mirror of
https://github.com/ZDoom/gzdoom-gles.git
synced 2024-11-26 22:21:26 +00:00
ed12bdc0f4
down version of the library with the ZDoom source. (It actually uses less space than zlib now.) Unix users probably ought to use the system-supplied libjpeg instead. I modified Makefile.linux to hopefully do that. I'm sure Jim or someone will correct me if it doesn't actually work. SVN r293 (trunk)
172 lines
5.1 KiB
C
172 lines
5.1 KiB
C
/*
|
|
* jddctmgr.c
|
|
*
|
|
* Copyright (C) 1994-1996, Thomas G. Lane.
|
|
* This file is part of the Independent JPEG Group's software.
|
|
* For conditions of distribution and use, see the accompanying README file.
|
|
*
|
|
* This file contains the inverse-DCT management logic.
|
|
* This code selects a particular IDCT implementation to be used,
|
|
* and it performs related housekeeping chores. No code in this file
|
|
* is executed per IDCT step, only during output pass setup.
|
|
*
|
|
* Note that the IDCT routines are responsible for performing coefficient
|
|
* dequantization as well as the IDCT proper. This module sets up the
|
|
* dequantization multiplier table needed by the IDCT routine.
|
|
*/
|
|
|
|
#define JPEG_INTERNALS
|
|
#include "jinclude.h"
|
|
#include "jpeglib.h"
|
|
#include "jdct.h" /* Private declarations for DCT subsystem */
|
|
|
|
|
|
/*
|
|
* The decompressor input side (jdinput.c) saves away the appropriate
|
|
* quantization table for each component at the start of the first scan
|
|
* involving that component. (This is necessary in order to correctly
|
|
* decode files that reuse Q-table slots.)
|
|
* When we are ready to make an output pass, the saved Q-table is converted
|
|
* to a multiplier table that will actually be used by the IDCT routine.
|
|
* The multiplier table contents are IDCT-method-dependent. To support
|
|
* application changes in IDCT method between scans, we can remake the
|
|
* multiplier tables if necessary.
|
|
* In buffered-image mode, the first output pass may occur before any data
|
|
* has been seen for some components, and thus before their Q-tables have
|
|
* been saved away. To handle this case, multiplier tables are preset
|
|
* to zeroes; the result of the IDCT will be a neutral gray level.
|
|
*/
|
|
|
|
|
|
/* Private subobject for this module */
|
|
|
|
typedef struct {
|
|
struct jpeg_inverse_dct pub; /* public fields */
|
|
|
|
/* This array contains the IDCT method code that each multiplier table
|
|
* is currently set up for, or -1 if it's not yet set up.
|
|
* The actual multiplier tables are pointed to by dct_table in the
|
|
* per-component comp_info structures.
|
|
*/
|
|
int cur_method[MAX_COMPONENTS];
|
|
} my_idct_controller;
|
|
|
|
typedef my_idct_controller * my_idct_ptr;
|
|
|
|
|
|
/* Allocated multiplier tables: big enough for any supported variant */
|
|
|
|
typedef union {
|
|
ISLOW_MULT_TYPE islow_array[DCTSIZE2];
|
|
} multiplier_table;
|
|
|
|
|
|
/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
|
|
* so be sure to compile that code if either ISLOW or SCALING is requested.
|
|
*/
|
|
#ifdef DCT_ISLOW_SUPPORTED
|
|
#define PROVIDE_ISLOW_TABLES
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Prepare for an output pass.
|
|
* Here we select the proper IDCT routine for each component and build
|
|
* a matching multiplier table.
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
start_pass (j_decompress_ptr cinfo)
|
|
{
|
|
my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
|
|
int ci, i;
|
|
jpeg_component_info *compptr;
|
|
int method = 0;
|
|
inverse_DCT_method_ptr method_ptr = NULL;
|
|
JQUANT_TBL * qtbl;
|
|
|
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
ci++, compptr++) {
|
|
/* Select the proper IDCT routine for this component's scaling */
|
|
switch (compptr->DCT_scaled_size) {
|
|
case DCTSIZE:
|
|
switch (cinfo->dct_method) {
|
|
#ifdef DCT_ISLOW_SUPPORTED
|
|
case JDCT_ISLOW:
|
|
method_ptr = jpeg_idct_islow;
|
|
method = JDCT_ISLOW;
|
|
break;
|
|
#endif
|
|
default:
|
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size);
|
|
break;
|
|
}
|
|
idct->pub.inverse_DCT[ci] = method_ptr;
|
|
/* Create multiplier table from quant table.
|
|
* However, we can skip this if the component is uninteresting
|
|
* or if we already built the table. Also, if no quant table
|
|
* has yet been saved for the component, we leave the
|
|
* multiplier table all-zero; we'll be reading zeroes from the
|
|
* coefficient controller's buffer anyway.
|
|
*/
|
|
if (! compptr->component_needed || idct->cur_method[ci] == method)
|
|
continue;
|
|
qtbl = compptr->quant_table;
|
|
if (qtbl == NULL) /* happens if no data yet for component */
|
|
continue;
|
|
idct->cur_method[ci] = method;
|
|
switch (method) {
|
|
#ifdef PROVIDE_ISLOW_TABLES
|
|
case JDCT_ISLOW:
|
|
{
|
|
/* For LL&M IDCT method, multipliers are equal to raw quantization
|
|
* coefficients, but are stored as ints to ensure access efficiency.
|
|
*/
|
|
ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
for (i = 0; i < DCTSIZE2; i++) {
|
|
ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
|
|
}
|
|
}
|
|
break;
|
|
#endif
|
|
default:
|
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialize IDCT manager.
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jinit_inverse_dct (j_decompress_ptr cinfo)
|
|
{
|
|
my_idct_ptr idct;
|
|
int ci;
|
|
jpeg_component_info *compptr;
|
|
|
|
idct = (my_idct_ptr)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
SIZEOF(my_idct_controller));
|
|
cinfo->idct = (struct jpeg_inverse_dct *) idct;
|
|
idct->pub.start_pass = start_pass;
|
|
|
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
ci++, compptr++) {
|
|
/* Allocate and pre-zero a multiplier table for each component */
|
|
compptr->dct_table =
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
SIZEOF(multiplier_table));
|
|
MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
|
|
/* Mark multiplier table not yet set up for any method */
|
|
idct->cur_method[ci] = -1;
|
|
}
|
|
}
|