0 = 0;
vert[0].color1 = 0xFFFFFFFF;
vert[0].tu = u0;
vert[0].tv = v0;
vert[1].x = x1;
vert[1].y = y0;
vert[1].z = 0;
vert[1].rhw = 1;
vert[1].color0 = 0;
vert[1].color1 = 0xFFFFFFFF;
vert[1].tu = u1;
vert[1].tv = v0;
vert[2].x = x1;
vert[2].y = y1;
vert[2].z = 0;
vert[2].rhw = 1;
vert[2].color0 = 0;
vert[2].color1 = 0xFFFFFFFF;
vert[2].tu = u1;
vert[2].tv = v1;
vert[3].x = x0;
vert[3].y = y1;
vert[3].z = 0;
vert[3].rhw = 1;
vert[3].color0 = 0;
vert[3].color1 = 0xFFFFFFFF;
vert[3].tu = u0;
vert[3].tv = v1;
IndexData[IndexPos] = VertexPos;
IndexData[IndexPos + 1] = VertexPos + 1;
IndexData[IndexPos + 2] = VertexPos + 2;
IndexData[IndexPos + 3] = VertexPos;
IndexData[IndexPos + 4] = VertexPos + 2;
IndexData[IndexPos + 5] = VertexPos + 3;
QuadBatchPos++;
VertexPos += 4;
IndexPos += 6;
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: FillSimplePoly
//
// Here, "simple" means that a simple triangle fan can draw it.
//
//==========================================================================
void OpenGLSWFrameBuffer::FillSimplePoly(FTexture *texture, FVector2 *points, int npoints,
double originx, double originy, double scalex, double scaley,
DAngle rotation, FDynamicColormap *colormap, int lightlevel)
{
// Use an equation similar to player sprites to determine shade
double fadelevel = clamp((LIGHT2SHADE(lightlevel) / 65536. - 12) / NUMCOLORMAPS, 0.0, 1.0);
BufferedTris *quad;
FBVERTEX *verts;
OpenGLTex *tex;
float uscale, vscale;
int i, ipos;
uint32_t color0, color1;
float ox, oy;
float cosrot, sinrot;
bool dorotate = rotation != 0;
if (npoints < 3)
{ // This is no polygon.
return;
}
if (In2D < 2)
{
Super::FillSimplePoly(texture, points, npoints, originx, originy, scalex, scaley, rotation, colormap, lightlevel);
return;
}
if (!InScene)
{
return;
}
tex = static_cast<OpenGLTex *>(texture->GetNative(true));
if (tex == nullptr)
{
return;
}
cosrot = (float)cos(rotation.Radians());
sinrot = (float)sin(rotation.Radians());
CheckQuadBatch(npoints - 2, npoints);
quad = &QuadExtra[QuadBatchPos];
verts = &VertexData[VertexPos];
color0 = 0;
color1 = 0xFFFFFFFF;
quad->ClearSetup();
if (tex->GetTexFormat() == GL_R8 && !tex->IsGray)
{
quad->Flags = BQF_WrapUV | BQF_GamePalette | BQF_DisableAlphaTest;
quad->ShaderNum = BQS_PalTex;
if (colormap != nullptr)
{
if (colormap->Desaturate != 0)
{
quad->Flags |= BQF_Desaturated;
}
quad->ShaderNum = BQS_InGameColormap;
quad->Desat = colormap->Desaturate;
color0 = ColorARGB(255, colormap->Color.r, colormap->Color.g, colormap->Color.b);
color1 = ColorARGB(uint32_t((1 - fadelevel) * 255),
uint32_t(colormap->Fade.r * fadelevel),
uint32_t(colormap->Fade.g * fadelevel),
uint32_t(colormap->Fade.b * fadelevel));
}
}
else
{
quad->Flags = BQF_WrapUV | BQF_DisableAlphaTest;
quad->ShaderNum = BQS_Plain;
}
quad->Palette = nullptr;
quad->Texture = tex->Box->Owner->Tex;
quad->NumVerts = npoints;
quad->NumTris = npoints - 2;
uscale = float(1.f / (texture->GetScaledWidth() * scalex));
vscale = float(1.f / (texture->GetScaledHeight() * scaley));
ox = float(originx);
oy = float(originy);
for (i = 0; i < npoints; ++i)
{
verts[i].x = points[i].X;
verts[i].y = points[i].Y;
verts[i].z = 0;
verts[i].rhw = 1;
verts[i].color0 = color0;
verts[i].color1 = color1;
float u = points[i].X - ox;
float v = points[i].Y - oy;
if (dorotate)
{
float t = u;
u = t * cosrot - v * sinrot;
v = v * cosrot + t * sinrot;
}
verts[i].tu = u * uscale;
verts[i].tv = v * vscale;
}
for (ipos = IndexPos, i = 2; i < npoints; ++i, ipos += 3)
{
IndexData[ipos] = VertexPos;
IndexData[ipos + 1] = VertexPos + i - 1;
IndexData[ipos + 2] = VertexPos + i;
}
QuadBatchPos++;
VertexPos += npoints;
IndexPos = ipos;
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: AddColorOnlyQuad
//
// Adds a single-color, untextured quad to the batch.
//
//==========================================================================
void OpenGLSWFrameBuffer::AddColorOnlyQuad(int left, int top, int width, int height, uint32_t color)
{
BufferedTris *quad;
FBVERTEX *verts;
CheckQuadBatch();
quad = &QuadExtra[QuadBatchPos];
verts = &VertexData[VertexPos];
float x = float(left);
float y = float(top);
quad->ClearSetup();
quad->ShaderNum = BQS_ColorOnly;
if ((color & 0xFF000000) != 0xFF000000)
{
quad->BlendOp = GL_FUNC_ADD;
quad->SrcBlend = GL_SRC_ALPHA;
quad->DestBlend = GL_ONE_MINUS_SRC_ALPHA;
}
quad->Palette = nullptr;
quad->Texture = nullptr;
quad->NumVerts = 4;
quad->NumTris = 2;
verts[0].x = x;
verts[0].y = y;
verts[0].z = 0;
verts[0].rhw = 1;
verts[0].color0 = color;
verts[0].color1 = 0;
verts[0].tu = 0;
verts[0].tv = 0;
verts[1].x = x + width;
verts[1].y = y;
verts[1].z = 0;
verts[1].rhw = 1;
verts[1].color0 = color;
verts[1].color1 = 0;
verts[1].tu = 0;
verts[1].tv = 0;
verts[2].x = x + width;
verts[2].y = y + height;
verts[2].z = 0;
verts[2].rhw = 1;
verts[2].color0 = color;
verts[2].color1 = 0;
verts[2].tu = 0;
verts[2].tv = 0;
verts[3].x = x;
verts[3].y = y + height;
verts[3].z = 0;
verts[3].rhw = 1;
verts[3].color0 = color;
verts[3].color1 = 0;
verts[3].tu = 0;
verts[3].tv = 0;
IndexData[IndexPos] = VertexPos;
IndexData[IndexPos + 1] = VertexPos + 1;
IndexData[IndexPos + 2] = VertexPos + 2;
IndexData[IndexPos + 3] = VertexPos;
IndexData[IndexPos + 4] = VertexPos + 2;
IndexData[IndexPos + 5] = VertexPos + 3;
QuadBatchPos++;
VertexPos += 4;
IndexPos += 6;
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: AddColorOnlyRect
//
// Like AddColorOnlyQuad, except it's hollow.
//
//==========================================================================
void OpenGLSWFrameBuffer::AddColorOnlyRect(int left, int top, int width, int height, uint32_t color)
{
AddColorOnlyQuad(left, top, width - 1, 1, color); // top
AddColorOnlyQuad(left + width - 1, top, 1, height - 1, color); // right
AddColorOnlyQuad(left + 1, top + height - 1, width - 1, 1, color); // bottom
AddColorOnlyQuad(left, top + 1, 1, height - 1, color); // left
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: CheckQuadBatch
//
// Make sure there's enough room in the batch for one more set of triangles.
//
//==========================================================================
void OpenGLSWFrameBuffer::CheckQuadBatch(int numtris, int numverts)
{
if (BatchType == BATCH_Lines)
{
EndLineBatch();
}
else if (QuadBatchPos == MAX_QUAD_BATCH ||
VertexPos + numverts > NUM_VERTS ||
IndexPos + numtris * 3 > NUM_INDEXES)
{
EndQuadBatch();
}
if (QuadBatchPos < 0)
{
BeginQuadBatch();
}
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: BeginQuadBatch
//
// Locks the vertex buffer for quads and sets the cursor to 0.
//
//==========================================================================
void OpenGLSWFrameBuffer::BeginQuadBatch()
{
if (In2D < 2 || !InScene || QuadBatchPos >= 0)
{
return;
}
EndLineBatch(); // Make sure all lines have been drawn first.
VertexData = VertexBuffer->Lock();
IndexData = IndexBuffer->Lock();
VertexPos = 0;
IndexPos = 0;
QuadBatchPos = 0;
BatchType = BATCH_Quads;
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: EndQuadBatch
//
// Draws all the quads that have been batched up.
//
//==========================================================================
void OpenGLSWFrameBuffer::EndQuadBatch()
{
if (In2D < 2 || !InScene || BatchType != BATCH_Quads)
{
return;
}
BatchType = BATCH_None;
VertexBuffer->Unlock();
IndexBuffer->Unlock();
if (QuadBatchPos == 0)
{
QuadBatchPos = -1;
VertexPos = -1;
IndexPos = -1;
return;
}
SetStreamSource(VertexBuffer);
SetIndices(IndexBuffer);
bool uv_wrapped = false;
bool uv_should_wrap;
int indexpos, vertpos;
indexpos = vertpos = 0;
for (int i = 0; i < QuadBatchPos; )
{
const BufferedTris *quad = &QuadExtra[i];
int j;
int startindex = indexpos;
int startvertex = vertpos;
indexpos += quad->NumTris * 3;
vertpos += quad->NumVerts;
// Quads with matching parameters should be done with a single
// DrawPrimitive call.
for (j = i + 1; j < QuadBatchPos; ++j)
{
const BufferedTris *q2 = &QuadExtra[j];
if (quad->Texture != q2->Texture ||
!quad->IsSameSetup(*q2) ||
quad->Palette != q2->Palette)
{
break;
}
if (quad->ShaderNum == BQS_InGameColormap && (quad->Flags & BQF_Desaturated) && quad->Desat != q2->Desat)
{
break;
}
indexpos += q2->NumTris * 3;
vertpos += q2->NumVerts;
}
// Set the palette (if one)
if ((quad->Flags & BQF_Paletted) == BQF_GamePalette)
{
SetPaletteTexture(PaletteTexture, 256, BorderColor);
}
else if ((quad->Flags & BQF_Paletted) == BQF_CustomPalette)
{
assert(quad->Palette != nullptr);
SetPaletteTexture(quad->Palette->Tex, quad->Palette->RoundedPaletteSize, quad->Palette->BorderColor);
}
// Set the alpha blending
SetAlphaBlend(quad->BlendOp, quad->SrcBlend, quad->DestBlend);
// Set the alpha test
EnableAlphaTest(!(quad->Flags & BQF_DisableAlphaTest));
// Set the pixel shader
if (quad->ShaderNum == BQS_PalTex)
{
SetPixelShader(Shaders[(quad->Flags & BQF_InvertSource) ?
SHADER_NormalColorPalInv : SHADER_NormalColorPal]);
}
else if (quad->ShaderNum == BQS_Plain)
{
SetPixelShader(Shaders[(quad->Flags & BQF_InvertSource) ?
SHADER_NormalColorInv : SHADER_NormalColor]);
}
else if (quad->ShaderNum == BQS_RedToAlpha)
{
SetPixelShader(Shaders[(quad->Flags & BQF_InvertSource) ?
SHADER_RedToAlphaInv : SHADER_RedToAlpha]);
}
else if (quad->ShaderNum == BQS_ColorOnly)
{
SetPixelShader(Shaders[SHADER_VertexColor]);
}
else if (quad->ShaderNum == BQS_SpecialColormap)
{
int select;
select = !!(quad->Flags & BQF_Paletted);
SetPixelShader(Shaders[SHADER_SpecialColormap + select]);
}
else if (quad->ShaderNum == BQS_InGameColormap)
{
int select;
select = !!(quad->Flags & BQF_Desaturated);
select |= !!(quad->Flags & BQF_InvertSource) << 1;
select |= !!(quad->Flags & BQF_Paletted) << 2;
if (quad->Flags & BQF_Desaturated)
{
SetConstant(PSCONST_Desaturation, quad->Desat / 255.f, (255 - quad->Desat) / 255.f, 0, 0);
}
SetPixelShader(Shaders[SHADER_InGameColormap + select]);
}
// Set the texture clamp addressing mode
uv_should_wrap = !!(quad->Flags & BQF_WrapUV);
if (uv_wrapped != uv_should_wrap)
{
uint32_t mode = uv_should_wrap ? GL_REPEAT : GL_CLAMP_TO_EDGE;
uv_wrapped = uv_should_wrap;
SetSamplerWrapS(0, mode);
SetSamplerWrapT(0, mode);
}
// Set the texture
if (quad->Texture != nullptr)
{
SetTexture(0, quad->Texture);
}
// Draw the quad
DrawTriangleList(
startvertex, // MinIndex
vertpos - startvertex, // NumVertices
startindex, // StartIndex
(indexpos - startindex) / 3 // PrimitiveCount
/*4 * i, 4 * (j - i), 6 * i, 2 * (j - i)*/);
i = j;
}
if (uv_wrapped)
{
SetSamplerWrapS(0, GL_CLAMP_TO_EDGE);
SetSamplerWrapT(0, GL_CLAMP_TO_EDGE);
}
QuadBatchPos = -1;
VertexPos = -1;
IndexPos = -1;
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: EndBatch
//
// Draws whichever type of primitive is currently being batched.
//
//==========================================================================
void OpenGLSWFrameBuffer::EndBatch()
{
if (BatchType == BATCH_Quads)
{
EndQuadBatch();
}
else if (BatchType == BATCH_Lines)
{
EndLineBatch();
}
}
//==========================================================================
//
// OpenGLSWFrameBuffer :: SetStyle
//
// Patterned after R_SetPatchStyle.
//
//==========================================================================
bool OpenGLSWFrameBuffer::SetStyle(OpenGLTex *tex, DrawParms &parms, uint32_t &color0, uint32_t &color1, BufferedTris &quad)
{
int fmt = tex->GetTexFormat();
FRenderStyle style = parms.style;
float alpha;
bool stencilling;
if (style.Flags & STYLEF_TransSoulsAlpha)
{
alpha = transsouls;
}
else if (style.Flags & STYLEF_Alpha1)
{
alpha = 1;
}
else
{
alpha = clamp(parms.Alpha, 0.f, 1.f);
}
style.CheckFuzz();
if (style.BlendOp == STYLEOP_Shadow)
{
style = LegacyRenderStyles[STYLE_TranslucentStencil];
alpha = 0.3f;
parms.fillcolor = 0;
}
// FIXME: Fuzz effect is not written
if (style.BlendOp == STYLEOP_FuzzOrAdd || style.BlendOp == STYLEOP_Fuzz)
{
style.BlendOp = STYLEOP_Add;
}
else if (style.BlendOp == STYLEOP_FuzzOrSub)
{
style.BlendOp = STYLEOP_Sub;
}
else if (style.BlendOp == STYLEOP_FuzzOrRevSub)
{
style.BlendOp = STYLEOP_RevSub;
}
stencilling = false;
quad.Palette = nullptr;
quad.Flags = 0;
quad.Desat = 0;
switch (style.BlendOp)
{
default:
case STYLEOP_Add: quad.BlendOp = GL_FUNC_ADD; break;
case STYLEOP_Sub: quad.BlendOp = GL_FUNC_SUBTRACT; break;
case STYLEOP_RevSub: quad.BlendOp = GL_FUNC_REVERSE_SUBTRACT; break;
case STYLEOP_None: return false;
}
quad.SrcBlend = GetStyleAlpha(style.SrcAlpha);
quad.DestBlend = GetStyleAlpha(style.DestAlpha);
if (style.Flags & STYLEF_InvertOverlay)
{
// Only the overlay color is inverted, not the overlay alpha.
parms.colorOverlay = ColorARGB(APART(parms.colorOverlay),
255 - RPART(parms.colorOverlay), 255 - GPART(parms.colorOverlay),
255 - BPART(parms.colorOverlay));
}
SetColorOverlay(parms.colorOverlay, alpha, color0, color1);
if (style.Flags & STYLEF_ColorIsFixed)
{
if (style.Flags & STYLEF_InvertSource)
{ // Since the source color is a constant, we can invert it now
// without spending time doing it in the shader.
parms.fillcolor = ColorXRGB(255 - RPART(parms.fillcolor),
255 - GPART(parms.fillcolor), 255 - BPART(parms.fillcolor));
}
// Set up the color mod to replace the color from the image data.
color0 = (color0 & ColorRGBA(0, 0, 0, 255)) | (parms.fillcolor & ColorRGBA(255, 255, 255, 0));
color1 &= ColorRGBA(0, 0, 0, 255);
if (style.Flags & STYLEF_RedIsAlpha)
{
// Note that if the source texture is paletted, the palette is ignored.
quad.Flags = 0;
quad.ShaderNum = BQS_RedToAlpha;
}
else if (fmt == GL_R8)
{
quad.Flags = BQF_GamePalette;
quad.ShaderNum = BQS_PalTex;
}
else
{
quad.Flags = 0;
quad.ShaderNum = BQS_Plain;
}
}
else
{
if (style.Flags & STYLEF_RedIsAlpha)
{
quad.Flags = 0;
quad.ShaderNum = BQS_RedToAlpha;
}
else if (fmt == GL_R8)
{
if (parms.remap != nullptr)
{
quad.Flags = BQF_CustomPalette;
quad.Palette = reinterpret_cast<OpenGLPal *>(parms.remap->GetNative());
quad.ShaderNum = BQS_PalTex;
}
else if (tex->IsGray)
{
quad.Flags = 0;
quad.ShaderNum = BQS_Plain;
}
else
{
quad.Flags = BQF_GamePalette;
quad.ShaderNum = BQS_PalTex;
}
}
else
{
quad.Flags = 0;
quad.ShaderNum = BQS_Plain;
}
if (style.Flags & STYLEF_InvertSource)
{
quad.Flags |= BQF_InvertSource;
}
if (parms.specialcolormap != nullptr)
{ // Emulate an invulnerability or similar colormap.
float *start, *end;
start = parms.specialcolormap->ColorizeStart;
end = parms.specialcolormap->ColorizeEnd;
if (quad.Flags & BQF_InvertSource)
{
quad.Flags &= ~BQF_InvertSource;
swapvalues(start, end);
}
quad.ShaderNum = BQS_SpecialColormap;
color0 = ColorRGBA(uint32_t(start[0] / 2 * 255), uint32_t(start[1] / 2 * 255), uint32_t(start[2] / 2 * 255), color0 >> 24);
color1 = ColorRGBA(uint32_t(end[0] / 2 * 255), uint32_t(end[1] / 2 * 255), uint32_t(end[2] / 2 * 255), color1 >> 24);
}
else if (parms.colormapstyle != nullptr)
{ // Emulate the fading from an in-game colormap (colorized, faded, and desaturated)
if (parms.colormapstyle->Desaturate != 0)
{
quad.Flags |= BQF_Desaturated;
}
quad.ShaderNum = BQS_InGameColormap;
quad.Desat = parms.colormapstyle->Desaturate;
color0 = ColorARGB(color1 >> 24,
parms.colormapstyle->Color.r,
parms.colormapstyle->Color.g,
parms.colormapstyle->Color.b);
double fadelevel = parms.colormapstyle->FadeLevel;
color1 = ColorARGB(uint32_t((1 - fadelevel) * 255),
uint32_t(parms.colormapstyle->Fade.r * fadelevel),
uint32_t(parms.colormapstyle->Fade.g * fadelevel),
uint32_t(parms.colormapstyle->Fade.b * fadelevel));
}
}
// For unmasked images, force the alpha from the image data to be ignored.
if (!parms.masked && quad.ShaderNum != BQS_InGameColormap)
{
color0 = (color0 & ColorRGBA(255, 255, 255, 0)) | ColorValue(0, 0, 0, alpha);
color1 &= ColorRGBA(255, 255, 255, 0);
// If our alpha is one and we are doing normal adding, then we can turn the blend off completely.
if (quad.BlendOp == GL_FUNC_ADD &&
((alpha == 1 && quad.SrcBlend == GL_SRC_ALPHA) || quad.SrcBlend == GL_ONE) &&
((alpha == 1 && quad.DestBlend == GL_ONE_MINUS_SRC_ALPHA) || quad.DestBlend == GL_ZERO))
{
quad.BlendOp = 0;
}
quad.Flags |= BQF_DisableAlphaTest;
}
return true;
}
int OpenGLSWFrameBuffer::GetStyleAlpha(int type)
{
switch (type)
{
case STYLEALPHA_Zero: return GL_ZERO;
case STYLEALPHA_One: return GL_ONE;
case STYLEALPHA_Src: return GL_SRC_ALPHA;
case STYLEALPHA_InvSrc: return GL_ONE_MINUS_SRC_ALPHA;
default: return GL_ZERO;
}
}
void OpenGLSWFrameBuffer::SetColorOverlay(uint32_t color, float alpha, uint32_t &color0, uint32_t &color1)
{
if (APART(color) != 0)
{
int a = APART(color) * 256 / 255;
color0 = ColorRGBA(
(RPART(color) * a) >> 8,
(GPART(color) * a) >> 8,
(BPART(color) * a) >> 8,
0);
a = 256 - a;
color1 = ColorRGBA(a, a, a, int(alpha * 255));
}
else
{
color0 = 0;
color1 = ColorValue(1, 1, 1, alpha);
}
}
void OpenGLSWFrameBuffer::EnableAlphaTest(bool enabled)
{
if (enabled != AlphaTestEnabled)
{
AlphaTestEnabled = enabled;
//glEnable(GL_ALPHA_TEST); // To do: move to shader as this is only in the compatibility profile
}
}
void OpenGLSWFrameBuffer::SetAlphaBlend(int op, int srcblend, int destblend)
{
if (op == 0)
{ // Disable alpha blend
if (AlphaBlendEnabled)
{
AlphaBlendEnabled = false;
glDisable(GL_BLEND);
}
}
else
{ // Enable alpha blend
assert(srcblend != 0);
assert(destblend != 0);
if (!AlphaBlendEnabled)
{
AlphaBlendEnabled = true;
glEnable(GL_BLEND);
}
if (AlphaBlendOp != op)
{
AlphaBlendOp = op;
glBlendEquation(op);
}
if (AlphaSrcBlend != srcblend || AlphaDestBlend != destblend)
{
AlphaSrcBlend = srcblend;
AlphaDestBlend = destblend;
glBlendFunc(srcblend, destblend);
}
}
}
void OpenGLSWFrameBuffer::SetConstant(int cnum, float r, float g, float b, float a)
{
if (Constant[cnum][0] != r ||
Constant[cnum][1] != g ||
Constant[cnum][2] != b ||
Constant[cnum][3] != a)
{
Constant[cnum][0] = r;
Constant[cnum][1] = g;
Constant[cnum][2] = b;
Constant[cnum][3] = a;
SetPixelShaderConstantF(cnum, Constant[cnum], 1);
}
}
void OpenGLSWFrameBuffer::SetPixelShader(HWPixelShader *shader)
{
if (CurPixelShader != shader)
{
CurPixelShader = shader;
SetHWPixelShader(shader);
}
}
void OpenGLSWFrameBuffer::SetTexture(int tnum, HWTexture *texture)
{
assert(unsigned(tnum) < countof(Texture));
if (texture)
{
if (Texture[tnum] != texture || SamplerWrapS[tnum] != texture->WrapS || SamplerWrapT[tnum] != texture->WrapT)
{
Texture[tnum] = texture;
glActiveTexture(GL_TEXTURE0 + tnum);
glBindTexture(GL_TEXTURE_2D, texture->Texture);
if (Texture[tnum]->WrapS != SamplerWrapS[tnum])
{
Texture[tnum]->WrapS = SamplerWrapS[tnum];
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, SamplerWrapS[tnum]);
}
if (Texture[tnum]->WrapT != SamplerWrapT[tnum])
{
Texture[tnum]->WrapT = SamplerWrapT[tnum];
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, SamplerWrapT[tnum]);
}
}
}
else if (Texture[tnum] != texture)
{
Texture[tnum] = texture;
glActiveTexture(GL_TEXTURE0 + tnum);
glBindTexture(GL_TEXTURE_2D, 0);
}
}
void OpenGLSWFrameBuffer::SetSamplerWrapS(int tnum, int mode)
{
assert(unsigned(tnum) < countof(Texture));
if (Texture[tnum] && SamplerWrapS[tnum] != mode)
{
SamplerWrapS[tnum] = mode;
Texture[tnum]->WrapS = mode;
glActiveTexture(GL_TEXTURE0 + tnum);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, SamplerWrapS[tnum]);
}
}
void OpenGLSWFrameBuffer::SetSamplerWrapT(int tnum, int mode)
{
assert(unsigned(tnum) < countof(Texture));
if (Texture[tnum] && SamplerWrapT[tnum] != mode)
{
SamplerWrapT[tnum] = mode;
Texture[tnum]->WrapT = mode;
glActiveTexture(GL_TEXTURE0 + tnum);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, SamplerWrapT[tnum]);
}
}
void OpenGLSWFrameBuffer::SetPaletteTexture(HWTexture *texture, int count, uint32_t border_color)
{
// The pixel shader receives color indexes in the range [0.0,1.0].
// The palette texture is also addressed in the range [0.0,1.0],
// HOWEVER the coordinate 1.0 is the right edge of the texture and
// not actually the texture itself. We need to scale and shift
// the palette indexes so they lie exactly in the center of each
// texel. For a normal palette with 256 entries, that means the
// range we use should be [0.5,255.5], adjusted so the coordinate
// is still within [0.0,1.0].
//
// The constant register c2 is used to hold the multiplier in the
// x part and the adder in the y part.
float fcount = 1 / float(count);
SetConstant(PSCONST_PaletteMod, 255 * fcount, 0.5f * fcount, 0, 0);
SetTexture(1, texture);
}