gzdoom-gles/src/r_defs.h
Christoph Oelckers da2df2778e Added Line_SetTextureScale.
SVN r1658 (trunk)
2009-06-08 23:49:27 +00:00

1099 lines
27 KiB
C++

// Emacs style mode select -*- C++ -*-
//-----------------------------------------------------------------------------
//
// $Id:$
//
// Copyright (C) 1993-1996 by id Software, Inc.
//
// This source is available for distribution and/or modification
// only under the terms of the DOOM Source Code License as
// published by id Software. All rights reserved.
//
// The source is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// FITNESS FOR A PARTICULAR PURPOSE. See the DOOM Source Code License
// for more details.
//
// DESCRIPTION:
// Refresh/rendering module, shared data struct definitions.
//
//-----------------------------------------------------------------------------
#ifndef __R_DEFS_H__
#define __R_DEFS_H__
#include "doomdef.h"
// Some more or less basic data types
// we depend on.
#include "m_fixed.h"
// We rely on the thinker data struct
// to handle sound origins in sectors.
// SECTORS do store MObjs anyway.
#include "actor.h"
#include "dthinker.h"
#include "farchive.h"
#define MAXWIDTH 2560
#define MAXHEIGHT 1600
const WORD NO_INDEX = 0xffffu;
const DWORD NO_SIDE = 0xffffffffu;
// Silhouette, needed for clipping Segs (mainly)
// and sprites representing things.
enum
{
SIL_NONE,
SIL_BOTTOM,
SIL_TOP,
SIL_BOTH
};
extern size_t MaxDrawSegs;
//
// INTERNAL MAP TYPES
// used by play and refresh
//
//
// Your plain vanilla vertex.
// Note: transformed values not buffered locally,
// like some DOOM-alikes ("wt", "WebView") did.
//
struct vertex_t
{
fixed_t x, y;
bool operator== (const vertex_t &other)
{
return x == other.x && y == other.y;
}
};
// Forward of LineDefs, for Sectors.
struct line_t;
class player_t;
class FScanner;
class FBitmap;
struct FCopyInfo;
class DInterpolation;
enum
{
UDMF_Line,
UDMF_Side,
UDMF_Sector,
UDMF_Thing
};
struct FUDMFKey
{
enum
{
UDMF_Int,
UDMF_Float,
UDMF_String
};
FName Key;
int Type;
int IntVal;
double FloatVal;
FString StringVal;
FUDMFKey()
{
}
FUDMFKey& operator =(int val)
{
Type = UDMF_Int;
IntVal = val;
FloatVal = val;
StringVal = "";
return *this;
}
FUDMFKey& operator =(double val)
{
Type = UDMF_Float;
IntVal = int(val);
FloatVal = val;
StringVal = "";
return *this;
}
FUDMFKey& operator =(const FString &val)
{
Type = UDMF_String;
IntVal = strtol(val, NULL, 0);
FloatVal = strtod(val, NULL);
StringVal = val;
return *this;
}
};
class FUDMFKeys : public TArray<FUDMFKey>
{
public:
void Sort();
FUDMFKey *Find(FName key);
};
//
// The SECTORS record, at runtime.
// Stores things/mobjs.
//
class DSectorEffect;
struct sector_t;
struct FRemapTable;
enum
{
SECSPAC_Enter = 1, // Trigger when player enters
SECSPAC_Exit = 2, // Trigger when player exits
SECSPAC_HitFloor = 4, // Trigger when player hits floor
SECSPAC_HitCeiling = 8, // Trigger when player hits ceiling
SECSPAC_Use = 16, // Trigger when player uses
SECSPAC_UseWall = 32, // Trigger when player uses a wall
SECSPAC_EyesDive = 64, // Trigger when player eyes go below fake floor
SECSPAC_EyesSurface = 128, // Trigger when player eyes go above fake floor
SECSPAC_EyesBelowC = 256, // Trigger when player eyes go below fake ceiling
SECSPAC_EyesAboveC = 512, // Trigger when player eyes go above fake ceiling
SECSPAC_HitFakeFloor= 1024, // Trigger when player hits fake floor
};
class ASectorAction : public AActor
{
DECLARE_CLASS (ASectorAction, AActor)
public:
void Destroy ();
void BeginPlay ();
void Activate (AActor *source);
void Deactivate (AActor *source);
virtual bool TriggerAction (AActor *triggerer, int activationType);
protected:
bool CheckTrigger (AActor *triggerer) const;
};
class ASkyViewpoint;
struct secplane_t
{
// the plane is defined as a*x + b*y + c*z + d = 0
// ic is 1/c, for faster Z calculations
fixed_t a, b, c, d, ic;
// Returns the value of z at (x,y)
fixed_t ZatPoint (fixed_t x, fixed_t y) const
{
return FixedMul (ic, -d - DMulScale16 (a, x, b, y));
}
// Returns the value of z at (x,y) as a double
double ZatPoint (double x, double y) const
{
return (d + a*x + b*y) * ic / (-65536.0 * 65536.0);
}
// Returns the value of z at vertex v
fixed_t ZatPoint (const vertex_t *v) const
{
return FixedMul (ic, -d - DMulScale16 (a, v->x, b, v->y));
}
// Returns the value of z at (x,y) if d is equal to dist
fixed_t ZatPointDist (fixed_t x, fixed_t y, fixed_t dist) const
{
return FixedMul (ic, -dist - DMulScale16 (a, x, b, y));
}
// Returns the value of z at vertex v if d is equal to dist
fixed_t ZatPointDist (const vertex_t *v, fixed_t dist)
{
return FixedMul (ic, -dist - DMulScale16 (a, v->x, b, v->y));
}
// Flips the plane's vertical orientiation, so that if it pointed up,
// it will point down, and vice versa.
void FlipVert ()
{
a = -a;
b = -b;
c = -c;
d = -d;
ic = -ic;
}
// Returns true if 2 planes are the same
bool operator== (const secplane_t &other) const
{
return a == other.a && b == other.b && c == other.c && d == other.d;
}
// Returns true if 2 planes are different
bool operator!= (const secplane_t &other) const
{
return a != other.a || b != other.b || c != other.c || d != other.d;
}
// Moves a plane up/down by hdiff units
void ChangeHeight (fixed_t hdiff)
{
d = d - FixedMul (hdiff, c);
}
// Moves a plane up/down by hdiff units
fixed_t GetChangedHeight (fixed_t hdiff)
{
return d - FixedMul (hdiff, c);
}
// Returns how much this plane's height would change if d were set to oldd
fixed_t HeightDiff (fixed_t oldd) const
{
return FixedMul (oldd - d, ic);
}
// Returns how much this plane's height would change if d were set to oldd
fixed_t HeightDiff (fixed_t oldd, fixed_t newd) const
{
return FixedMul (oldd - newd, ic);
}
fixed_t PointToDist (fixed_t x, fixed_t y, fixed_t z) const
{
return -TMulScale16 (a, x, y, b, z, c);
}
fixed_t PointToDist (const vertex_t *v, fixed_t z) const
{
return -TMulScale16 (a, v->x, b, v->y, z, c);
}
};
inline FArchive &operator<< (FArchive &arc, secplane_t &plane)
{
arc << plane.a << plane.b << plane.c << plane.d;
//if (plane.c != 0)
{ // plane.c should always be non-0. Otherwise, the plane
// would be perfectly vertical.
plane.ic = DivScale32 (1, plane.c);
}
return arc;
}
#include "p_3dfloors.h"
// Ceiling/floor flags
enum
{
SECF_ABSLIGHTING = 1 // floor/ceiling light is absolute, not relative
};
// Internal sector flags
enum
{
SECF_FAKEFLOORONLY = 2, // when used as heightsec in R_FakeFlat, only copies floor
SECF_CLIPFAKEPLANES = 4, // as a heightsec, clip planes to target sector's planes
SECF_NOFAKELIGHT = 8, // heightsec does not change lighting
SECF_IGNOREHEIGHTSEC= 16, // heightsec is only for triggering sector actions
SECF_UNDERWATER = 32, // sector is underwater
SECF_FORCEDUNDERWATER= 64, // sector is forced to be underwater
SECF_UNDERWATERMASK = 32+64,
SECF_DRAWN = 128, // sector has been drawn at least once
};
enum
{
SECF_SILENT = 1, // actors in sector make no noise
SECF_NOFALLINGDAMAGE= 2, // No falling damage in this sector
SECF_FLOORDROP = 4, // all actors standing on this floor will remain on it when it lowers very fast.
SECF_NORESPAWN = 8, // players can not respawn in this sector
};
enum
{
PL_SKYFLAT = 0x40000000
};
struct FDynamicColormap;
struct FLightStack
{
secplane_t Plane; // Plane above this light (points up)
sector_t *Master; // Sector to get light from (NULL for owner)
BITFIELD bBottom:1; // Light is from the bottom of a block?
BITFIELD bFlooder:1; // Light floods lower lights until another flooder is reached?
BITFIELD bOverlaps:1; // Plane overlaps the next one
};
struct FExtraLight
{
short Tag;
WORD NumLights;
WORD NumUsedLights;
FLightStack *Lights; // Lights arranged from top to bottom
void InsertLight (const secplane_t &plane, line_t *line, int type);
};
// this substructure contains a few sector properties that are stored in dynamic arrays
// These must not be copied by R_FakeFlat etc. or bad things will happen.
struct sector_t;
struct FLinkedSector
{
sector_t *Sector;
int Type;
};
struct extsector_t
{
// Boom sector transfer information
struct fakefloor
{
TArray<sector_t *> Sectors;
} FakeFloor;
// 3DMIDTEX information
struct midtex
{
struct plane
{
TArray<sector_t *> AttachedSectors; // all sectors containing 3dMidtex lines attached to this sector
TArray<line_t *> AttachedLines; // all 3dMidtex lines attached to this sector
} Floor, Ceiling;
} Midtex;
// Linked sector information
struct linked
{
struct plane
{
TArray<FLinkedSector> Sectors;
} Floor, Ceiling;
} Linked;
// 3D floors
struct xfloor
{
TDeletingArray<F3DFloor *> ffloors; // 3D floors in this sector
TArray<lightlist_t> lightlist; // 3D light list
TArray<sector_t*> attached; // 3D floors attached to this sector
} XFloor;
void Serialize(FArchive &arc);
};
struct FTransform
{
// killough 3/7/98: floor and ceiling texture offsets
fixed_t xoffs, yoffs;
// [RH] floor and ceiling texture scales
fixed_t xscale, yscale;
// [RH] floor and ceiling texture rotation
angle_t angle;
// base values
fixed_t base_angle, base_yoffs;
};
struct sector_t
{
// Member functions
bool IsLinked(sector_t *other, bool ceiling) const;
fixed_t FindLowestFloorSurrounding (vertex_t **v) const;
fixed_t FindHighestFloorSurrounding (vertex_t **v) const;
fixed_t FindNextHighestFloor (vertex_t **v) const;
fixed_t FindNextLowestFloor (vertex_t **v) const;
fixed_t FindLowestCeilingSurrounding (vertex_t **v) const; // jff 2/04/98
fixed_t FindHighestCeilingSurrounding (vertex_t **v) const; // jff 2/04/98
fixed_t FindNextLowestCeiling (vertex_t **v) const; // jff 2/04/98
fixed_t FindNextHighestCeiling (vertex_t **v) const; // jff 2/04/98
fixed_t FindShortestTextureAround () const; // jff 2/04/98
fixed_t FindShortestUpperAround () const; // jff 2/04/98
sector_t *FindModelFloorSector (fixed_t floordestheight) const; // jff 2/04/98
sector_t *FindModelCeilingSector (fixed_t floordestheight) const; // jff 2/04/98
int FindMinSurroundingLight (int max) const;
sector_t *NextSpecialSector (int type, sector_t *prev) const; // [RH]
fixed_t FindLowestCeilingPoint (vertex_t **v) const;
fixed_t FindHighestFloorPoint (vertex_t **v) const;
void AdjustFloorClip () const;
void SetColor(int r, int g, int b, int desat);
void SetFade(int r, int g, int b);
void ClosestPoint(fixed_t x, fixed_t y, fixed_t &ox, fixed_t &oy) const;
DInterpolation *SetInterpolation(int position, bool attach);
void StopInterpolation(int position);
enum
{
floor,
ceiling
};
struct splane
{
FTransform xform;
int Flags;
int Light;
FTextureID Texture;
fixed_t TexZ;
};
splane planes[2];
void SetXOffset(int pos, fixed_t o)
{
planes[pos].xform.xoffs = o;
}
void AddXOffset(int pos, fixed_t o)
{
planes[pos].xform.xoffs += o;
}
fixed_t GetXOffset(int pos) const
{
return planes[pos].xform.xoffs;
}
void SetYOffset(int pos, fixed_t o)
{
planes[pos].xform.yoffs = o;
}
void AddYOffset(int pos, fixed_t o)
{
planes[pos].xform.yoffs += o;
}
fixed_t GetYOffset(int pos, bool addbase = true) const
{
if (!addbase)
{
return planes[pos].xform.yoffs;
}
else
{
return planes[pos].xform.yoffs + planes[pos].xform.base_yoffs;
}
}
void SetXScale(int pos, fixed_t o)
{
planes[pos].xform.xscale = o;
}
fixed_t GetXScale(int pos) const
{
return planes[pos].xform.xscale;
}
void SetYScale(int pos, fixed_t o)
{
planes[pos].xform.yscale = o;
}
fixed_t GetYScale(int pos) const
{
return planes[pos].xform.yscale;
}
void SetAngle(int pos, angle_t o)
{
planes[pos].xform.angle = o;
}
angle_t GetAngle(int pos, bool addbase = true) const
{
if (!addbase)
{
return planes[pos].xform.angle;
}
else
{
return planes[pos].xform.angle + planes[pos].xform.base_angle;
}
}
void SetBase(int pos, fixed_t y, angle_t o)
{
planes[pos].xform.base_yoffs = y;
planes[pos].xform.base_angle = o;
}
int GetFlags(int pos) const
{
return planes[pos].Flags;
}
void ChangeFlags(int pos, int And, int Or)
{
planes[pos].Flags &= ~And;
planes[pos].Flags |= Or;
}
int GetPlaneLight(int pos) const
{
return planes[pos].Light;
}
void SetPlaneLight(int pos, int level)
{
planes[pos].Light = level;
}
FTextureID GetTexture(int pos) const
{
return planes[pos].Texture;
}
void SetTexture(int pos, FTextureID tex, bool floorclip = true)
{
FTextureID old = planes[pos].Texture;
planes[pos].Texture = tex;
if (floorclip && pos == floor && tex != old) AdjustFloorClip();
}
fixed_t GetPlaneTexZ(int pos) const
{
return planes[pos].TexZ;
}
void SetPlaneTexZ(int pos, fixed_t val)
{
planes[pos].TexZ = val;
}
void ChangePlaneTexZ(int pos, fixed_t val)
{
planes[pos].TexZ += val;
}
sector_t *GetHeightSec() const
{
return (MoreFlags & SECF_IGNOREHEIGHTSEC)? NULL : heightsec;
}
// Member variables
fixed_t CenterFloor () const { return floorplane.ZatPoint (soundorg[0], soundorg[1]); }
fixed_t CenterCeiling () const { return ceilingplane.ZatPoint (soundorg[0], soundorg[1]); }
// [RH] store floor and ceiling planes instead of heights
secplane_t floorplane, ceilingplane;
// [RH] give floor and ceiling even more properties
FDynamicColormap *ColorMap; // [RH] Per-sector colormap
BYTE lightlevel;
TObjPtr<AActor> SoundTarget;
BYTE soundtraversed; // 0 = untraversed, 1,2 = sndlines -1
short special;
short tag;
int nexttag,firsttag; // killough 1/30/98: improves searches for tags.
int sky;
short seqType; // this sector's sound sequence
fixed_t soundorg[2]; // origin for any sounds played by the sector
int validcount; // if == validcount, already checked
AActor* thinglist; // list of mobjs in sector
// killough 8/28/98: friction is a sector property, not an mobj property.
// these fields used to be in AActor, but presented performance problems
// when processed as mobj properties. Fix is to make them sector properties.
fixed_t friction, movefactor;
// thinker_t for reversable actions
TObjPtr<DSectorEffect> floordata; // jff 2/22/98 make thinkers on
TObjPtr<DSectorEffect> ceilingdata; // floors, ceilings, lighting,
TObjPtr<DSectorEffect> lightingdata; // independent of one another
enum
{
CeilingMove,
FloorMove,
CeilingScroll,
FloorScroll
};
TObjPtr<DInterpolation> interpolations[4];
// jff 2/26/98 lockout machinery for stairbuilding
SBYTE stairlock; // -2 on first locked -1 after thinker done 0 normally
SWORD prevsec; // -1 or number of sector for previous step
SWORD nextsec; // -1 or number of next step sector
short linecount;
struct line_t **lines; // [linecount] size
// killough 3/7/98: support flat heights drawn at another sector's heights
sector_t *heightsec; // other sector, or NULL if no other sector
DWORD bottommap, midmap, topmap; // killough 4/4/98: dynamic colormaps
// [RH] these can also be blend values if
// the alpha mask is non-zero
// list of mobjs that are at least partially in the sector
// thinglist is a subset of touching_thinglist
struct msecnode_t *touching_thinglist; // phares 3/14/98
float gravity; // [RH] Sector gravity (1.0 is normal)
short damage; // [RH] Damage to do while standing on floor
short mod; // [RH] Means-of-death for applied damage
WORD ZoneNumber; // [RH] Zone this sector belongs to
WORD MoreFlags; // [RH] Internal sector flags
DWORD Flags; // Sector flags
// [RH] Action specials for sectors. Like Skull Tag, but more
// flexible in a Bloody way. SecActTarget forms a list of actors
// joined by their tracer fields. When a potential sector action
// occurs, SecActTarget's TriggerAction method is called.
TObjPtr<ASectorAction> SecActTarget;
// [RH] The sky box to render for this sector. NULL means use a
// regular sky.
TObjPtr<ASkyViewpoint> FloorSkyBox, CeilingSkyBox;
// Planes that partition this sector into different light zones.
FExtraLight *ExtraLights;
vertex_t *Triangle[3]; // Three points that can define a plane
short oldspecial; //jff 2/16/98 remembers if sector WAS secret (automap)
int sectornum; // for comparing sector copies
extsector_t * e; // This stores data that requires construction/destruction. Such data must not be copied by R_FakeFlat.
};
FArchive &operator<< (FArchive &arc, sector_t::splane &p);
struct ReverbContainer;
struct zone_t
{
ReverbContainer *Environment;
};
//
// The SideDef.
//
class DBaseDecal;
enum
{
WALLF_ABSLIGHTING = 1, // Light is absolute instead of relative
WALLF_NOAUTODECALS = 2, // Do not attach impact decals to this wall
WALLF_NOFAKECONTRAST = 4, // Don't do fake contrast for this wall in side_t::GetLightLevel
WALLF_SMOOTHLIGHTING = 8, // Similar to autocontrast but applies to all angles.
WALLF_CLIP_MIDTEX = 16, // Like the line counterpart, but only for this side.
WALLF_WRAP_MIDTEX = 32, // Like the line counterpart, but only for this side.
};
struct side_t
{
enum ETexpart
{
top=0,
mid=1,
bottom=2
};
struct part
{
fixed_t xoffset;
fixed_t yoffset;
fixed_t xscale;
fixed_t yscale;
FTextureID texture;
TObjPtr<DInterpolation> interpolation;
//int Light;
};
sector_t* sector; // Sector the SideDef is facing.
DBaseDecal* AttachedDecals; // [RH] Decals bound to the wall
part textures[3];
DWORD linenum;
DWORD LeftSide, RightSide; // [RH] Group walls into loops
WORD TexelLength;
SWORD Light;
BYTE Flags;
int Index; // needed to access custom UDMF fields which are stored in loading order.
int GetLightLevel (bool foggy, int baselight) const;
void SetLight(SWORD l)
{
Light = l;
}
FTextureID GetTexture(int which) const
{
return textures[which].texture;
}
void SetTexture(int which, FTextureID tex)
{
textures[which].texture = tex;
}
void SetTextureXOffset(int which, fixed_t offset)
{
textures[which].xoffset = offset;
}
void SetTextureXOffset(fixed_t offset)
{
textures[top].xoffset =
textures[mid].xoffset =
textures[bottom].xoffset = offset;
}
fixed_t GetTextureXOffset(int which) const
{
return textures[which].xoffset;
}
void AddTextureXOffset(int which, fixed_t delta)
{
textures[which].xoffset += delta;
}
void SetTextureYOffset(int which, fixed_t offset)
{
textures[which].yoffset = offset;
}
void SetTextureYOffset(fixed_t offset)
{
textures[top].yoffset =
textures[mid].yoffset =
textures[bottom].yoffset = offset;
}
fixed_t GetTextureYOffset(int which) const
{
return textures[which].yoffset;
}
void AddTextureYOffset(int which, fixed_t delta)
{
textures[which].yoffset += delta;
}
void SetTextureXScale(int which, fixed_t scale)
{
textures[which].xscale = scale <= 0? FRACUNIT : scale;
}
void SetTextureXScale(fixed_t scale)
{
textures[top].xscale = textures[mid].xscale = textures[bottom].xscale = scale <= 0? FRACUNIT : scale;
}
fixed_t GetTextureXScale(int which) const
{
return textures[which].xscale;
}
void MultiplyTextureXScale(int which, fixed_t delta)
{
textures[which].xscale = FixedMul(textures[which].xscale, delta);
}
void SetTextureYScale(int which, fixed_t scale)
{
textures[which].yscale = scale <= 0? FRACUNIT : scale;
}
void SetTextureYScale(fixed_t scale)
{
textures[top].yscale = textures[mid].yscale = textures[bottom].yscale = scale <= 0? FRACUNIT : scale;
}
fixed_t GetTextureYScale(int which) const
{
return textures[which].yscale;
}
void MultiplyTextureYScale(int which, fixed_t delta)
{
textures[which].yscale = FixedMul(textures[which].yscale, delta);
}
DInterpolation *SetInterpolation(int position);
void StopInterpolation(int position);
};
FArchive &operator<< (FArchive &arc, side_t::part &p);
//
// Move clipping aid for LineDefs.
//
enum slopetype_t
{
ST_HORIZONTAL,
ST_VERTICAL,
ST_POSITIVE,
ST_NEGATIVE
};
struct line_t
{
vertex_t *v1, *v2; // vertices, from v1 to v2
fixed_t dx, dy; // precalculated v2 - v1 for side checking
DWORD flags;
DWORD activation; // activation type
int special;
fixed_t Alpha; // <--- translucency (0-255/255=opaque)
int id; // <--- same as tag or set with Line_SetIdentification
int args[5]; // <--- hexen-style arguments (expanded to ZDoom's full width)
int firstid, nextid;
DWORD sidenum[2]; // sidenum[1] will be NO_SIDE if one sided
fixed_t bbox[4]; // bounding box, for the extent of the LineDef.
slopetype_t slopetype; // To aid move clipping.
sector_t *frontsector, *backsector;
int validcount; // if == validcount, already checked
};
// phares 3/14/98
//
// Sector list node showing all sectors an object appears in.
//
// There are two threads that flow through these nodes. The first thread
// starts at touching_thinglist in a sector_t and flows through the m_snext
// links to find all mobjs that are entirely or partially in the sector.
// The second thread starts at touching_sectorlist in a AActor and flows
// through the m_tnext links to find all sectors a thing touches. This is
// useful when applying friction or push effects to sectors. These effects
// can be done as thinkers that act upon all objects touching their sectors.
// As an mobj moves through the world, these nodes are created and
// destroyed, with the links changed appropriately.
//
// For the links, NULL means top or end of list.
struct msecnode_t
{
sector_t *m_sector; // a sector containing this object
AActor *m_thing; // this object
struct msecnode_t *m_tprev; // prev msecnode_t for this thing
struct msecnode_t *m_tnext; // next msecnode_t for this thing
struct msecnode_t *m_sprev; // prev msecnode_t for this sector
struct msecnode_t *m_snext; // next msecnode_t for this sector
bool visited; // killough 4/4/98, 4/7/98: used in search algorithms
};
//
// A SubSector.
// References a Sector.
// Basically, this is a list of LineSegs indicating the visible walls that
// define (all or some) sides of a convex BSP leaf.
//
struct FPolyObj;
struct subsector_t
{
sector_t *sector;
DWORD numlines;
DWORD firstline;
FPolyObj *poly;
int validcount;
fixed_t CenterX, CenterY;
};
//
// The LineSeg.
//
struct seg_t
{
vertex_t* v1;
vertex_t* v2;
side_t* sidedef;
line_t* linedef;
// Sector references. Could be retrieved from linedef, too.
sector_t* frontsector;
sector_t* backsector; // NULL for one-sided lines
subsector_t* Subsector;
seg_t* PartnerSeg;
BITFIELD bPolySeg:1;
};
// ===== Polyobj data =====
struct FPolyObj
{
int numsegs;
seg_t **segs;
int numlines;
line_t **lines;
int numvertices;
vertex_t **vertices;
fixed_t startSpot[2];
vertex_t *originalPts; // used as the base for the rotations
vertex_t *prevPts; // use to restore the old point values
angle_t angle;
int tag; // reference tag assigned in HereticEd
int bbox[4];
int validcount;
int crush; // should the polyobj attempt to crush mobjs?
bool bHurtOnTouch; // should the polyobj hurt anything it touches?
int seqType;
fixed_t size; // polyobj size (area of POLY_AREAUNIT == size of FRACUNIT)
DThinker *specialdata; // pointer to a thinker, if the poly is moving
TObjPtr<DInterpolation> interpolation;
~FPolyObj();
DInterpolation *SetInterpolation();
void StopInterpolation();
};
extern FPolyObj *polyobjs; // list of all poly-objects on the level
inline FArchive &operator<< (FArchive &arc, FPolyObj *&poly)
{
return arc.SerializePointer (polyobjs, (BYTE **)&poly, sizeof(FPolyObj));
}
inline FArchive &operator<< (FArchive &arc, const FPolyObj *&poly)
{
return arc.SerializePointer (polyobjs, (BYTE **)&poly, sizeof(FPolyObj));
}
//
// BSP node.
//
struct node_t
{
// Partition line.
fixed_t x;
fixed_t y;
fixed_t dx;
fixed_t dy;
fixed_t bbox[2][4]; // Bounding box for each child.
union
{
void *children[2]; // If bit 0 is set, it's a subsector.
int intchildren[2]; // Used by nodebuilder.
};
};
struct polyblock_t
{
FPolyObj *polyobj;
struct polyblock_t *prev;
struct polyblock_t *next;
};
// posts are runs of non masked source pixels
struct column_t
{
BYTE topdelta; // -1 is the last post in a column
BYTE length; // length data bytes follows
};
//
// OTHER TYPES
//
typedef BYTE lighttable_t; // This could be wider for >8 bit display.
// A vissprite_t is a thing
// that will be drawn during a refresh.
// I.e. a sprite object that is partly visible.
struct vissprite_t
{
short x1, x2;
fixed_t cx; // for line side calculation
fixed_t gx, gy; // for fake floor clipping
fixed_t gz, gzt; // global bottom / top for silhouette clipping
fixed_t startfrac; // horizontal position of x1
fixed_t xscale, yscale;
fixed_t xiscale; // negative if flipped
fixed_t depth;
fixed_t idepth; // 1/z
fixed_t texturemid;
DWORD FillColor;
lighttable_t *colormap;
sector_t *heightsec; // killough 3/27/98: height sector for underwater/fake ceiling
sector_t *sector; // [RH] sector this sprite is in
fixed_t alpha;
fixed_t floorclip;
FTexture *pic;
short renderflags;
DWORD Translation; // [RH] for color translation
FRenderStyle RenderStyle;
BYTE FakeFlatStat; // [RH] which side of fake/floor ceiling sprite is on
BYTE bSplitSprite; // [RH] Sprite was split by a drawseg
};
enum
{
FAKED_Center,
FAKED_BelowFloor,
FAKED_AboveCeiling
};
//
// Sprites are patches with a special naming convention so they can be
// recognized by R_InitSprites. The base name is NNNNFx or NNNNFxFx, with
// x indicating the rotation, x = 0, 1-7. The sprite and frame specified
// by a thing_t is range checked at run time.
// A sprite is a patch_t that is assumed to represent a three dimensional
// object and may have multiple rotations pre drawn. Horizontal flipping
// is used to save space, thus NNNNF2F5 defines a mirrored patch.
// Some sprites will only have one picture used for all views: NNNNF0
//
struct spriteframe_t
{
FTextureID Texture[16]; // texture to use for view angles 0-15
WORD Flip; // flip (1 = flip) to use for view angles 0-15.
};
//
// A sprite definition:
// a number of animation frames.
//
struct spritedef_t
{
char name[5];
BYTE numframes;
WORD spriteframes;
};
extern TArray<spriteframe_t> SpriteFrames;
//
// [RH] Internal "skin" definition.
//
class FPlayerSkin
{
public:
char name[17]; // 16 chars + NULL
char face[4]; // 3 chars ([MH] + NULL so can use as a C string)
BYTE gender; // This skin's gender (not really used)
BYTE range0start;
BYTE range0end;
bool othergame; // [GRB]
fixed_t ScaleX;
fixed_t ScaleY;
int sprite;
int crouchsprite;
int namespc; // namespace for this skin
};
#endif