gzdoom-gles/src/gl/data/gl_vertexbuffer.cpp
Christoph Oelckers cd7986b1b1 - refactored global sides array to be more VM friendly.
- moved FLevelLocals to its own header to resolve some circular include conflicts.
2017-01-08 18:46:17 +01:00

493 lines
No EOL
14 KiB
C++

//
//---------------------------------------------------------------------------
//
// Copyright(C) 2005-2016 Christoph Oelckers
// All rights reserved.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program. If not, see http://www.gnu.org/licenses/
//
//--------------------------------------------------------------------------
//
/*
** gl_vertexbuffer.cpp
** Vertex buffer handling.
**
**/
#include "gl/system/gl_system.h"
#include "doomtype.h"
#include "p_local.h"
#include "r_state.h"
#include "m_argv.h"
#include "c_cvars.h"
#include "g_levellocals.h"
#include "gl/system/gl_interface.h"
#include "gl/renderer/gl_renderer.h"
#include "gl/shaders/gl_shader.h"
#include "gl/data/gl_data.h"
#include "gl/data/gl_vertexbuffer.h"
//==========================================================================
//
// Create / destroy the VBO
//
//==========================================================================
FVertexBuffer::FVertexBuffer(bool wantbuffer)
{
vbo_id = 0;
if (wantbuffer) glGenBuffers(1, &vbo_id);
}
FVertexBuffer::~FVertexBuffer()
{
if (vbo_id != 0)
{
glDeleteBuffers(1, &vbo_id);
}
}
void FSimpleVertexBuffer::BindVBO()
{
glBindBuffer(GL_ARRAY_BUFFER, vbo_id);
if (!gl.legacyMode)
{
glVertexAttribPointer(VATTR_VERTEX, 3, GL_FLOAT, false, sizeof(FSimpleVertex), &VSiO->x);
glVertexAttribPointer(VATTR_TEXCOORD, 2, GL_FLOAT, false, sizeof(FSimpleVertex), &VSiO->u);
glVertexAttribPointer(VATTR_COLOR, 4, GL_UNSIGNED_BYTE, true, sizeof(FSimpleVertex), &VSiO->color);
glEnableVertexAttribArray(VATTR_VERTEX);
glEnableVertexAttribArray(VATTR_TEXCOORD);
glEnableVertexAttribArray(VATTR_COLOR);
glDisableVertexAttribArray(VATTR_VERTEX2);
glDisableVertexAttribArray(VATTR_NORMAL);
}
else
{
glVertexPointer(3, GL_FLOAT, sizeof(FSimpleVertex), &VSiO->x);
glTexCoordPointer(2, GL_FLOAT, sizeof(FSimpleVertex), &VSiO->u);
glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(FSimpleVertex), &VSiO->color);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glEnableClientState(GL_COLOR_ARRAY);
}
}
void FSimpleVertexBuffer::EnableColorArray(bool on)
{
if (on)
{
if (!gl.legacyMode)
{
glEnableVertexAttribArray(VATTR_COLOR);
}
else
{
glEnableClientState(GL_COLOR_ARRAY);
}
}
else
{
if (!gl.legacyMode)
{
glDisableVertexAttribArray(VATTR_COLOR);
}
else
{
glDisableClientState(GL_COLOR_ARRAY);
}
}
}
void FSimpleVertexBuffer::set(FSimpleVertex *verts, int count)
{
glBindBuffer(GL_ARRAY_BUFFER, vbo_id);
gl_RenderState.ResetVertexBuffer();
gl_RenderState.SetVertexBuffer(this);
glBufferData(GL_ARRAY_BUFFER, count * sizeof(*verts), verts, GL_STREAM_DRAW);
}
//==========================================================================
//
//
//
//==========================================================================
FFlatVertexBuffer::FFlatVertexBuffer(int width, int height)
: FVertexBuffer(!gl.legacyMode)
{
switch (gl.buffermethod)
{
case BM_PERSISTENT:
{
unsigned int bytesize = BUFFER_SIZE * sizeof(FFlatVertex);
glBindBuffer(GL_ARRAY_BUFFER, vbo_id);
glBufferStorage(GL_ARRAY_BUFFER, bytesize, NULL, GL_MAP_WRITE_BIT | GL_MAP_PERSISTENT_BIT | GL_MAP_COHERENT_BIT);
map = (FFlatVertex*)glMapBufferRange(GL_ARRAY_BUFFER, 0, bytesize, GL_MAP_WRITE_BIT | GL_MAP_PERSISTENT_BIT | GL_MAP_COHERENT_BIT);
DPrintf(DMSG_NOTIFY, "Using persistent buffer\n");
break;
}
case BM_DEFERRED:
{
unsigned int bytesize = BUFFER_SIZE * sizeof(FFlatVertex);
glBindBuffer(GL_ARRAY_BUFFER, vbo_id);
glBufferData(GL_ARRAY_BUFFER, bytesize, NULL, GL_STREAM_DRAW);
map = nullptr;
DPrintf(DMSG_NOTIFY, "Using deferred buffer\n");
break;
}
default:
{
map = new FFlatVertex[BUFFER_SIZE];
DPrintf(DMSG_NOTIFY, "Using client array buffer\n");
break;
}
}
mIndex = mCurIndex = 0;
mNumReserved = NUM_RESERVED;
vbo_shadowdata.Resize(mNumReserved);
// the first quad is reserved for handling coordinates through uniforms.
vbo_shadowdata[0].Set(0, 0, 0, 0, 0);
vbo_shadowdata[1].Set(1, 0, 0, 0, 0);
vbo_shadowdata[2].Set(2, 0, 0, 0, 0);
vbo_shadowdata[3].Set(3, 0, 0, 0, 0);
// and the second one for the fullscreen quad used for blend overlays.
vbo_shadowdata[4].Set(0, 0, 0, 0, 0);
vbo_shadowdata[5].Set(0, (float)height, 0, 0, 0);
vbo_shadowdata[6].Set((float)width, 0, 0, 0, 0);
vbo_shadowdata[7].Set((float)width, (float)height, 0, 0, 0);
// and this is for the postprocessing copy operation
vbo_shadowdata[8].Set(-1.0f, -1.0f, 0, 0.0f, 0.0f);
vbo_shadowdata[9].Set(-1.0f, 1.0f, 0, 0.0f, 1.f);
vbo_shadowdata[10].Set(1.0f, -1.0f, 0, 1.f, 0.0f);
vbo_shadowdata[11].Set(1.0f, 1.0f, 0, 1.f, 1.f);
// The next two are the stencil caps.
vbo_shadowdata[12].Set(-32767.0f, 32767.0f, -32767.0f, 0, 0);
vbo_shadowdata[13].Set(-32767.0f, 32767.0f, 32767.0f, 0, 0);
vbo_shadowdata[14].Set(32767.0f, 32767.0f, 32767.0f, 0, 0);
vbo_shadowdata[15].Set(32767.0f, 32767.0f, -32767.0f, 0, 0);
vbo_shadowdata[16].Set(-32767.0f, -32767.0f, -32767.0f, 0, 0);
vbo_shadowdata[17].Set(-32767.0f, -32767.0f, 32767.0f, 0, 0);
vbo_shadowdata[18].Set(32767.0f, -32767.0f, 32767.0f, 0, 0);
vbo_shadowdata[19].Set(32767.0f, -32767.0f, -32767.0f, 0, 0);
if (gl.buffermethod == BM_DEFERRED)
{
Map();
memcpy(map, &vbo_shadowdata[0], mNumReserved * sizeof(FFlatVertex));
Unmap();
}
}
FFlatVertexBuffer::~FFlatVertexBuffer()
{
if (vbo_id != 0)
{
glBindBuffer(GL_ARRAY_BUFFER, vbo_id);
glUnmapBuffer(GL_ARRAY_BUFFER);
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
if (gl.legacyMode)
{
delete[] map;
}
map = nullptr;
}
void FFlatVertexBuffer::OutputResized(int width, int height)
{
vbo_shadowdata[4].Set(0, 0, 0, 0, 0);
vbo_shadowdata[5].Set(0, (float)height, 0, 0, 0);
vbo_shadowdata[6].Set((float)width, 0, 0, 0, 0);
vbo_shadowdata[7].Set((float)width, (float)height, 0, 0, 0);
Map();
memcpy(&map[4], &vbo_shadowdata[4], 4 * sizeof(FFlatVertex));
Unmap();
}
void FFlatVertexBuffer::BindVBO()
{
glBindBuffer(GL_ARRAY_BUFFER, vbo_id);
if (!gl.legacyMode)
{
glVertexAttribPointer(VATTR_VERTEX, 3, GL_FLOAT, false, sizeof(FFlatVertex), &VTO->x);
glVertexAttribPointer(VATTR_TEXCOORD, 2, GL_FLOAT, false, sizeof(FFlatVertex), &VTO->u);
glEnableVertexAttribArray(VATTR_VERTEX);
glEnableVertexAttribArray(VATTR_TEXCOORD);
glDisableVertexAttribArray(VATTR_COLOR);
glDisableVertexAttribArray(VATTR_VERTEX2);
glDisableVertexAttribArray(VATTR_NORMAL);
}
else
{
glVertexPointer(3, GL_FLOAT, sizeof(FFlatVertex), &map->x);
glTexCoordPointer(2, GL_FLOAT, sizeof(FFlatVertex), &map->u);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);
}
}
void FFlatVertexBuffer::Map()
{
if (gl.buffermethod == BM_DEFERRED)
{
unsigned int bytesize = BUFFER_SIZE * sizeof(FFlatVertex);
glBindBuffer(GL_ARRAY_BUFFER, vbo_id);
gl_RenderState.ResetVertexBuffer();
map = (FFlatVertex*)glMapBufferRange(GL_ARRAY_BUFFER, 0, bytesize, GL_MAP_WRITE_BIT|GL_MAP_UNSYNCHRONIZED_BIT);
}
}
void FFlatVertexBuffer::Unmap()
{
if (gl.buffermethod == BM_DEFERRED)
{
unsigned int bytesize = BUFFER_SIZE * sizeof(FFlatVertex);
glBindBuffer(GL_ARRAY_BUFFER, vbo_id);
gl_RenderState.ResetVertexBuffer();
glUnmapBuffer(GL_ARRAY_BUFFER);
map = nullptr;
}
}
//==========================================================================
//
// Initialize a single vertex
//
//==========================================================================
void FFlatVertex::SetFlatVertex(vertex_t *vt, const secplane_t & plane)
{
x = vt->fX();
y = vt->fY();
z = plane.ZatPoint(vt);
u = vt->fX()/64.f;
v = -vt->fY()/64.f;
}
//==========================================================================
//
// Find a 3D floor
//
//==========================================================================
static F3DFloor *Find3DFloor(sector_t *target, sector_t *model)
{
for(unsigned i=0; i<target->e->XFloor.ffloors.Size(); i++)
{
F3DFloor *ffloor = target->e->XFloor.ffloors[i];
if (ffloor->model == model) return ffloor;
}
return NULL;
}
//==========================================================================
//
// Creates the vertices for one plane in one subsector
//
//==========================================================================
int FFlatVertexBuffer::CreateSubsectorVertices(subsector_t *sub, const secplane_t &plane, int floor)
{
int idx = vbo_shadowdata.Reserve(sub->numlines);
for(unsigned int k=0; k<sub->numlines; k++, idx++)
{
vbo_shadowdata[idx].SetFlatVertex(sub->firstline[k].v1, plane);
if (sub->sector->transdoor && floor) vbo_shadowdata[idx].z -= 1.f;
}
return idx;
}
//==========================================================================
//
// Creates the vertices for one plane in one subsector
//
//==========================================================================
int FFlatVertexBuffer::CreateSectorVertices(sector_t *sec, const secplane_t &plane, int floor)
{
int rt = vbo_shadowdata.Size();
// First calculate the vertices for the sector itself
for(int j=0; j<sec->subsectorcount; j++)
{
subsector_t *sub = sec->subsectors[j];
CreateSubsectorVertices(sub, plane, floor);
}
return rt;
}
//==========================================================================
//
//
//
//==========================================================================
int FFlatVertexBuffer::CreateVertices(int h, sector_t *sec, const secplane_t &plane, int floor)
{
// First calculate the vertices for the sector itself
sec->vboheight[h] = sec->GetPlaneTexZ(h);
sec->vboindex[h] = CreateSectorVertices(sec, plane, floor);
// Next are all sectors using this one as heightsec
TArray<sector_t *> &fakes = sec->e->FakeFloor.Sectors;
for (unsigned g=0; g<fakes.Size(); g++)
{
sector_t *fsec = fakes[g];
fsec->vboindex[2+h] = CreateSectorVertices(fsec, plane, false);
}
// and finally all attached 3D floors
TArray<sector_t *> &xf = sec->e->XFloor.attached;
for (unsigned g=0; g<xf.Size(); g++)
{
sector_t *fsec = xf[g];
F3DFloor *ffloor = Find3DFloor(fsec, sec);
if (ffloor != NULL && ffloor->flags & FF_RENDERPLANES)
{
bool dotop = (ffloor->top.model == sec) && (ffloor->top.isceiling == h);
bool dobottom = (ffloor->bottom.model == sec) && (ffloor->bottom.isceiling == h);
if (dotop || dobottom)
{
if (dotop) ffloor->top.vindex = vbo_shadowdata.Size();
if (dobottom) ffloor->bottom.vindex = vbo_shadowdata.Size();
CreateSectorVertices(fsec, plane, false);
}
}
}
sec->vbocount[h] = vbo_shadowdata.Size() - sec->vboindex[h];
return sec->vboindex[h];
}
//==========================================================================
//
//
//
//==========================================================================
void FFlatVertexBuffer::CreateFlatVBO()
{
for (int h = sector_t::floor; h <= sector_t::ceiling; h++)
{
for(auto &sec : level.sectors)
{
CreateVertices(h, &sec, sec.GetSecPlane(h), h == sector_t::floor);
}
}
// We need to do a final check for Vavoom water and FF_FIX sectors.
// No new vertices are needed here. The planes come from the actual sector
for (auto &sec : level.sectors)
{
for(auto ff : sec.e->XFloor.ffloors)
{
if (ff->top.model == &sec)
{
ff->top.vindex = sec.vboindex[ff->top.isceiling];
}
if (ff->bottom.model == &sec)
{
ff->bottom.vindex = sec.vboindex[ff->top.isceiling];
}
}
}
}
//==========================================================================
//
//
//
//==========================================================================
void FFlatVertexBuffer::UpdatePlaneVertices(sector_t *sec, int plane)
{
int startvt = sec->vboindex[plane];
int countvt = sec->vbocount[plane];
secplane_t &splane = sec->GetSecPlane(plane);
FFlatVertex *vt = &vbo_shadowdata[startvt];
FFlatVertex *mapvt = &map[startvt];
for(int i=0; i<countvt; i++, vt++, mapvt++)
{
vt->z = splane.ZatPoint(vt->x, vt->y);
if (plane == sector_t::floor && sec->transdoor) vt->z -= 1;
mapvt->z = vt->z;
}
}
//==========================================================================
//
//
//
//==========================================================================
void FFlatVertexBuffer::CreateVBO()
{
vbo_shadowdata.Resize(mNumReserved);
CreateFlatVBO();
mCurIndex = mIndex = vbo_shadowdata.Size();
Map();
memcpy(map, &vbo_shadowdata[0], vbo_shadowdata.Size() * sizeof(FFlatVertex));
Unmap();
}
//==========================================================================
//
//
//
//==========================================================================
void FFlatVertexBuffer::CheckPlanes(sector_t *sector)
{
if (sector->GetPlaneTexZ(sector_t::ceiling) != sector->vboheight[sector_t::ceiling])
{
UpdatePlaneVertices(sector, sector_t::ceiling);
sector->vboheight[sector_t::ceiling] = sector->GetPlaneTexZ(sector_t::ceiling);
}
if (sector->GetPlaneTexZ(sector_t::floor) != sector->vboheight[sector_t::floor])
{
UpdatePlaneVertices(sector, sector_t::floor);
sector->vboheight[sector_t::floor] = sector->GetPlaneTexZ(sector_t::floor);
}
}
//==========================================================================
//
// checks the validity of all planes attached to this sector
// and updates them if possible.
//
//==========================================================================
void FFlatVertexBuffer::CheckUpdate(sector_t *sector)
{
CheckPlanes(sector);
sector_t *hs = sector->GetHeightSec();
if (hs != NULL) CheckPlanes(hs);
for (unsigned i = 0; i < sector->e->XFloor.ffloors.Size(); i++)
CheckPlanes(sector->e->XFloor.ffloors[i]->model);
}