mirror of
https://github.com/ZDoom/gzdoom-gles.git
synced 2024-12-21 01:41:01 +00:00
ed12bdc0f4
down version of the library with the ZDoom source. (It actually uses less space than zlib now.) Unix users probably ought to use the system-supplied libjpeg instead. I modified Makefile.linux to hopefully do that. I'm sure Jim or someone will correct me if it doesn't actually work. SVN r293 (trunk)
941 lines
38 KiB
C
941 lines
38 KiB
C
/*
|
|
* jpeglib.h
|
|
*
|
|
* Copyright (C) 1991-1998, Thomas G. Lane.
|
|
* This file is part of the Independent JPEG Group's software.
|
|
* For conditions of distribution and use, see the accompanying README file.
|
|
*
|
|
* This file defines the application interface for the JPEG library.
|
|
* Most applications using the library need only include this file,
|
|
* and perhaps jerror.h if they want to know the exact error codes.
|
|
*/
|
|
|
|
#ifndef JPEGLIB_H
|
|
#define JPEGLIB_H
|
|
|
|
/*
|
|
* First we include the configuration files that record how this
|
|
* installation of the JPEG library is set up. jconfig.h can be
|
|
* generated automatically for many systems. jmorecfg.h contains
|
|
* manual configuration options that most people need not worry about.
|
|
*/
|
|
|
|
#ifndef JCONFIG_INCLUDED /* in case jinclude.h already did */
|
|
#include "jconfig.h" /* widely used configuration options */
|
|
#endif
|
|
#include "jmorecfg.h" /* seldom changed options */
|
|
|
|
|
|
/* Version ID for the JPEG library.
|
|
* Might be useful for tests like "#if JPEG_LIB_VERSION >= 60".
|
|
*/
|
|
|
|
#define JPEG_LIB_VERSION 62 /* Version 6b */
|
|
|
|
|
|
/* Various constants determining the sizes of things.
|
|
* All of these are specified by the JPEG standard, so don't change them
|
|
* if you want to be compatible.
|
|
*/
|
|
|
|
#define DCTSIZE 8 /* The basic DCT block is 8x8 samples */
|
|
#define DCTSIZE2 64 /* DCTSIZE squared; # of elements in a block */
|
|
#define NUM_QUANT_TBLS 4 /* Quantization tables are numbered 0..3 */
|
|
#define NUM_HUFF_TBLS 4 /* Huffman tables are numbered 0..3 */
|
|
#define NUM_ARITH_TBLS 16 /* Arith-coding tables are numbered 0..15 */
|
|
#define MAX_COMPS_IN_SCAN 4 /* JPEG limit on # of components in one scan */
|
|
#define MAX_SAMP_FACTOR 4 /* JPEG limit on sampling factors */
|
|
/* Unfortunately, some bozo at Adobe saw no reason to be bound by the standard;
|
|
* the PostScript DCT filter can emit files with many more than 10 blocks/MCU.
|
|
* If you happen to run across such a file, you can up D_MAX_BLOCKS_IN_MCU
|
|
* to handle it. We even let you do this from the jconfig.h file. However,
|
|
* we strongly discourage changing C_MAX_BLOCKS_IN_MCU; just because Adobe
|
|
* sometimes emits noncompliant files doesn't mean you should too.
|
|
*/
|
|
#define C_MAX_BLOCKS_IN_MCU 10 /* compressor's limit on blocks per MCU */
|
|
#ifndef D_MAX_BLOCKS_IN_MCU
|
|
#define D_MAX_BLOCKS_IN_MCU 10 /* decompressor's limit on blocks per MCU */
|
|
#endif
|
|
|
|
|
|
/* Data structures for images (arrays of samples and of DCT coefficients).
|
|
* On 80x86 machines, the image arrays are too big for near pointers,
|
|
* but the pointer arrays can fit in near memory.
|
|
*/
|
|
|
|
typedef JSAMPLE *JSAMPROW; /* ptr to one image row of pixel samples. */
|
|
typedef JSAMPROW *JSAMPARRAY; /* ptr to some rows (a 2-D sample array) */
|
|
typedef JSAMPARRAY *JSAMPIMAGE; /* a 3-D sample array: top index is color */
|
|
|
|
typedef JCOEF JBLOCK[DCTSIZE2]; /* one block of coefficients */
|
|
typedef JBLOCK *JBLOCKROW; /* pointer to one row of coefficient blocks */
|
|
typedef JBLOCKROW *JBLOCKARRAY; /* a 2-D array of coefficient blocks */
|
|
typedef JBLOCKARRAY *JBLOCKIMAGE; /* a 3-D array of coefficient blocks */
|
|
|
|
typedef JCOEF *JCOEFPTR; /* useful in a couple of places */
|
|
|
|
|
|
/* Types for JPEG compression parameters and working tables. */
|
|
|
|
|
|
/* DCT coefficient quantization tables. */
|
|
|
|
typedef struct {
|
|
/* This array gives the coefficient quantizers in natural array order
|
|
* (not the zigzag order in which they are stored in a JPEG DQT marker).
|
|
* CAUTION: IJG versions prior to v6a kept this array in zigzag order.
|
|
*/
|
|
UINT16 quantval[DCTSIZE2]; /* quantization step for each coefficient */
|
|
/* This field is used only during compression. It's initialized FALSE when
|
|
* the table is created, and set TRUE when it's been output to the file.
|
|
* You could suppress output of a table by setting this to TRUE.
|
|
* (See jpeg_suppress_tables for an example.)
|
|
*/
|
|
boolean sent_table; /* TRUE when table has been output */
|
|
} JQUANT_TBL;
|
|
|
|
|
|
/* Huffman coding tables. */
|
|
|
|
typedef struct {
|
|
/* These two fields directly represent the contents of a JPEG DHT marker */
|
|
UINT8 bits[17]; /* bits[k] = # of symbols with codes of */
|
|
/* length k bits; bits[0] is unused */
|
|
UINT8 huffval[256]; /* The symbols, in order of incr code length */
|
|
/* This field is used only during compression. It's initialized FALSE when
|
|
* the table is created, and set TRUE when it's been output to the file.
|
|
* You could suppress output of a table by setting this to TRUE.
|
|
* (See jpeg_suppress_tables for an example.)
|
|
*/
|
|
boolean sent_table; /* TRUE when table has been output */
|
|
} JHUFF_TBL;
|
|
|
|
|
|
/* Basic info about one component (color channel). */
|
|
|
|
typedef struct {
|
|
/* These values are fixed over the whole image. */
|
|
/* For compression, they must be supplied by parameter setup; */
|
|
/* for decompression, they are read from the SOF marker. */
|
|
int component_id; /* identifier for this component (0..255) */
|
|
int component_index; /* its index in SOF or cinfo->comp_info[] */
|
|
int h_samp_factor; /* horizontal sampling factor (1..4) */
|
|
int v_samp_factor; /* vertical sampling factor (1..4) */
|
|
int quant_tbl_no; /* quantization table selector (0..3) */
|
|
/* These values may vary between scans. */
|
|
/* For compression, they must be supplied by parameter setup; */
|
|
/* for decompression, they are read from the SOS marker. */
|
|
/* The decompressor output side may not use these variables. */
|
|
int dc_tbl_no; /* DC entropy table selector (0..3) */
|
|
int ac_tbl_no; /* AC entropy table selector (0..3) */
|
|
|
|
/* Remaining fields should be treated as private by applications. */
|
|
|
|
/* These values are computed during compression or decompression startup: */
|
|
/* Component's size in DCT blocks.
|
|
* Any dummy blocks added to complete an MCU are not counted; therefore
|
|
* these values do not depend on whether a scan is interleaved or not.
|
|
*/
|
|
JDIMENSION width_in_blocks;
|
|
JDIMENSION height_in_blocks;
|
|
/* Size of a DCT block in samples. Always DCTSIZE for compression.
|
|
* For decompression this is the size of the output from one DCT block,
|
|
* reflecting any scaling we choose to apply during the IDCT step.
|
|
* Values of 1,2,4,8 are likely to be supported. Note that different
|
|
* components may receive different IDCT scalings.
|
|
*/
|
|
int DCT_scaled_size;
|
|
/* The downsampled dimensions are the component's actual, unpadded number
|
|
* of samples at the main buffer (preprocessing/compression interface), thus
|
|
* downsampled_width = ceil(image_width * Hi/Hmax)
|
|
* and similarly for height. For decompression, IDCT scaling is included, so
|
|
* downsampled_width = ceil(image_width * Hi/Hmax * DCT_scaled_size/DCTSIZE)
|
|
*/
|
|
JDIMENSION downsampled_width; /* actual width in samples */
|
|
JDIMENSION downsampled_height; /* actual height in samples */
|
|
/* This flag is used only for decompression. In cases where some of the
|
|
* components will be ignored (eg grayscale output from YCbCr image),
|
|
* we can skip most computations for the unused components.
|
|
*/
|
|
boolean component_needed; /* do we need the value of this component? */
|
|
|
|
/* These values are computed before starting a scan of the component. */
|
|
/* The decompressor output side may not use these variables. */
|
|
int MCU_width; /* number of blocks per MCU, horizontally */
|
|
int MCU_height; /* number of blocks per MCU, vertically */
|
|
int MCU_blocks; /* MCU_width * MCU_height */
|
|
int MCU_sample_width; /* MCU width in samples, MCU_width*DCT_scaled_size */
|
|
int last_col_width; /* # of non-dummy blocks across in last MCU */
|
|
int last_row_height; /* # of non-dummy blocks down in last MCU */
|
|
|
|
/* Saved quantization table for component; NULL if none yet saved.
|
|
* See jdinput.c comments about the need for this information.
|
|
* This field is currently used only for decompression.
|
|
*/
|
|
JQUANT_TBL * quant_table;
|
|
|
|
/* Private per-component storage for DCT or IDCT subsystem. */
|
|
void * dct_table;
|
|
} jpeg_component_info;
|
|
|
|
|
|
/* The script for encoding a multiple-scan file is an array of these: */
|
|
|
|
typedef struct {
|
|
int comps_in_scan; /* number of components encoded in this scan */
|
|
int component_index[MAX_COMPS_IN_SCAN]; /* their SOF/comp_info[] indexes */
|
|
int Ss, Se; /* progressive JPEG spectral selection parms */
|
|
int Ah, Al; /* progressive JPEG successive approx. parms */
|
|
} jpeg_scan_info;
|
|
|
|
/* The decompressor can save APPn and COM markers in a list of these: */
|
|
|
|
typedef struct jpeg_marker_struct * jpeg_saved_marker_ptr;
|
|
|
|
struct jpeg_marker_struct {
|
|
jpeg_saved_marker_ptr next; /* next in list, or NULL */
|
|
UINT8 marker; /* marker code: JPEG_COM, or JPEG_APP0+n */
|
|
unsigned int original_length; /* # bytes of data in the file */
|
|
unsigned int data_length; /* # bytes of data saved at data[] */
|
|
JOCTET * data; /* the data contained in the marker */
|
|
/* the marker length word is not counted in data_length or original_length */
|
|
};
|
|
|
|
/* Known color spaces. */
|
|
|
|
typedef enum {
|
|
JCS_UNKNOWN, /* error/unspecified */
|
|
JCS_GRAYSCALE, /* monochrome */
|
|
JCS_RGB, /* red/green/blue */
|
|
JCS_YCbCr, /* Y/Cb/Cr (also known as YUV) */
|
|
JCS_CMYK, /* C/M/Y/K */
|
|
JCS_YCCK /* Y/Cb/Cr/K */
|
|
} J_COLOR_SPACE;
|
|
|
|
/* DCT/IDCT algorithm options. */
|
|
|
|
typedef enum {
|
|
JDCT_ISLOW, /* slow but accurate integer algorithm */
|
|
JDCT_IFAST, /* faster, less accurate integer method */
|
|
JDCT_FLOAT /* floating-point: accurate, fast on fast HW */
|
|
} J_DCT_METHOD;
|
|
|
|
#ifndef JDCT_DEFAULT /* may be overridden in jconfig.h */
|
|
#define JDCT_DEFAULT JDCT_ISLOW
|
|
#endif
|
|
#ifndef JDCT_FASTEST /* may be overridden in jconfig.h */
|
|
#define JDCT_FASTEST JDCT_IFAST
|
|
#endif
|
|
|
|
/* Dithering options for decompression. */
|
|
|
|
typedef enum {
|
|
JDITHER_NONE, /* no dithering */
|
|
JDITHER_ORDERED, /* simple ordered dither */
|
|
JDITHER_FS /* Floyd-Steinberg error diffusion dither */
|
|
} J_DITHER_MODE;
|
|
|
|
|
|
/* Common fields between JPEG compression and decompression master structs. */
|
|
|
|
#define jpeg_common_fields \
|
|
struct jpeg_error_mgr * err; /* Error handler module */\
|
|
struct jpeg_memory_mgr * mem; /* Memory manager module */\
|
|
struct jpeg_progress_mgr * progress; /* Progress monitor, or NULL if none */\
|
|
void * client_data; /* Available for use by application */\
|
|
boolean is_decompressor; /* So common code can tell which is which */\
|
|
int global_state /* For checking call sequence validity */
|
|
|
|
/* Routines that are to be used by both halves of the library are declared
|
|
* to receive a pointer to this structure. There are no actual instances of
|
|
* jpeg_common_struct, only of jpeg_compress_struct and jpeg_decompress_struct.
|
|
*/
|
|
struct jpeg_common_struct {
|
|
jpeg_common_fields; /* Fields common to both master struct types */
|
|
/* Additional fields follow in an actual jpeg_compress_struct or
|
|
* jpeg_decompress_struct. All three structs must agree on these
|
|
* initial fields! (This would be a lot cleaner in C++.)
|
|
*/
|
|
};
|
|
|
|
typedef struct jpeg_common_struct * j_common_ptr;
|
|
typedef struct jpeg_compress_struct * j_compress_ptr;
|
|
typedef struct jpeg_decompress_struct * j_decompress_ptr;
|
|
|
|
|
|
/* Master record for a compression instance */
|
|
|
|
struct jpeg_compress_struct {
|
|
jpeg_common_fields; /* Fields shared with jpeg_decompress_struct */
|
|
|
|
/* Destination for compressed data */
|
|
struct jpeg_destination_mgr * dest;
|
|
|
|
/* Description of source image --- these fields must be filled in by
|
|
* outer application before starting compression. in_color_space must
|
|
* be correct before you can even call jpeg_set_defaults().
|
|
*/
|
|
|
|
JDIMENSION image_width; /* input image width */
|
|
JDIMENSION image_height; /* input image height */
|
|
int input_components; /* # of color components in input image */
|
|
J_COLOR_SPACE in_color_space; /* colorspace of input image */
|
|
|
|
double input_gamma; /* image gamma of input image */
|
|
|
|
/* Compression parameters --- these fields must be set before calling
|
|
* jpeg_start_compress(). We recommend calling jpeg_set_defaults() to
|
|
* initialize everything to reasonable defaults, then changing anything
|
|
* the application specifically wants to change. That way you won't get
|
|
* burnt when new parameters are added. Also note that there are several
|
|
* helper routines to simplify changing parameters.
|
|
*/
|
|
|
|
int data_precision; /* bits of precision in image data */
|
|
|
|
int num_components; /* # of color components in JPEG image */
|
|
J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */
|
|
|
|
jpeg_component_info * comp_info;
|
|
/* comp_info[i] describes component that appears i'th in SOF */
|
|
|
|
JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS];
|
|
/* ptrs to coefficient quantization tables, or NULL if not defined */
|
|
|
|
JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS];
|
|
JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS];
|
|
/* ptrs to Huffman coding tables, or NULL if not defined */
|
|
|
|
UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */
|
|
UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */
|
|
UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */
|
|
|
|
int num_scans; /* # of entries in scan_info array */
|
|
const jpeg_scan_info * scan_info; /* script for multi-scan file, or NULL */
|
|
/* The default value of scan_info is NULL, which causes a single-scan
|
|
* sequential JPEG file to be emitted. To create a multi-scan file,
|
|
* set num_scans and scan_info to point to an array of scan definitions.
|
|
*/
|
|
|
|
boolean raw_data_in; /* TRUE=caller supplies downsampled data */
|
|
boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */
|
|
boolean optimize_coding; /* TRUE=optimize entropy encoding parms */
|
|
boolean CCIR601_sampling; /* TRUE=first samples are cosited */
|
|
int smoothing_factor; /* 1..100, or 0 for no input smoothing */
|
|
J_DCT_METHOD dct_method; /* DCT algorithm selector */
|
|
|
|
/* The restart interval can be specified in absolute MCUs by setting
|
|
* restart_interval, or in MCU rows by setting restart_in_rows
|
|
* (in which case the correct restart_interval will be figured
|
|
* for each scan).
|
|
*/
|
|
unsigned int restart_interval; /* MCUs per restart, or 0 for no restart */
|
|
int restart_in_rows; /* if > 0, MCU rows per restart interval */
|
|
|
|
/* Parameters controlling emission of special markers. */
|
|
|
|
boolean write_JFIF_header; /* should a JFIF marker be written? */
|
|
UINT8 JFIF_major_version; /* What to write for the JFIF version number */
|
|
UINT8 JFIF_minor_version;
|
|
/* These three values are not used by the JPEG code, merely copied */
|
|
/* into the JFIF APP0 marker. density_unit can be 0 for unknown, */
|
|
/* 1 for dots/inch, or 2 for dots/cm. Note that the pixel aspect */
|
|
/* ratio is defined by X_density/Y_density even when density_unit=0. */
|
|
UINT8 density_unit; /* JFIF code for pixel size units */
|
|
UINT16 X_density; /* Horizontal pixel density */
|
|
UINT16 Y_density; /* Vertical pixel density */
|
|
boolean write_Adobe_marker; /* should an Adobe marker be written? */
|
|
|
|
/* State variable: index of next scanline to be written to
|
|
* jpeg_write_scanlines(). Application may use this to control its
|
|
* processing loop, e.g., "while (next_scanline < image_height)".
|
|
*/
|
|
|
|
JDIMENSION next_scanline; /* 0 .. image_height-1 */
|
|
|
|
/* Remaining fields are known throughout compressor, but generally
|
|
* should not be touched by a surrounding application.
|
|
*/
|
|
|
|
/*
|
|
* These fields are computed during compression startup
|
|
*/
|
|
boolean progressive_mode; /* TRUE if scan script uses progressive mode */
|
|
int max_h_samp_factor; /* largest h_samp_factor */
|
|
int max_v_samp_factor; /* largest v_samp_factor */
|
|
|
|
JDIMENSION total_iMCU_rows; /* # of iMCU rows to be input to coef ctlr */
|
|
/* The coefficient controller receives data in units of MCU rows as defined
|
|
* for fully interleaved scans (whether the JPEG file is interleaved or not).
|
|
* There are v_samp_factor * DCTSIZE sample rows of each component in an
|
|
* "iMCU" (interleaved MCU) row.
|
|
*/
|
|
|
|
/*
|
|
* These fields are valid during any one scan.
|
|
* They describe the components and MCUs actually appearing in the scan.
|
|
*/
|
|
int comps_in_scan; /* # of JPEG components in this scan */
|
|
jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN];
|
|
/* *cur_comp_info[i] describes component that appears i'th in SOS */
|
|
|
|
JDIMENSION MCUs_per_row; /* # of MCUs across the image */
|
|
JDIMENSION MCU_rows_in_scan; /* # of MCU rows in the image */
|
|
|
|
int blocks_in_MCU; /* # of DCT blocks per MCU */
|
|
int MCU_membership[C_MAX_BLOCKS_IN_MCU];
|
|
/* MCU_membership[i] is index in cur_comp_info of component owning */
|
|
/* i'th block in an MCU */
|
|
|
|
int Ss, Se, Ah, Al; /* progressive JPEG parameters for scan */
|
|
|
|
/*
|
|
* Links to compression subobjects (methods and private variables of modules)
|
|
*/
|
|
struct jpeg_comp_master * master;
|
|
struct jpeg_c_main_controller * main;
|
|
struct jpeg_c_prep_controller * prep;
|
|
struct jpeg_c_coef_controller * coef;
|
|
struct jpeg_marker_writer * marker;
|
|
struct jpeg_color_converter * cconvert;
|
|
struct jpeg_downsampler * downsample;
|
|
struct jpeg_forward_dct * fdct;
|
|
struct jpeg_entropy_encoder * entropy;
|
|
jpeg_scan_info * script_space; /* workspace for jpeg_simple_progression */
|
|
int script_space_size;
|
|
};
|
|
|
|
|
|
/* Master record for a decompression instance */
|
|
|
|
struct jpeg_decompress_struct {
|
|
jpeg_common_fields; /* Fields shared with jpeg_compress_struct */
|
|
|
|
/* Source of compressed data */
|
|
struct jpeg_source_mgr * src;
|
|
|
|
/* Basic description of image --- filled in by jpeg_read_header(). */
|
|
/* Application may inspect these values to decide how to process image. */
|
|
|
|
JDIMENSION image_width; /* nominal image width (from SOF marker) */
|
|
JDIMENSION image_height; /* nominal image height */
|
|
int num_components; /* # of color components in JPEG image */
|
|
J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */
|
|
|
|
/* Decompression processing parameters --- these fields must be set before
|
|
* calling jpeg_start_decompress(). Note that jpeg_read_header() initializes
|
|
* them to default values.
|
|
*/
|
|
|
|
J_COLOR_SPACE out_color_space; /* colorspace for output */
|
|
|
|
unsigned int scale_num, scale_denom; /* fraction by which to scale image */
|
|
|
|
double output_gamma; /* image gamma wanted in output */
|
|
|
|
J_DCT_METHOD dct_method; /* IDCT algorithm selector */
|
|
boolean do_fancy_upsampling; /* TRUE=apply fancy upsampling */
|
|
boolean do_block_smoothing; /* TRUE=apply interblock smoothing */
|
|
|
|
/* Description of actual output image that will be returned to application.
|
|
* These fields are computed by jpeg_start_decompress().
|
|
* You can also use jpeg_calc_output_dimensions() to determine these values
|
|
* in advance of calling jpeg_start_decompress().
|
|
*/
|
|
|
|
JDIMENSION output_width; /* scaled image width */
|
|
JDIMENSION output_height; /* scaled image height */
|
|
int out_color_components; /* # of color components in out_color_space */
|
|
int output_components; /* # of color components returned */
|
|
/* output_components is 1 (a colormap index) when quantizing colors;
|
|
* otherwise it equals out_color_components.
|
|
*/
|
|
int rec_outbuf_height; /* min recommended height of scanline buffer */
|
|
/* If the buffer passed to jpeg_read_scanlines() is less than this many rows
|
|
* high, space and time will be wasted due to unnecessary data copying.
|
|
* Usually rec_outbuf_height will be 1 or 2, at most 4.
|
|
*/
|
|
|
|
/* State variables: these variables indicate the progress of decompression.
|
|
* The application may examine these but must not modify them.
|
|
*/
|
|
|
|
/* Row index of next scanline to be read from jpeg_read_scanlines().
|
|
* Application may use this to control its processing loop, e.g.,
|
|
* "while (output_scanline < output_height)".
|
|
*/
|
|
JDIMENSION output_scanline; /* 0 .. output_height-1 */
|
|
|
|
/* Current input scan number and number of iMCU rows completed in scan.
|
|
* These indicate the progress of the decompressor input side.
|
|
*/
|
|
int input_scan_number; /* Number of SOS markers seen so far */
|
|
JDIMENSION input_iMCU_row; /* Number of iMCU rows completed */
|
|
|
|
/* The "output scan number" is the notional scan being displayed by the
|
|
* output side. The decompressor will not allow output scan/row number
|
|
* to get ahead of input scan/row, but it can fall arbitrarily far behind.
|
|
*/
|
|
int output_scan_number; /* Nominal scan number being displayed */
|
|
JDIMENSION output_iMCU_row; /* Number of iMCU rows read */
|
|
|
|
/* Current progression status. coef_bits[c][i] indicates the precision
|
|
* with which component c's DCT coefficient i (in zigzag order) is known.
|
|
* It is -1 when no data has yet been received, otherwise it is the point
|
|
* transform (shift) value for the most recent scan of the coefficient
|
|
* (thus, 0 at completion of the progression).
|
|
* This pointer is NULL when reading a non-progressive file.
|
|
*/
|
|
int (*coef_bits)[DCTSIZE2]; /* -1 or current Al value for each coef */
|
|
|
|
/* Internal JPEG parameters --- the application usually need not look at
|
|
* these fields. Note that the decompressor output side may not use
|
|
* any parameters that can change between scans.
|
|
*/
|
|
|
|
/* Quantization and Huffman tables are carried forward across input
|
|
* datastreams when processing abbreviated JPEG datastreams.
|
|
*/
|
|
|
|
JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS];
|
|
/* ptrs to coefficient quantization tables, or NULL if not defined */
|
|
|
|
JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS];
|
|
JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS];
|
|
/* ptrs to Huffman coding tables, or NULL if not defined */
|
|
|
|
/* These parameters are never carried across datastreams, since they
|
|
* are given in SOF/SOS markers or defined to be reset by SOI.
|
|
*/
|
|
|
|
int data_precision; /* bits of precision in image data */
|
|
|
|
jpeg_component_info * comp_info;
|
|
/* comp_info[i] describes component that appears i'th in SOF */
|
|
|
|
boolean progressive_mode; /* TRUE if SOFn specifies progressive mode */
|
|
boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */
|
|
|
|
UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */
|
|
UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */
|
|
UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */
|
|
|
|
unsigned int restart_interval; /* MCUs per restart interval, or 0 for no restart */
|
|
|
|
/* These fields record data obtained from optional markers recognized by
|
|
* the JPEG library.
|
|
*/
|
|
boolean saw_JFIF_marker; /* TRUE iff a JFIF APP0 marker was found */
|
|
/* Data copied from JFIF marker; only valid if saw_JFIF_marker is TRUE: */
|
|
UINT8 JFIF_major_version; /* JFIF version number */
|
|
UINT8 JFIF_minor_version;
|
|
UINT8 density_unit; /* JFIF code for pixel size units */
|
|
UINT16 X_density; /* Horizontal pixel density */
|
|
UINT16 Y_density; /* Vertical pixel density */
|
|
boolean saw_Adobe_marker; /* TRUE iff an Adobe APP14 marker was found */
|
|
UINT8 Adobe_transform; /* Color transform code from Adobe marker */
|
|
|
|
boolean CCIR601_sampling; /* TRUE=first samples are cosited */
|
|
|
|
/* Aside from the specific data retained from APPn markers known to the
|
|
* library, the uninterpreted contents of any or all APPn and COM markers
|
|
* can be saved in a list for examination by the application.
|
|
*/
|
|
jpeg_saved_marker_ptr marker_list; /* Head of list of saved markers */
|
|
|
|
/* Remaining fields are known throughout decompressor, but generally
|
|
* should not be touched by a surrounding application.
|
|
*/
|
|
|
|
/*
|
|
* These fields are computed during decompression startup
|
|
*/
|
|
int max_h_samp_factor; /* largest h_samp_factor */
|
|
int max_v_samp_factor; /* largest v_samp_factor */
|
|
|
|
int min_DCT_scaled_size; /* smallest DCT_scaled_size of any component */
|
|
|
|
JDIMENSION total_iMCU_rows; /* # of iMCU rows in image */
|
|
/* The coefficient controller's input and output progress is measured in
|
|
* units of "iMCU" (interleaved MCU) rows. These are the same as MCU rows
|
|
* in fully interleaved JPEG scans, but are used whether the scan is
|
|
* interleaved or not. We define an iMCU row as v_samp_factor DCT block
|
|
* rows of each component. Therefore, the IDCT output contains
|
|
* v_samp_factor*DCT_scaled_size sample rows of a component per iMCU row.
|
|
*/
|
|
|
|
JSAMPLE * sample_range_limit; /* table for fast range-limiting */
|
|
|
|
/*
|
|
* These fields are valid during any one scan.
|
|
* They describe the components and MCUs actually appearing in the scan.
|
|
* Note that the decompressor output side must not use these fields.
|
|
*/
|
|
int comps_in_scan; /* # of JPEG components in this scan */
|
|
jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN];
|
|
/* *cur_comp_info[i] describes component that appears i'th in SOS */
|
|
|
|
JDIMENSION MCUs_per_row; /* # of MCUs across the image */
|
|
JDIMENSION MCU_rows_in_scan; /* # of MCU rows in the image */
|
|
|
|
int blocks_in_MCU; /* # of DCT blocks per MCU */
|
|
int MCU_membership[D_MAX_BLOCKS_IN_MCU];
|
|
/* MCU_membership[i] is index in cur_comp_info of component owning */
|
|
/* i'th block in an MCU */
|
|
|
|
int Ss, Se, Ah, Al; /* progressive JPEG parameters for scan */
|
|
|
|
/* This field is shared between entropy decoder and marker parser.
|
|
* It is either zero or the code of a JPEG marker that has been
|
|
* read from the data source, but has not yet been processed.
|
|
*/
|
|
int unread_marker;
|
|
|
|
/*
|
|
* Links to decompression subobjects (methods, private variables of modules)
|
|
*/
|
|
struct jpeg_decomp_master * master;
|
|
struct jpeg_d_main_controller * main;
|
|
struct jpeg_d_coef_controller * coef;
|
|
struct jpeg_d_post_controller * post;
|
|
struct jpeg_input_controller * inputctl;
|
|
struct jpeg_marker_reader * marker;
|
|
struct jpeg_entropy_decoder * entropy;
|
|
struct jpeg_inverse_dct * idct;
|
|
struct jpeg_upsampler * upsample;
|
|
struct jpeg_color_deconverter * cconvert;
|
|
struct jpeg_color_quantizer * cquantize;
|
|
};
|
|
|
|
|
|
/* "Object" declarations for JPEG modules that may be supplied or called
|
|
* directly by the surrounding application.
|
|
* As with all objects in the JPEG library, these structs only define the
|
|
* publicly visible methods and state variables of a module. Additional
|
|
* private fields may exist after the public ones.
|
|
*/
|
|
|
|
|
|
/* Error handler object */
|
|
|
|
struct jpeg_error_mgr {
|
|
/* Error exit handler: does not return to caller */
|
|
JMETHOD(void, error_exit, (j_common_ptr cinfo));
|
|
/* Conditionally emit a trace or warning message */
|
|
JMETHOD(void, emit_message, (j_common_ptr cinfo, int msg_level));
|
|
/* Routine that actually outputs a trace or error message */
|
|
JMETHOD(void, output_message, (j_common_ptr cinfo));
|
|
/* Format a message string for the most recent JPEG error or message */
|
|
JMETHOD(void, format_message, (j_common_ptr cinfo, char * buffer));
|
|
#define JMSG_LENGTH_MAX 200 /* recommended size of format_message buffer */
|
|
/* Reset error state variables at start of a new image */
|
|
JMETHOD(void, reset_error_mgr, (j_common_ptr cinfo));
|
|
|
|
/* The message ID code and any parameters are saved here.
|
|
* A message can have one string parameter or up to 8 int parameters.
|
|
*/
|
|
int msg_code;
|
|
#define JMSG_STR_PARM_MAX 80
|
|
union {
|
|
int i[8];
|
|
char s[JMSG_STR_PARM_MAX];
|
|
} msg_parm;
|
|
|
|
/* Standard state variables for error facility */
|
|
|
|
int trace_level; /* max msg_level that will be displayed */
|
|
|
|
/* For recoverable corrupt-data errors, we emit a warning message,
|
|
* but keep going unless emit_message chooses to abort. emit_message
|
|
* should count warnings in num_warnings. The surrounding application
|
|
* can check for bad data by seeing if num_warnings is nonzero at the
|
|
* end of processing.
|
|
*/
|
|
long num_warnings; /* number of corrupt-data warnings */
|
|
|
|
/* These fields point to the table(s) of error message strings.
|
|
* An application can change the table pointer to switch to a different
|
|
* message list (typically, to change the language in which errors are
|
|
* reported). Some applications may wish to add additional error codes
|
|
* that will be handled by the JPEG library error mechanism; the second
|
|
* table pointer is used for this purpose.
|
|
*
|
|
* First table includes all errors generated by JPEG library itself.
|
|
* Error code 0 is reserved for a "no such error string" message.
|
|
*/
|
|
const char * const * jpeg_message_table; /* Library errors */
|
|
int last_jpeg_message; /* Table contains strings 0..last_jpeg_message */
|
|
/* Second table can be added by application (see cjpeg/djpeg for example).
|
|
* It contains strings numbered first_addon_message..last_addon_message.
|
|
*/
|
|
const char * const * addon_message_table; /* Non-library errors */
|
|
int first_addon_message; /* code for first string in addon table */
|
|
int last_addon_message; /* code for last string in addon table */
|
|
};
|
|
|
|
|
|
/* Progress monitor object */
|
|
|
|
struct jpeg_progress_mgr {
|
|
JMETHOD(void, progress_monitor, (j_common_ptr cinfo));
|
|
|
|
long pass_counter; /* work units completed in this pass */
|
|
long pass_limit; /* total number of work units in this pass */
|
|
int completed_passes; /* passes completed so far */
|
|
int total_passes; /* total number of passes expected */
|
|
};
|
|
|
|
|
|
/* Data destination object for compression */
|
|
|
|
struct jpeg_destination_mgr {
|
|
JOCTET * next_output_byte; /* => next byte to write in buffer */
|
|
size_t free_in_buffer; /* # of byte spaces remaining in buffer */
|
|
|
|
JMETHOD(void, init_destination, (j_compress_ptr cinfo));
|
|
JMETHOD(boolean, empty_output_buffer, (j_compress_ptr cinfo));
|
|
JMETHOD(void, term_destination, (j_compress_ptr cinfo));
|
|
};
|
|
|
|
|
|
/* Data source object for decompression */
|
|
|
|
struct jpeg_source_mgr {
|
|
const JOCTET * next_input_byte; /* => next byte to read from buffer */
|
|
size_t bytes_in_buffer; /* # of bytes remaining in buffer */
|
|
|
|
JMETHOD(void, init_source, (j_decompress_ptr cinfo));
|
|
JMETHOD(boolean, fill_input_buffer, (j_decompress_ptr cinfo));
|
|
JMETHOD(void, skip_input_data, (j_decompress_ptr cinfo, long num_bytes));
|
|
JMETHOD(boolean, resync_to_restart, (j_decompress_ptr cinfo, int desired));
|
|
JMETHOD(void, term_source, (j_decompress_ptr cinfo));
|
|
};
|
|
|
|
|
|
/* Memory manager object.
|
|
* Allocates "small" objects (a few K total), "large" objects (tens of K),
|
|
* and "really big" objects (virtual arrays with backing store if needed).
|
|
* The memory manager does not allow individual objects to be freed; rather,
|
|
* each created object is assigned to a pool, and whole pools can be freed
|
|
* at once. This is faster and more convenient than remembering exactly what
|
|
* to free, especially where malloc()/free() are not too speedy.
|
|
* NB: alloc routines never return NULL. They exit to error_exit if not
|
|
* successful.
|
|
*/
|
|
|
|
#define JPOOL_PERMANENT 0 /* lasts until master record is destroyed */
|
|
#define JPOOL_IMAGE 1 /* lasts until done with image/datastream */
|
|
#define JPOOL_NUMPOOLS 2
|
|
|
|
typedef struct jvirt_barray_control * jvirt_barray_ptr;
|
|
|
|
|
|
struct jpeg_memory_mgr {
|
|
/* Method pointers */
|
|
JMETHOD(void *, alloc_small, (j_common_ptr cinfo, int pool_id,
|
|
size_t sizeofobject));
|
|
JMETHOD(void *, alloc_large, (j_common_ptr cinfo, int pool_id,
|
|
size_t sizeofobject));
|
|
JMETHOD(JSAMPARRAY, alloc_sarray, (j_common_ptr cinfo, int pool_id,
|
|
JDIMENSION samplesperrow,
|
|
JDIMENSION numrows));
|
|
JMETHOD(JBLOCKARRAY, alloc_barray, (j_common_ptr cinfo, int pool_id,
|
|
JDIMENSION blocksperrow,
|
|
JDIMENSION numrows));
|
|
JMETHOD(jvirt_barray_ptr, request_virt_barray, (j_common_ptr cinfo,
|
|
int pool_id,
|
|
boolean pre_zero,
|
|
JDIMENSION blocksperrow,
|
|
JDIMENSION numrows,
|
|
JDIMENSION maxaccess));
|
|
JMETHOD(void, realize_virt_arrays, (j_common_ptr cinfo));
|
|
JMETHOD(JBLOCKARRAY, access_virt_barray, (j_common_ptr cinfo,
|
|
jvirt_barray_ptr ptr,
|
|
JDIMENSION start_row,
|
|
JDIMENSION num_rows,
|
|
boolean writable));
|
|
JMETHOD(void, free_pool, (j_common_ptr cinfo, int pool_id));
|
|
JMETHOD(void, self_destruct, (j_common_ptr cinfo));
|
|
};
|
|
|
|
|
|
/* Routine signature for application-supplied marker processing methods.
|
|
* Need not pass marker code since it is stored in cinfo->unread_marker.
|
|
*/
|
|
typedef JMETHOD(boolean, jpeg_marker_parser_method, (j_decompress_ptr cinfo));
|
|
|
|
|
|
/* Declarations for routines called by application.
|
|
* The JPP macro hides prototype parameters from compilers that can't cope.
|
|
* Note JPP requires double parentheses.
|
|
*/
|
|
|
|
#ifdef HAVE_PROTOTYPES
|
|
#define JPP(arglist) arglist
|
|
#else
|
|
#define JPP(arglist) ()
|
|
#endif
|
|
|
|
|
|
/* Default error-management setup */
|
|
EXTERN(struct jpeg_error_mgr *) jpeg_std_error
|
|
JPP((struct jpeg_error_mgr * err));
|
|
|
|
/* Initialization of JPEG compression objects.
|
|
* jpeg_create_compress() and jpeg_create_decompress() are the exported
|
|
* names that applications should call. These expand to calls on
|
|
* jpeg_CreateCompress and jpeg_CreateDecompress with additional information
|
|
* passed for version mismatch checking.
|
|
* NB: you must set up the error-manager BEFORE calling jpeg_create_xxx.
|
|
*/
|
|
#define jpeg_create_compress(cinfo) \
|
|
jpeg_CreateCompress((cinfo), JPEG_LIB_VERSION, \
|
|
(size_t) sizeof(struct jpeg_compress_struct))
|
|
#define jpeg_create_decompress(cinfo) \
|
|
jpeg_CreateDecompress((cinfo), JPEG_LIB_VERSION, \
|
|
(size_t) sizeof(struct jpeg_decompress_struct))
|
|
EXTERN(void) jpeg_CreateCompress JPP((j_compress_ptr cinfo,
|
|
int version, size_t structsize));
|
|
EXTERN(void) jpeg_CreateDecompress JPP((j_decompress_ptr cinfo,
|
|
int version, size_t structsize));
|
|
/* Destruction of JPEG compression objects */
|
|
EXTERN(void) jpeg_destroy_compress JPP((j_compress_ptr cinfo));
|
|
EXTERN(void) jpeg_destroy_decompress JPP((j_decompress_ptr cinfo));
|
|
|
|
/* Standard data source and destination managers: stdio streams. */
|
|
/* Caller is responsible for opening the file before and closing after. */
|
|
EXTERN(void) jpeg_stdio_src JPP((j_decompress_ptr cinfo, FILE * infile));
|
|
|
|
/* Default parameter setup for compression */
|
|
EXTERN(void) jpeg_set_defaults JPP((j_compress_ptr cinfo));
|
|
/* Compression parameter setup aids */
|
|
EXTERN(void) jpeg_set_colorspace JPP((j_compress_ptr cinfo,
|
|
J_COLOR_SPACE colorspace));
|
|
EXTERN(void) jpeg_default_colorspace JPP((j_compress_ptr cinfo));
|
|
EXTERN(void) jpeg_set_quality JPP((j_compress_ptr cinfo, int quality,
|
|
boolean force_baseline));
|
|
EXTERN(void) jpeg_set_linear_quality JPP((j_compress_ptr cinfo,
|
|
int scale_factor,
|
|
boolean force_baseline));
|
|
EXTERN(void) jpeg_add_quant_table JPP((j_compress_ptr cinfo, int which_tbl,
|
|
const unsigned int *basic_table,
|
|
int scale_factor,
|
|
boolean force_baseline));
|
|
EXTERN(int) jpeg_quality_scaling JPP((int quality));
|
|
EXTERN(void) jpeg_simple_progression JPP((j_compress_ptr cinfo));
|
|
EXTERN(void) jpeg_suppress_tables JPP((j_compress_ptr cinfo,
|
|
boolean suppress));
|
|
EXTERN(JQUANT_TBL *) jpeg_alloc_quant_table JPP((j_common_ptr cinfo));
|
|
EXTERN(JHUFF_TBL *) jpeg_alloc_huff_table JPP((j_common_ptr cinfo));
|
|
|
|
/* Main entry points for compression */
|
|
EXTERN(void) jpeg_start_compress JPP((j_compress_ptr cinfo,
|
|
boolean write_all_tables));
|
|
EXTERN(JDIMENSION) jpeg_write_scanlines JPP((j_compress_ptr cinfo,
|
|
JSAMPARRAY scanlines,
|
|
JDIMENSION num_lines));
|
|
EXTERN(void) jpeg_finish_compress JPP((j_compress_ptr cinfo));
|
|
|
|
/* Replaces jpeg_write_scanlines when writing raw downsampled data. */
|
|
EXTERN(JDIMENSION) jpeg_write_raw_data JPP((j_compress_ptr cinfo,
|
|
JSAMPIMAGE data,
|
|
JDIMENSION num_lines));
|
|
|
|
/* Write a special marker. See libjpeg.doc concerning safe usage. */
|
|
EXTERN(void) jpeg_write_marker
|
|
JPP((j_compress_ptr cinfo, int marker,
|
|
const JOCTET * dataptr, unsigned int datalen));
|
|
/* Same, but piecemeal. */
|
|
EXTERN(void) jpeg_write_m_header
|
|
JPP((j_compress_ptr cinfo, int marker, unsigned int datalen));
|
|
EXTERN(void) jpeg_write_m_byte
|
|
JPP((j_compress_ptr cinfo, int val));
|
|
|
|
/* Alternate compression function: just write an abbreviated table file */
|
|
EXTERN(void) jpeg_write_tables JPP((j_compress_ptr cinfo));
|
|
|
|
/* Decompression startup: read start of JPEG datastream to see what's there */
|
|
EXTERN(int) jpeg_read_header JPP((j_decompress_ptr cinfo,
|
|
boolean require_image));
|
|
/* Return value is one of: */
|
|
#define JPEG_SUSPENDED 0 /* Suspended due to lack of input data */
|
|
#define JPEG_HEADER_OK 1 /* Found valid image datastream */
|
|
#define JPEG_HEADER_TABLES_ONLY 2 /* Found valid table-specs-only datastream */
|
|
/* If you pass require_image = TRUE (normal case), you need not check for
|
|
* a TABLES_ONLY return code; an abbreviated file will cause an error exit.
|
|
* JPEG_SUSPENDED is only possible if you use a data source module that can
|
|
* give a suspension return (the stdio source module doesn't).
|
|
*/
|
|
|
|
/* Main entry points for decompression */
|
|
EXTERN(boolean) jpeg_start_decompress JPP((j_decompress_ptr cinfo));
|
|
EXTERN(JDIMENSION) jpeg_read_scanlines JPP((j_decompress_ptr cinfo,
|
|
JSAMPARRAY scanlines,
|
|
JDIMENSION max_lines));
|
|
EXTERN(boolean) jpeg_finish_decompress JPP((j_decompress_ptr cinfo));
|
|
|
|
/* Additional entry points for buffered-image mode. */
|
|
EXTERN(int) jpeg_consume_input JPP((j_decompress_ptr cinfo));
|
|
/* Return value is one of: */
|
|
/* #define JPEG_SUSPENDED 0 Suspended due to lack of input data */
|
|
#define JPEG_REACHED_SOS 1 /* Reached start of new scan */
|
|
#define JPEG_REACHED_EOI 2 /* Reached end of image */
|
|
#define JPEG_ROW_COMPLETED 3 /* Completed one iMCU row */
|
|
#define JPEG_SCAN_COMPLETED 4 /* Completed last iMCU row of a scan */
|
|
|
|
/* Precalculate output dimensions for current decompression parameters. */
|
|
EXTERN(void) jpeg_calc_output_dimensions JPP((j_decompress_ptr cinfo));
|
|
|
|
/* Control saving of COM and APPn markers into marker_list. */
|
|
EXTERN(void) jpeg_save_markers
|
|
JPP((j_decompress_ptr cinfo, int marker_code,
|
|
unsigned int length_limit));
|
|
|
|
/* Install a special processing method for COM or APPn markers. */
|
|
EXTERN(void) jpeg_set_marker_processor
|
|
JPP((j_decompress_ptr cinfo, int marker_code,
|
|
jpeg_marker_parser_method routine));
|
|
|
|
/* If you choose to abort compression or decompression before completing
|
|
* jpeg_finish_(de)compress, then you need to clean up to release memory,
|
|
* temporary files, etc. You can just call jpeg_destroy_(de)compress
|
|
* if you're done with the JPEG object, but if you want to clean it up and
|
|
* reuse it, call this:
|
|
*/
|
|
EXTERN(void) jpeg_abort_compress JPP((j_compress_ptr cinfo));
|
|
EXTERN(void) jpeg_abort_decompress JPP((j_decompress_ptr cinfo));
|
|
|
|
/* Generic versions of jpeg_abort and jpeg_destroy that work on either
|
|
* flavor of JPEG object. These may be more convenient in some places.
|
|
*/
|
|
EXTERN(void) jpeg_abort JPP((j_common_ptr cinfo));
|
|
EXTERN(void) jpeg_destroy JPP((j_common_ptr cinfo));
|
|
|
|
/* Default restart-marker-resync procedure for use by data source modules */
|
|
EXTERN(boolean) jpeg_resync_to_restart JPP((j_decompress_ptr cinfo,
|
|
int desired));
|
|
|
|
|
|
/* These marker codes are exported since applications and data source modules
|
|
* are likely to want to use them.
|
|
*/
|
|
|
|
#define JPEG_RST0 0xD0 /* RST0 marker code */
|
|
#define JPEG_EOI 0xD9 /* EOI marker code */
|
|
#define JPEG_APP0 0xE0 /* APP0 marker code */
|
|
#define JPEG_COM 0xFE /* COM marker code */
|
|
|
|
|
|
/*
|
|
* The JPEG library modules define JPEG_INTERNALS before including this file.
|
|
* The internal structure declarations are read only when that is true.
|
|
* Applications using the library should not include jpegint.h, but may wish
|
|
* to include jerror.h.
|
|
*/
|
|
|
|
#ifdef JPEG_INTERNALS
|
|
#include "jpegint.h" /* fetch private declarations */
|
|
#include "jerror.h" /* fetch error codes too */
|
|
#endif
|
|
|
|
#endif /* JPEGLIB_H */
|