gzdoom-gles/src/dobjtype.cpp

3790 lines
101 KiB
C++

/*
** dobjtype.cpp
** Implements the type information class
**
**---------------------------------------------------------------------------
** Copyright 1998-2010 Randy Heit
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
// HEADER FILES ------------------------------------------------------------
#include <float.h>
#include <limits>
#include "dobject.h"
#include "i_system.h"
#include "serializer.h"
#include "actor.h"
#include "templates.h"
#include "autosegs.h"
#include "v_text.h"
#include "a_pickups.h"
#include "d_player.h"
#include "doomerrors.h"
#include "fragglescript/t_fs.h"
#include "a_keys.h"
// MACROS ------------------------------------------------------------------
// TYPES -------------------------------------------------------------------
// EXTERNAL FUNCTION PROTOTYPES --------------------------------------------
// PUBLIC FUNCTION PROTOTYPES ----------------------------------------------
// PRIVATE FUNCTION PROTOTYPES ---------------------------------------------
// EXTERNAL DATA DECLARATIONS ----------------------------------------------
EXTERN_CVAR(Bool, strictdecorate);
// PUBLIC DATA DEFINITIONS -------------------------------------------------
FMemArena ClassDataAllocator(32768); // use this for all static class data that can be released in bulk when the type system is shut down.
FTypeTable TypeTable;
TArray<PClass *> PClass::AllClasses;
TArray<VMFunction**> PClass::FunctionPtrList;
bool PClass::bShutdown;
bool PClass::bVMOperational;
PErrorType *TypeError;
PErrorType *TypeAuto;
PVoidType *TypeVoid;
PInt *TypeSInt8, *TypeUInt8;
PInt *TypeSInt16, *TypeUInt16;
PInt *TypeSInt32, *TypeUInt32;
PBool *TypeBool;
PFloat *TypeFloat32, *TypeFloat64;
PString *TypeString;
PName *TypeName;
PSound *TypeSound;
PColor *TypeColor;
PTextureID *TypeTextureID;
PSpriteID *TypeSpriteID;
PStatePointer *TypeState;
PPointer *TypeFont;
PStateLabel *TypeStateLabel;
PStruct *TypeVector2;
PStruct *TypeVector3;
PStruct *TypeColorStruct;
PStruct *TypeStringStruct;
PPointer *TypeNullPtr;
PPointer *TypeVoidPtr;
// PRIVATE DATA DEFINITIONS ------------------------------------------------
// A harmless non-nullptr FlatPointer for classes without pointers.
static const size_t TheEnd = ~(size_t)0;
// CODE --------------------------------------------------------------------
IMPLEMENT_CLASS(PErrorType, false, false)
IMPLEMENT_CLASS(PVoidType, false, false)
void DumpTypeTable()
{
int used = 0;
int min = INT_MAX;
int max = 0;
int all = 0;
int lens[10] = {0};
for (size_t i = 0; i < countof(TypeTable.TypeHash); ++i)
{
int len = 0;
Printf("%4zu:", i);
for (PType *ty = TypeTable.TypeHash[i]; ty != nullptr; ty = ty->HashNext)
{
Printf(" -> %s", ty->DescriptiveName());
len++;
all++;
}
if (len != 0)
{
used++;
if (len < min)
min = len;
if (len > max)
max = len;
}
if (len < (int)countof(lens))
{
lens[len]++;
}
Printf("\n");
}
Printf("Used buckets: %d/%lu (%.2f%%) for %d entries\n", used, countof(TypeTable.TypeHash), double(used)/countof(TypeTable.TypeHash)*100, all);
Printf("Min bucket size: %d\n", min);
Printf("Max bucket size: %d\n", max);
Printf("Avg bucket size: %.2f\n", double(all) / used);
int j,k;
for (k = countof(lens)-1; k > 0; --k)
if (lens[k])
break;
for (j = 0; j <= k; ++j)
Printf("Buckets of len %d: %d (%.2f%%)\n", j, lens[j], j!=0?double(lens[j])/used*100:-1.0);
}
/* PType ******************************************************************/
IMPLEMENT_CLASS(PType, true, false)
//==========================================================================
//
// PType Parameterized Constructor
//
//==========================================================================
PType::PType(unsigned int size, unsigned int align)
: Size(size), Align(align), HashNext(nullptr)
{
mDescriptiveName = "Type";
loadOp = OP_NOP;
storeOp = OP_NOP;
moveOp = OP_NOP;
RegType = REGT_NIL;
RegCount = 1;
}
//==========================================================================
//
// PType Destructor
//
//==========================================================================
PType::~PType()
{
}
//==========================================================================
//
// PType :: WriteValue
//
//==========================================================================
void PType::WriteValue(FSerializer &ar, const char *key,const void *addr) const
{
assert(0 && "Cannot write value for this type");
}
//==========================================================================
//
// PType :: ReadValue
//
//==========================================================================
bool PType::ReadValue(FSerializer &ar, const char *key, void *addr) const
{
assert(0 && "Cannot read value for this type");
return false;
}
//==========================================================================
//
// PType :: SetDefaultValue
//
//==========================================================================
void PType::SetDefaultValue(void *base, unsigned offset, TArray<FTypeAndOffset> *stroffs) const
{
}
//==========================================================================
//
// PType :: SetDefaultValue
//
//==========================================================================
void PType::SetPointer(void *base, unsigned offset, TArray<size_t> *stroffs) const
{
}
void PType::SetPointerArray(void *base, unsigned offset, TArray<size_t> *stroffs) const
{
}
//==========================================================================
//
// PType :: InitializeValue
//
//==========================================================================
void PType::InitializeValue(void *addr, const void *def) const
{
}
//==========================================================================
//
// PType :: DestroyValue
//
//==========================================================================
void PType::DestroyValue(void *addr) const
{
}
//==========================================================================
//
// PType :: SetValue
//
//==========================================================================
void PType::SetValue(void *addr, int val)
{
assert(0 && "Cannot set int value for this type");
}
void PType::SetValue(void *addr, double val)
{
assert(0 && "Cannot set float value for this type");
}
//==========================================================================
//
// PType :: GetValue
//
//==========================================================================
int PType::GetValueInt(void *addr) const
{
assert(0 && "Cannot get value for this type");
return 0;
}
double PType::GetValueFloat(void *addr) const
{
assert(0 && "Cannot get value for this type");
return 0;
}
//==========================================================================
//
// PType :: IsMatch
//
//==========================================================================
bool PType::IsMatch(intptr_t id1, intptr_t id2) const
{
return false;
}
//==========================================================================
//
// PType :: GetTypeIDs
//
//==========================================================================
void PType::GetTypeIDs(intptr_t &id1, intptr_t &id2) const
{
id1 = 0;
id2 = 0;
}
//==========================================================================
//
// PType :: GetTypeIDs
//
//==========================================================================
const char *PType::DescriptiveName() const
{
return mDescriptiveName.GetChars();
}
//==========================================================================
//
// PType :: StaticInit STATIC
//
//==========================================================================
void PType::StaticInit()
{
// Create types and add them type the type table.
TypeTable.AddType(TypeError = new PErrorType);
TypeTable.AddType(TypeAuto = new PErrorType(2));
TypeTable.AddType(TypeVoid = new PVoidType);
TypeTable.AddType(TypeSInt8 = new PInt(1, false));
TypeTable.AddType(TypeUInt8 = new PInt(1, true));
TypeTable.AddType(TypeSInt16 = new PInt(2, false));
TypeTable.AddType(TypeUInt16 = new PInt(2, true));
TypeTable.AddType(TypeSInt32 = new PInt(4, false));
TypeTable.AddType(TypeUInt32 = new PInt(4, true));
TypeTable.AddType(TypeBool = new PBool);
TypeTable.AddType(TypeFloat32 = new PFloat(4));
TypeTable.AddType(TypeFloat64 = new PFloat(8));
TypeTable.AddType(TypeString = new PString);
TypeTable.AddType(TypeName = new PName);
TypeTable.AddType(TypeSound = new PSound);
TypeTable.AddType(TypeColor = new PColor);
TypeTable.AddType(TypeState = new PStatePointer);
TypeTable.AddType(TypeStateLabel = new PStateLabel);
TypeTable.AddType(TypeNullPtr = new PPointer);
TypeTable.AddType(TypeSpriteID = new PSpriteID);
TypeTable.AddType(TypeTextureID = new PTextureID);
TypeVoidPtr = NewPointer(TypeVoid, false);
TypeColorStruct = NewStruct("@ColorStruct", nullptr); //This name is intentionally obfuscated so that it cannot be used explicitly. The point of this type is to gain access to the single channels of a color value.
TypeStringStruct = NewNativeStruct("Stringstruct", nullptr);
TypeFont = NewPointer(NewNativeStruct("Font", nullptr));
#ifdef __BIG_ENDIAN__
TypeColorStruct->AddField(NAME_a, TypeUInt8);
TypeColorStruct->AddField(NAME_r, TypeUInt8);
TypeColorStruct->AddField(NAME_g, TypeUInt8);
TypeColorStruct->AddField(NAME_b, TypeUInt8);
#else
TypeColorStruct->AddField(NAME_b, TypeUInt8);
TypeColorStruct->AddField(NAME_g, TypeUInt8);
TypeColorStruct->AddField(NAME_r, TypeUInt8);
TypeColorStruct->AddField(NAME_a, TypeUInt8);
#endif
TypeVector2 = new PStruct(NAME_Vector2, nullptr);
TypeVector2->AddField(NAME_X, TypeFloat64);
TypeVector2->AddField(NAME_Y, TypeFloat64);
TypeTable.AddType(TypeVector2);
TypeVector2->loadOp = OP_LV2;
TypeVector2->storeOp = OP_SV2;
TypeVector2->moveOp = OP_MOVEV2;
TypeVector2->RegType = REGT_FLOAT;
TypeVector2->RegCount = 2;
TypeVector3 = new PStruct(NAME_Vector3, nullptr);
TypeVector3->AddField(NAME_X, TypeFloat64);
TypeVector3->AddField(NAME_Y, TypeFloat64);
TypeVector3->AddField(NAME_Z, TypeFloat64);
// allow accessing xy as a vector2. This is not supposed to be serialized so it's marked transient
TypeVector3->Symbols.AddSymbol(new PField(NAME_XY, TypeVector2, VARF_Transient, 0));
TypeTable.AddType(TypeVector3);
TypeVector3->loadOp = OP_LV3;
TypeVector3->storeOp = OP_SV3;
TypeVector3->moveOp = OP_MOVEV3;
TypeVector3->RegType = REGT_FLOAT;
TypeVector3->RegCount = 3;
Namespaces.GlobalNamespace->Symbols.AddSymbol(new PSymbolType(NAME_sByte, TypeSInt8));
Namespaces.GlobalNamespace->Symbols.AddSymbol(new PSymbolType(NAME_Byte, TypeUInt8));
Namespaces.GlobalNamespace->Symbols.AddSymbol(new PSymbolType(NAME_Short, TypeSInt16));
Namespaces.GlobalNamespace->Symbols.AddSymbol(new PSymbolType(NAME_uShort, TypeUInt16));
Namespaces.GlobalNamespace->Symbols.AddSymbol(new PSymbolType(NAME_Int, TypeSInt32));
Namespaces.GlobalNamespace->Symbols.AddSymbol(new PSymbolType(NAME_uInt, TypeUInt32));
Namespaces.GlobalNamespace->Symbols.AddSymbol(new PSymbolType(NAME_Bool, TypeBool));
Namespaces.GlobalNamespace->Symbols.AddSymbol(new PSymbolType(NAME_Float, TypeFloat64));
Namespaces.GlobalNamespace->Symbols.AddSymbol(new PSymbolType(NAME_Double, TypeFloat64));
Namespaces.GlobalNamespace->Symbols.AddSymbol(new PSymbolType(NAME_Float32, TypeFloat32));
Namespaces.GlobalNamespace->Symbols.AddSymbol(new PSymbolType(NAME_Float64, TypeFloat64));
Namespaces.GlobalNamespace->Symbols.AddSymbol(new PSymbolType(NAME_String, TypeString));
Namespaces.GlobalNamespace->Symbols.AddSymbol(new PSymbolType(NAME_Name, TypeName));
Namespaces.GlobalNamespace->Symbols.AddSymbol(new PSymbolType(NAME_Sound, TypeSound));
Namespaces.GlobalNamespace->Symbols.AddSymbol(new PSymbolType(NAME_Color, TypeColor));
Namespaces.GlobalNamespace->Symbols.AddSymbol(new PSymbolType(NAME_State, TypeState));
Namespaces.GlobalNamespace->Symbols.AddSymbol(new PSymbolType(NAME_Vector2, TypeVector2));
Namespaces.GlobalNamespace->Symbols.AddSymbol(new PSymbolType(NAME_Vector3, TypeVector3));
}
/* PBasicType *************************************************************/
IMPLEMENT_CLASS(PBasicType, true, false)
//==========================================================================
//
// PBasicType Default Constructor
//
//==========================================================================
PBasicType::PBasicType()
{
}
//==========================================================================
//
// PBasicType Parameterized Constructor
//
//==========================================================================
PBasicType::PBasicType(unsigned int size, unsigned int align)
: PType(size, align)
{
mDescriptiveName = "BasicType";
}
/* PCompoundType **********************************************************/
IMPLEMENT_CLASS(PCompoundType, true, false)
/* PNamedType *************************************************************/
IMPLEMENT_CLASS(PNamedType, true, false)
//==========================================================================
//
// PNamedType :: IsMatch
//
//==========================================================================
bool PNamedType::IsMatch(intptr_t id1, intptr_t id2) const
{
const DObject *outer = (const DObject *)id1;
FName name = (ENamedName)(intptr_t)id2;
return Outer == outer && TypeName == name;
}
//==========================================================================
//
// PNamedType :: GetTypeIDs
//
//==========================================================================
void PNamedType::GetTypeIDs(intptr_t &id1, intptr_t &id2) const
{
id1 = (intptr_t)Outer;
id2 = TypeName;
}
/* PInt *******************************************************************/
IMPLEMENT_CLASS(PInt, false, false)
//==========================================================================
//
// PInt Default Constructor
//
//==========================================================================
PInt::PInt()
: PBasicType(4, 4), Unsigned(false), IntCompatible(true)
{
mDescriptiveName = "SInt32";
Symbols.AddSymbol(new PSymbolConstNumeric(NAME_Min, this, -0x7FFFFFFF - 1));
Symbols.AddSymbol(new PSymbolConstNumeric(NAME_Max, this, 0x7FFFFFFF));
SetOps();
}
//==========================================================================
//
// PInt Parameterized Constructor
//
//==========================================================================
PInt::PInt(unsigned int size, bool unsign, bool compatible)
: PBasicType(size, size), Unsigned(unsign), IntCompatible(compatible)
{
mDescriptiveName.Format("%cInt%d", unsign? 'U':'S', size);
MemberOnly = (size < 4);
if (!unsign)
{
int maxval = (1u << ((8 * size) - 1)) - 1; // compute as unsigned to prevent overflow before -1
int minval = -maxval - 1;
Symbols.AddSymbol(new PSymbolConstNumeric(NAME_Min, this, minval));
Symbols.AddSymbol(new PSymbolConstNumeric(NAME_Max, this, maxval));
}
else
{
Symbols.AddSymbol(new PSymbolConstNumeric(NAME_Min, this, 0u));
Symbols.AddSymbol(new PSymbolConstNumeric(NAME_Max, this, (1u << ((8 * size) - 1))));
}
SetOps();
}
void PInt::SetOps()
{
moveOp = OP_MOVE;
RegType = REGT_INT;
if (Size == 4)
{
storeOp = OP_SW;
loadOp = OP_LW;
}
else if (Size == 1)
{
storeOp = OP_SB;
loadOp = Unsigned ? OP_LBU : OP_LB;
}
else if (Size == 2)
{
storeOp = OP_SH;
loadOp = Unsigned ? OP_LHU : OP_LH;
}
else
{
assert(0 && "Unhandled integer size");
storeOp = OP_NOP;
}
}
//==========================================================================
//
// PInt :: WriteValue
//
//==========================================================================
void PInt::WriteValue(FSerializer &ar, const char *key,const void *addr) const
{
if (Size == 8 && Unsigned)
{
// this is a special case that cannot be represented by an int64_t.
uint64_t val = *(uint64_t*)addr;
ar(key, val);
}
else
{
int64_t val;
switch (Size)
{
case 1:
val = Unsigned ? *(uint8_t*)addr : *(int8_t*)addr;
break;
case 2:
val = Unsigned ? *(uint16_t*)addr : *(int16_t*)addr;
break;
case 4:
val = Unsigned ? *(uint32_t*)addr : *(int32_t*)addr;
break;
case 8:
val = *(int64_t*)addr;
break;
default:
return; // something invalid
}
ar(key, val);
}
}
//==========================================================================
//
// PInt :: ReadValue
//
//==========================================================================
bool PInt::ReadValue(FSerializer &ar, const char *key, void *addr) const
{
NumericValue val;
ar(key, val);
if (val.type == NumericValue::NM_invalid) return false; // not found or usable
if (val.type == NumericValue::NM_float) val.signedval = (int64_t)val.floatval;
// No need to check the unsigned state here. Downcasting to smaller types will yield the same result for both.
switch (Size)
{
case 1:
*(uint8_t*)addr = (uint8_t)val.signedval;
break;
case 2:
*(uint16_t*)addr = (uint16_t)val.signedval;
break;
case 4:
*(uint32_t*)addr = (uint32_t)val.signedval;
break;
case 8:
*(uint64_t*)addr = (uint64_t)val.signedval;
break;
default:
return false; // something invalid
}
return true;
}
//==========================================================================
//
// PInt :: SetValue
//
//==========================================================================
void PInt::SetValue(void *addr, int val)
{
assert(((intptr_t)addr & (Align - 1)) == 0 && "unaligned address");
if (Size == 4)
{
*(int *)addr = val;
}
else if (Size == 1)
{
*(uint8_t *)addr = val;
}
else if (Size == 2)
{
*(uint16_t *)addr = val;
}
else if (Size == 8)
{
*(uint64_t *)addr = val;
}
else
{
assert(0 && "Unhandled integer size");
}
}
void PInt::SetValue(void *addr, double val)
{
SetValue(addr, (int)val);
}
//==========================================================================
//
// PInt :: GetValueInt
//
//==========================================================================
int PInt::GetValueInt(void *addr) const
{
assert(((intptr_t)addr & (Align - 1)) == 0 && "unaligned address");
if (Size == 4)
{
return *(int *)addr;
}
else if (Size == 1)
{
return Unsigned ? *(uint8_t *)addr : *(int8_t *)addr;
}
else if (Size == 2)
{
return Unsigned ? *(uint16_t *)addr : *(int16_t *)addr;
}
else if (Size == 8)
{ // truncated output
return (int)*(uint64_t *)addr;
}
else
{
assert(0 && "Unhandled integer size");
return 0;
}
}
//==========================================================================
//
// PInt :: GetValueFloat
//
//==========================================================================
double PInt::GetValueFloat(void *addr) const
{
return GetValueInt(addr);
}
//==========================================================================
//
// PInt :: GetStoreOp
//
//==========================================================================
/* PBool ******************************************************************/
IMPLEMENT_CLASS(PBool, false, false)
//==========================================================================
//
// PBool Default Constructor
//
//==========================================================================
PBool::PBool()
: PInt(sizeof(bool), true)
{
mDescriptiveName = "Bool";
MemberOnly = false;
}
/* PFloat *****************************************************************/
IMPLEMENT_CLASS(PFloat, false, false)
//==========================================================================
//
// PFloat Default Constructor
//
//==========================================================================
PFloat::PFloat()
: PBasicType(8, 8)
{
mDescriptiveName = "Float";
SetDoubleSymbols();
SetOps();
}
//==========================================================================
//
// PFloat Parameterized Constructor
//
//==========================================================================
PFloat::PFloat(unsigned int size)
: PBasicType(size, size)
{
mDescriptiveName.Format("Float%d", size);
if (size == 8)
{
SetDoubleSymbols();
}
else
{
assert(size == 4);
MemberOnly = true;
SetSingleSymbols();
}
SetOps();
}
//==========================================================================
//
// PFloat :: SetDoubleSymbols
//
// Setup constant values for 64-bit floats.
//
//==========================================================================
void PFloat::SetDoubleSymbols()
{
static const SymbolInitF symf[] =
{
{ NAME_Min_Normal, DBL_MIN },
{ NAME_Max, DBL_MAX },
{ NAME_Epsilon, DBL_EPSILON },
{ NAME_NaN, std::numeric_limits<double>::quiet_NaN() },
{ NAME_Infinity, std::numeric_limits<double>::infinity() },
{ NAME_Min_Denormal, std::numeric_limits<double>::denorm_min() }
};
static const SymbolInitI symi[] =
{
{ NAME_Dig, DBL_DIG },
{ NAME_Min_Exp, DBL_MIN_EXP },
{ NAME_Max_Exp, DBL_MAX_EXP },
{ NAME_Mant_Dig, DBL_MANT_DIG },
{ NAME_Min_10_Exp, DBL_MIN_10_EXP },
{ NAME_Max_10_Exp, DBL_MAX_10_EXP }
};
SetSymbols(symf, countof(symf));
SetSymbols(symi, countof(symi));
}
//==========================================================================
//
// PFloat :: SetSingleSymbols
//
// Setup constant values for 32-bit floats.
//
//==========================================================================
void PFloat::SetSingleSymbols()
{
static const SymbolInitF symf[] =
{
{ NAME_Min_Normal, FLT_MIN },
{ NAME_Max, FLT_MAX },
{ NAME_Epsilon, FLT_EPSILON },
{ NAME_NaN, std::numeric_limits<float>::quiet_NaN() },
{ NAME_Infinity, std::numeric_limits<float>::infinity() },
{ NAME_Min_Denormal, std::numeric_limits<float>::denorm_min() }
};
static const SymbolInitI symi[] =
{
{ NAME_Dig, FLT_DIG },
{ NAME_Min_Exp, FLT_MIN_EXP },
{ NAME_Max_Exp, FLT_MAX_EXP },
{ NAME_Mant_Dig, FLT_MANT_DIG },
{ NAME_Min_10_Exp, FLT_MIN_10_EXP },
{ NAME_Max_10_Exp, FLT_MAX_10_EXP }
};
SetSymbols(symf, countof(symf));
SetSymbols(symi, countof(symi));
}
//==========================================================================
//
// PFloat :: SetSymbols
//
//==========================================================================
void PFloat::SetSymbols(const PFloat::SymbolInitF *sym, size_t count)
{
for (size_t i = 0; i < count; ++i)
{
Symbols.AddSymbol(new PSymbolConstNumeric(sym[i].Name, this, sym[i].Value));
}
}
void PFloat::SetSymbols(const PFloat::SymbolInitI *sym, size_t count)
{
for (size_t i = 0; i < count; ++i)
{
Symbols.AddSymbol(new PSymbolConstNumeric(sym[i].Name, this, sym[i].Value));
}
}
//==========================================================================
//
// PFloat :: WriteValue
//
//==========================================================================
void PFloat::WriteValue(FSerializer &ar, const char *key,const void *addr) const
{
if (Size == 8)
{
ar(key, *(double*)addr);
}
else
{
ar(key, *(float*)addr);
}
}
//==========================================================================
//
// PFloat :: ReadValue
//
//==========================================================================
bool PFloat::ReadValue(FSerializer &ar, const char *key, void *addr) const
{
NumericValue val;
ar(key, val);
if (val.type == NumericValue::NM_invalid) return false; // not found or usable
else if (val.type == NumericValue::NM_signed) val.floatval = (double)val.signedval;
else if (val.type == NumericValue::NM_unsigned) val.floatval = (double)val.unsignedval;
if (Size == 8)
{
*(double*)addr = val.floatval;
}
else
{
*(float*)addr = (float)val.floatval;
}
return true;
}
//==========================================================================
//
// PFloat :: SetValue
//
//==========================================================================
void PFloat::SetValue(void *addr, int val)
{
return SetValue(addr, (double)val);
}
void PFloat::SetValue(void *addr, double val)
{
assert(((intptr_t)addr & (Align - 1)) == 0 && "unaligned address");
if (Size == 4)
{
*(float *)addr = (float)val;
}
else
{
assert(Size == 8);
*(double *)addr = val;
}
}
//==========================================================================
//
// PFloat :: GetValueInt
//
//==========================================================================
int PFloat::GetValueInt(void *addr) const
{
return xs_ToInt(GetValueFloat(addr));
}
//==========================================================================
//
// PFloat :: GetValueFloat
//
//==========================================================================
double PFloat::GetValueFloat(void *addr) const
{
assert(((intptr_t)addr & (Align - 1)) == 0 && "unaligned address");
if (Size == 4)
{
return *(float *)addr;
}
else
{
assert(Size == 8);
return *(double *)addr;
}
}
//==========================================================================
//
// PFloat :: GetStoreOp
//
//==========================================================================
void PFloat::SetOps()
{
if (Size == 4)
{
storeOp = OP_SSP;
loadOp = OP_LSP;
}
else
{
assert(Size == 8);
storeOp = OP_SDP;
loadOp = OP_LDP;
}
moveOp = OP_MOVEF;
RegType = REGT_FLOAT;
}
/* PString ****************************************************************/
IMPLEMENT_CLASS(PString, false, false)
//==========================================================================
//
// PString Default Constructor
//
//==========================================================================
PString::PString()
: PBasicType(sizeof(FString), alignof(FString))
{
mDescriptiveName = "String";
storeOp = OP_SS;
loadOp = OP_LS;
moveOp = OP_MOVES;
RegType = REGT_STRING;
}
//==========================================================================
//
// PString :: WriteValue
//
//==========================================================================
void PString::WriteValue(FSerializer &ar, const char *key,const void *addr) const
{
ar(key, *(FString*)addr);
}
//==========================================================================
//
// PString :: ReadValue
//
//==========================================================================
bool PString::ReadValue(FSerializer &ar, const char *key, void *addr) const
{
const char *cptr;
ar.StringPtr(key, cptr);
if (cptr == nullptr)
{
return false;
}
else
{
*(FString*)addr = cptr;
return true;
}
}
//==========================================================================
//
// PString :: SetDefaultValue
//
//==========================================================================
void PString::SetDefaultValue(void *base, unsigned offset, TArray<FTypeAndOffset> *special) const
{
if (base != nullptr) new((uint8_t *)base + offset) FString;
if (special != nullptr)
{
special->Push(std::make_pair(this, offset));
}
}
//==========================================================================
//
// PString :: InitializeValue
//
//==========================================================================
void PString::InitializeValue(void *addr, const void *def) const
{
if (def != nullptr)
{
new(addr) FString(*(FString *)def);
}
else
{
new(addr) FString;
}
}
//==========================================================================
//
// PString :: DestroyValue
//
//==========================================================================
void PString::DestroyValue(void *addr) const
{
((FString *)addr)->~FString();
}
/* PName ******************************************************************/
IMPLEMENT_CLASS(PName, false, false)
//==========================================================================
//
// PName Default Constructor
//
//==========================================================================
PName::PName()
: PInt(sizeof(FName), true, false)
{
mDescriptiveName = "Name";
assert(sizeof(FName) == alignof(FName));
}
//==========================================================================
//
// PName :: WriteValue
//
//==========================================================================
void PName::WriteValue(FSerializer &ar, const char *key,const void *addr) const
{
const char *cptr = ((const FName*)addr)->GetChars();
ar.StringPtr(key, cptr);
}
//==========================================================================
//
// PName :: ReadValue
//
//==========================================================================
bool PName::ReadValue(FSerializer &ar, const char *key, void *addr) const
{
const char *cptr;
ar.StringPtr(key, cptr);
if (cptr == nullptr)
{
return false;
}
else
{
*(FName*)addr = FName(cptr);
return true;
}
}
/* PSpriteID ******************************************************************/
IMPLEMENT_CLASS(PSpriteID, false, false)
//==========================================================================
//
// PName Default Constructor
//
//==========================================================================
PSpriteID::PSpriteID()
: PInt(sizeof(int), true, true)
{
mDescriptiveName = "SpriteID";
}
//==========================================================================
//
// PName :: WriteValue
//
//==========================================================================
void PSpriteID::WriteValue(FSerializer &ar, const char *key, const void *addr) const
{
int32_t val = *(int*)addr;
ar.Sprite(key, val, nullptr);
}
//==========================================================================
//
// PName :: ReadValue
//
//==========================================================================
bool PSpriteID::ReadValue(FSerializer &ar, const char *key, void *addr) const
{
int32_t val;
ar.Sprite(key, val, nullptr);
*(int*)addr = val;
return true;
}
/* PTextureID ******************************************************************/
IMPLEMENT_CLASS(PTextureID, false, false)
//==========================================================================
//
// PTextureID Default Constructor
//
//==========================================================================
PTextureID::PTextureID()
: PInt(sizeof(FTextureID), true, false)
{
mDescriptiveName = "TextureID";
assert(sizeof(FTextureID) == alignof(FTextureID));
}
//==========================================================================
//
// PTextureID :: WriteValue
//
//==========================================================================
void PTextureID::WriteValue(FSerializer &ar, const char *key, const void *addr) const
{
FTextureID val = *(FTextureID*)addr;
ar(key, val);
}
//==========================================================================
//
// PTextureID :: ReadValue
//
//==========================================================================
bool PTextureID::ReadValue(FSerializer &ar, const char *key, void *addr) const
{
FTextureID val;
ar(key, val);
*(FTextureID*)addr = val;
return true;
}
/* PSound *****************************************************************/
IMPLEMENT_CLASS(PSound, false, false)
//==========================================================================
//
// PSound Default Constructor
//
//==========================================================================
PSound::PSound()
: PInt(sizeof(FSoundID), true)
{
mDescriptiveName = "Sound";
assert(sizeof(FSoundID) == alignof(FSoundID));
}
//==========================================================================
//
// PSound :: WriteValue
//
//==========================================================================
void PSound::WriteValue(FSerializer &ar, const char *key,const void *addr) const
{
const char *cptr = *(const FSoundID *)addr;
ar.StringPtr(key, cptr);
}
//==========================================================================
//
// PSound :: ReadValue
//
//==========================================================================
bool PSound::ReadValue(FSerializer &ar, const char *key, void *addr) const
{
const char *cptr;
ar.StringPtr(key, cptr);
if (cptr == nullptr)
{
return false;
}
else
{
*(FSoundID *)addr = FSoundID(cptr);
return true;
}
}
/* PColor *****************************************************************/
IMPLEMENT_CLASS(PColor, false, false)
//==========================================================================
//
// PColor Default Constructor
//
//==========================================================================
PColor::PColor()
: PInt(sizeof(PalEntry), true)
{
mDescriptiveName = "Color";
assert(sizeof(PalEntry) == alignof(PalEntry));
}
/* PStateLabel *****************************************************************/
IMPLEMENT_CLASS(PStateLabel, false, false)
//==========================================================================
//
// PStateLabel Default Constructor
//
//==========================================================================
PStateLabel::PStateLabel()
: PInt(sizeof(int), false, false)
{
mDescriptiveName = "StateLabel";
}
/* PPointer ***************************************************************/
IMPLEMENT_CLASS(PPointer, false, false)
//==========================================================================
//
// PPointer - Default Constructor
//
//==========================================================================
PPointer::PPointer()
: PBasicType(sizeof(void *), alignof(void *)), PointedType(nullptr), IsConst(false)
{
mDescriptiveName = "NullPointer";
SetOps();
}
//==========================================================================
//
// PPointer - Parameterized Constructor
//
//==========================================================================
PPointer::PPointer(PType *pointsat, bool isconst)
: PBasicType(sizeof(void *), alignof(void *)), PointedType(pointsat), IsConst(isconst)
{
mDescriptiveName.Format("Pointer<%s%s>", pointsat->DescriptiveName(), isconst? "readonly " : "");
mVersion = pointsat->mVersion;
SetOps();
}
//==========================================================================
//
// PPointer :: GetStoreOp
//
//==========================================================================
void PPointer::SetOps()
{
loadOp = (PointedType && PointedType->IsKindOf(RUNTIME_CLASS(PClass))) ? OP_LO : OP_LP;
// Non-destroyed thinkers are always guaranteed to be linked into the thinker chain so we don't need the write barrier for them.
storeOp = (loadOp == OP_LO && !static_cast<PClass*>(PointedType)->IsDescendantOf(RUNTIME_CLASS(DThinker))) ? OP_SO : OP_SP;
moveOp = OP_MOVEA;
RegType = REGT_POINTER;
}
//==========================================================================
//
// PPointer :: IsMatch
//
//==========================================================================
bool PPointer::IsMatch(intptr_t id1, intptr_t id2) const
{
assert(id2 == 0 || id2 == 1);
PType *pointat = (PType *)id1;
return pointat == PointedType && (!!id2) == IsConst;
}
//==========================================================================
//
// PPointer :: GetTypeIDs
//
//==========================================================================
void PPointer::GetTypeIDs(intptr_t &id1, intptr_t &id2) const
{
id1 = (intptr_t)PointedType;
id2 = 0;
}
//==========================================================================
//
// PPointer :: SetPointer
//
//==========================================================================
void PPointer::SetPointer(void *base, unsigned offset, TArray<size_t> *special) const
{
if (PointedType != nullptr && PointedType->IsKindOf(RUNTIME_CLASS(PClass)))
{
// Add to the list of pointers for this class.
special->Push(offset);
}
}
//==========================================================================
//
// PPointer :: WriteValue
//
//==========================================================================
void PPointer::WriteValue(FSerializer &ar, const char *key,const void *addr) const
{
if (PointedType->IsKindOf(RUNTIME_CLASS(PClass)))
{
auto pt = static_cast<PClass*>(PointedType);
if (pt->IsDescendantOf(RUNTIME_CLASS(PClass)))
{
ar(key, *(PClass **)addr);
}
else
{
ar(key, *(DObject **)addr);
}
}
else if (writer != nullptr)
{
writer(ar, key, addr);
}
else
{
I_Error("Attempt to save pointer to unhandled type %s", PointedType->DescriptiveName());
}
}
//==========================================================================
//
// PPointer :: ReadValue
//
//==========================================================================
bool PPointer::ReadValue(FSerializer &ar, const char *key, void *addr) const
{
if (PointedType->IsKindOf(RUNTIME_CLASS(PClass)))
{
auto pt = static_cast<PClass*>(PointedType);
bool res = true;
if (pt->IsDescendantOf(RUNTIME_CLASS(PClass)))
{
::Serialize(ar, key, *(PClass **)addr, (PClass**)nullptr);
}
else
{
::Serialize(ar, key, *(DObject **)addr, nullptr, &res);
}
return res;
}
else if (reader != nullptr)
{
return reader(ar, key, addr);
}
return false;
}
//==========================================================================
//
// NewPointer
//
// Returns a PPointer to an object of the specified type
//
//==========================================================================
PPointer *NewPointer(PType *type, bool isconst)
{
size_t bucket;
PType *ptype = TypeTable.FindType(RUNTIME_CLASS(PPointer), (intptr_t)type, isconst ? 1 : 0, &bucket);
if (ptype == nullptr)
{
ptype = new PPointer(type, isconst);
TypeTable.AddType(ptype, RUNTIME_CLASS(PPointer), (intptr_t)type, isconst ? 1 : 0, bucket);
}
return static_cast<PPointer *>(ptype);
}
/* PStatePointer **********************************************************/
IMPLEMENT_CLASS(PStatePointer, false, false)
//==========================================================================
//
// PStatePointer Default Constructor
//
//==========================================================================
PStatePointer::PStatePointer()
{
mDescriptiveName = "Pointer<State>";
PointedType = NewNativeStruct(NAME_State, nullptr);
IsConst = true;
}
//==========================================================================
//
// PStatePointer :: WriteValue
//
//==========================================================================
void PStatePointer::WriteValue(FSerializer &ar, const char *key, const void *addr) const
{
ar(key, *(FState **)addr);
}
//==========================================================================
//
// PStatePointer :: ReadValue
//
//==========================================================================
bool PStatePointer::ReadValue(FSerializer &ar, const char *key, void *addr) const
{
bool res = false;
::Serialize(ar, key, *(FState **)addr, nullptr, &res);
return res;
}
/* PClassPointer **********************************************************/
IMPLEMENT_CLASS(PClassPointer,false, false)
//==========================================================================
//
// PClassPointer - Parameterized Constructor
//
//==========================================================================
PClassPointer::PClassPointer(PClass *restrict)
: PPointer(RUNTIME_CLASS(PClass)), ClassRestriction(restrict)
{
if (restrict) mDescriptiveName.Format("ClassPointer<%s>", restrict->TypeName.GetChars());
else mDescriptiveName = "ClassPointer";
// class pointers do not need write barriers because all classes are stored in the global type table and won't get collected.
// This means we can use the cheapoer non-barriered opcodes here.
loadOp = OP_LOS;
storeOp = OP_SP;
mVersion = restrict->mVersion;
}
//==========================================================================
//
// PClassPointer - isCompatible
//
//==========================================================================
bool PClassPointer::isCompatible(PType *type)
{
auto other = dyn_cast<PClassPointer>(type);
return (other != nullptr && other->ClassRestriction->IsDescendantOf(ClassRestriction));
}
//==========================================================================
//
// PClassPointer :: SetPointer
//
//==========================================================================
void PClassPointer::SetPointer(void *base, unsigned offset, TArray<size_t> *special) const
{
// Class pointers do not get added to FlatPointers because they are released from the GC.
}
//==========================================================================
//
// PClassPointer :: IsMatch
//
//==========================================================================
bool PClassPointer::IsMatch(intptr_t id1, intptr_t id2) const
{
const PType *pointat = (const PType *)id1;
const PClass *classat = (const PClass *)id2;
assert(pointat->IsKindOf(RUNTIME_CLASS(PClass)));
return classat == ClassRestriction;
}
//==========================================================================
//
// PClassPointer :: GetTypeIDs
//
//==========================================================================
void PClassPointer::GetTypeIDs(intptr_t &id1, intptr_t &id2) const
{
assert(PointedType == RUNTIME_CLASS(PClass));
id1 = (intptr_t)PointedType;
id2 = (intptr_t)ClassRestriction;
}
//==========================================================================
//
// NewClassPointer
//
// Returns a PClassPointer for the restricted type.
//
//==========================================================================
PClassPointer *NewClassPointer(PClass *restrict)
{
size_t bucket;
PType *ptype = TypeTable.FindType(RUNTIME_CLASS(PClassPointer), (intptr_t)RUNTIME_CLASS(PClass), (intptr_t)restrict, &bucket);
if (ptype == nullptr)
{
ptype = new PClassPointer(restrict);
TypeTable.AddType(ptype, RUNTIME_CLASS(PClassPointer), (intptr_t)RUNTIME_CLASS(PClass), (intptr_t)restrict, bucket);
}
return static_cast<PClassPointer *>(ptype);
}
/* PEnum ******************************************************************/
IMPLEMENT_CLASS(PEnum, false, false)
//==========================================================================
//
// PEnum - Default Constructor
//
//==========================================================================
PEnum::PEnum()
: PInt(4, false)
{
mDescriptiveName = "Enum";
}
//==========================================================================
//
// PEnum - Parameterized Constructor
//
//==========================================================================
PEnum::PEnum(FName name, PTypeBase *outer)
: PInt(4, false)
{
EnumName = name;
Outer = outer;
mDescriptiveName.Format("Enum<%s>", name.GetChars());
}
//==========================================================================
//
// NewEnum
//
// Returns a PEnum for the given name and container, making sure not to
// create duplicates.
//
//==========================================================================
PEnum *NewEnum(FName name, PTypeBase *outer)
{
size_t bucket;
if (outer == nullptr) outer = Namespaces.GlobalNamespace;
PType *etype = TypeTable.FindType(RUNTIME_CLASS(PEnum), (intptr_t)outer, (intptr_t)name, &bucket);
if (etype == nullptr)
{
etype = new PEnum(name, outer);
TypeTable.AddType(etype, RUNTIME_CLASS(PEnum), (intptr_t)outer, (intptr_t)name, bucket);
}
return static_cast<PEnum *>(etype);
}
/* PArray *****************************************************************/
IMPLEMENT_CLASS(PArray, false, false)
//==========================================================================
//
// PArray - Default Constructor
//
//==========================================================================
PArray::PArray()
: ElementType(nullptr), ElementCount(0)
{
mDescriptiveName = "Array";
}
//==========================================================================
//
// PArray - Parameterized Constructor
//
//==========================================================================
PArray::PArray(PType *etype, unsigned int ecount)
: ElementType(etype), ElementCount(ecount)
{
mDescriptiveName.Format("Array<%s>[%d]", etype->DescriptiveName(), ecount);
Align = etype->Align;
// Since we are concatenating elements together, the element size should
// also be padded to the nearest alignment.
ElementSize = (etype->Size + (etype->Align - 1)) & ~(etype->Align - 1);
Size = ElementSize * ecount;
}
//==========================================================================
//
// PArray :: IsMatch
//
//==========================================================================
bool PArray::IsMatch(intptr_t id1, intptr_t id2) const
{
const PType *elemtype = (const PType *)id1;
unsigned int count = (unsigned int)(intptr_t)id2;
return elemtype == ElementType && count == ElementCount;
}
//==========================================================================
//
// PArray :: GetTypeIDs
//
//==========================================================================
void PArray::GetTypeIDs(intptr_t &id1, intptr_t &id2) const
{
id1 = (intptr_t)ElementType;
id2 = ElementCount;
}
//==========================================================================
//
// PArray :: WriteValue
//
//==========================================================================
void PArray::WriteValue(FSerializer &ar, const char *key,const void *addr) const
{
if (ar.BeginArray(key))
{
const uint8_t *addrb = (const uint8_t *)addr;
for (unsigned i = 0; i < ElementCount; ++i)
{
ElementType->WriteValue(ar, nullptr, addrb);
addrb += ElementSize;
}
ar.EndArray();
}
}
//==========================================================================
//
// PArray :: ReadValue
//
//==========================================================================
bool PArray::ReadValue(FSerializer &ar, const char *key, void *addr) const
{
if (ar.BeginArray(key))
{
bool readsomething = false;
unsigned count = ar.ArraySize();
unsigned loop = MIN(count, ElementCount);
uint8_t *addrb = (uint8_t *)addr;
for(unsigned i=0;i<loop;i++)
{
readsomething |= ElementType->ReadValue(ar, nullptr, addrb);
addrb += ElementSize;
}
if (loop < count)
{
DPrintf(DMSG_WARNING, "Array on disk (%u) is bigger than in memory (%u)\n",
count, ElementCount);
}
ar.EndArray();
return readsomething;
}
return false;
}
//==========================================================================
//
// PArray :: SetDefaultValue
//
//==========================================================================
void PArray::SetDefaultValue(void *base, unsigned offset, TArray<FTypeAndOffset> *special) const
{
for (unsigned i = 0; i < ElementCount; ++i)
{
ElementType->SetDefaultValue(base, offset + i*ElementSize, special);
}
}
//==========================================================================
//
// PArray :: SetDefaultValue
//
//==========================================================================
void PArray::SetPointer(void *base, unsigned offset, TArray<size_t> *special) const
{
for (unsigned i = 0; i < ElementCount; ++i)
{
ElementType->SetPointer(base, offset + i*ElementSize, special);
}
}
//==========================================================================
//
// NewArray
//
// Returns a PArray for the given type and size, making sure not to create
// duplicates.
//
//==========================================================================
PArray *NewArray(PType *type, unsigned int count)
{
size_t bucket;
PType *atype = TypeTable.FindType(RUNTIME_CLASS(PArray), (intptr_t)type, count, &bucket);
if (atype == nullptr)
{
atype = new PArray(type, count);
TypeTable.AddType(atype, RUNTIME_CLASS(PArray), (intptr_t)type, count, bucket);
}
return (PArray *)atype;
}
/* PArray *****************************************************************/
IMPLEMENT_CLASS(PStaticArray, false, false)
//==========================================================================
//
// PArray - Default Constructor
//
//==========================================================================
PStaticArray::PStaticArray()
{
mDescriptiveName = "ResizableArray";
}
//==========================================================================
//
// PArray - Parameterized Constructor
//
//==========================================================================
PStaticArray::PStaticArray(PType *etype)
: PArray(etype, 0)
{
mDescriptiveName.Format("ResizableArray<%s>", etype->DescriptiveName());
}
//==========================================================================
//
// PArray :: IsMatch
//
//==========================================================================
bool PStaticArray::IsMatch(intptr_t id1, intptr_t id2) const
{
const PType *elemtype = (const PType *)id1;
unsigned int count = (unsigned int)(intptr_t)id2;
return elemtype == ElementType && count == 0;
}
//==========================================================================
//
// PArray :: GetTypeIDs
//
//==========================================================================
void PStaticArray::GetTypeIDs(intptr_t &id1, intptr_t &id2) const
{
id1 = (intptr_t)ElementType;
id2 = 0;
}
//==========================================================================
//
// NewStaticArray
//
// Returns a PArray for the given type and size, making sure not to create
// duplicates.
//
//==========================================================================
PStaticArray *NewStaticArray(PType *type)
{
size_t bucket;
PType *atype = TypeTable.FindType(RUNTIME_CLASS(PStaticArray), (intptr_t)type, 0, &bucket);
if (atype == nullptr)
{
atype = new PStaticArray(type);
TypeTable.AddType(atype, RUNTIME_CLASS(PStaticArray), (intptr_t)type, 0, bucket);
}
return (PStaticArray *)atype;
}
/* PDynArray **************************************************************/
IMPLEMENT_CLASS(PDynArray, false, false)
//==========================================================================
//
// PDynArray - Default Constructor
//
//==========================================================================
PDynArray::PDynArray()
: ElementType(nullptr)
{
mDescriptiveName = "DynArray";
Size = sizeof(FArray);
Align = alignof(FArray);
}
//==========================================================================
//
// PDynArray - Parameterized Constructor
//
//==========================================================================
PDynArray::PDynArray(PType *etype,PStruct *backing)
: ElementType(etype), BackingType(backing)
{
mDescriptiveName.Format("DynArray<%s>", etype->DescriptiveName());
Size = sizeof(FArray);
Align = alignof(FArray);
}
//==========================================================================
//
// PDynArray :: IsMatch
//
//==========================================================================
bool PDynArray::IsMatch(intptr_t id1, intptr_t id2) const
{
assert(id2 == 0);
const PType *elemtype = (const PType *)id1;
return elemtype == ElementType;
}
//==========================================================================
//
// PDynArray :: GetTypeIDs
//
//==========================================================================
void PDynArray::GetTypeIDs(intptr_t &id1, intptr_t &id2) const
{
id1 = (intptr_t)ElementType;
id2 = 0;
}
//==========================================================================
//
// PDynArray :: InitializeValue
//
//==========================================================================
void PDynArray::InitializeValue(void *addr, const void *deff) const
{
const FArray *def = (const FArray*)deff;
FArray *aray = (FArray*)addr;
if (def == nullptr || def->Count == 0)
{
// Empty arrays do not need construction.
*aray = { nullptr, 0, 0 };
}
else if (ElementType->GetRegType() != REGT_STRING)
{
// These are just integral values which can be done without any constructor hackery.
size_t blocksize = ElementType->Size * def->Count;
aray->Array = M_Malloc(blocksize);
memcpy(aray->Array, def->Array, blocksize);
aray->Most = aray->Count = def->Count;
}
else
{
// non-empty string arrays require explicit construction.
new(addr) TArray<FString>(*(TArray<FString>*)def);
}
}
//==========================================================================
//
// PDynArray :: DestroyValue
//
//==========================================================================
void PDynArray::DestroyValue(void *addr) const
{
FArray *aray = (FArray*)addr;
if (aray->Array != nullptr)
{
if (ElementType->GetRegType() != REGT_STRING)
{
M_Free(aray->Array);
}
else
{
// Damn those cursed strings again. :(
((TArray<FString>*)addr)->~TArray<FString>();
}
}
aray->Count = aray->Most = 0;
aray->Array = nullptr;
}
//==========================================================================
//
// PDynArray :: SetDefaultValue
//
//==========================================================================
void PDynArray::SetDefaultValue(void *base, unsigned offset, TArray<FTypeAndOffset> *special) const
{
if (base != nullptr) memset((char*)base + offset, 0, sizeof(FArray)); // same as constructing an empty array.
if (special != nullptr)
{
special->Push(std::make_pair(this, offset));
}
}
//==========================================================================
//
// PDynArray :: SetPointer
//
//==========================================================================
void PDynArray::SetPointerArray(void *base, unsigned offset, TArray<size_t> *special) const
{
if (ElementType->IsKindOf(RUNTIME_CLASS(PPointer)) && !ElementType->IsKindOf(RUNTIME_CLASS(PClassPointer)) && static_cast<PPointer*>(ElementType)->PointedType->IsKindOf(RUNTIME_CLASS(PClass)))
{
// Add to the list of pointer arrays for this class.
special->Push(offset);
}
}
//==========================================================================
//
// PDynArray :: WriteValue
//
//==========================================================================
void PDynArray::WriteValue(FSerializer &ar, const char *key, const void *addr) const
{
FArray *aray = (FArray*)addr;
if (aray->Count > 0)
{
if (ar.BeginArray(key))
{
const uint8_t *addrb = (const uint8_t *)aray->Array;
for (unsigned i = 0; i < aray->Count; ++i)
{
ElementType->WriteValue(ar, nullptr, addrb);
addrb += ElementType->Size;
}
ar.EndArray();
}
}
}
//==========================================================================
//
// PDynArray :: ReadValue
//
//==========================================================================
bool PDynArray::ReadValue(FSerializer &ar, const char *key, void *addr) const
{
FArray *aray = (FArray*)addr;
DestroyValue(addr); // note that even after calling this we still got a validly constructed empty array.
if (ar.BeginArray(key))
{
bool readsomething = false;
unsigned count = ar.ArraySize();
size_t blocksize = ElementType->Size * count;
aray->Array = M_Malloc(blocksize);
memset(aray->Array, 0, blocksize);
aray->Most = aray->Count = count;
uint8_t *addrb = (uint8_t *)aray->Array;
for (unsigned i = 0; i<count; i++)
{
// Strings must be constructed first.
if (ElementType->GetRegType() == REGT_STRING) new(addrb) FString;
readsomething |= ElementType->ReadValue(ar, nullptr, addrb);
addrb += ElementType->Size;
}
ar.EndArray();
return readsomething;
}
return false;
}
//==========================================================================
//
// NewDynArray
//
// Creates a new DynArray of the given type, making sure not to create a
// duplicate.
//
//==========================================================================
PDynArray *NewDynArray(PType *type)
{
size_t bucket;
PType *atype = TypeTable.FindType(RUNTIME_CLASS(PDynArray), (intptr_t)type, 0, &bucket);
if (atype == nullptr)
{
FString backingname;
switch (type->GetRegType())
{
case REGT_INT:
backingname.Format("DynArray_I%d", type->Size * 8);
break;
case REGT_FLOAT:
backingname.Format("DynArray_F%d", type->Size * 8);
break;
case REGT_STRING:
backingname = "DynArray_String";
break;
case REGT_POINTER:
backingname = "DynArray_Ptr";
break;
default:
I_Error("Unsupported dynamic array requested");
break;
}
auto backing = NewNativeStruct(backingname, nullptr);
atype = new PDynArray(type, backing);
TypeTable.AddType(atype, RUNTIME_CLASS(PDynArray), (intptr_t)type, 0, bucket);
}
return (PDynArray *)atype;
}
/* PMap *******************************************************************/
IMPLEMENT_CLASS(PMap, false, false)
//==========================================================================
//
// PMap - Default Constructor
//
//==========================================================================
PMap::PMap()
: KeyType(nullptr), ValueType(nullptr)
{
mDescriptiveName = "Map";
Size = sizeof(FMap);
Align = alignof(FMap);
}
//==========================================================================
//
// PMap - Parameterized Constructor
//
//==========================================================================
PMap::PMap(PType *keytype, PType *valtype)
: KeyType(keytype), ValueType(valtype)
{
mDescriptiveName.Format("Map<%s, %s>", keytype->DescriptiveName(), valtype->DescriptiveName());
Size = sizeof(FMap);
Align = alignof(FMap);
}
//==========================================================================
//
// PMap :: IsMatch
//
//==========================================================================
bool PMap::IsMatch(intptr_t id1, intptr_t id2) const
{
const PType *keyty = (const PType *)id1;
const PType *valty = (const PType *)id2;
return keyty == KeyType && valty == ValueType;
}
//==========================================================================
//
// PMap :: GetTypeIDs
//
//==========================================================================
void PMap::GetTypeIDs(intptr_t &id1, intptr_t &id2) const
{
id1 = (intptr_t)KeyType;
id2 = (intptr_t)ValueType;
}
//==========================================================================
//
// NewMap
//
// Returns a PMap for the given key and value types, ensuring not to create
// duplicates.
//
//==========================================================================
PMap *NewMap(PType *keytype, PType *valuetype)
{
size_t bucket;
PType *maptype = TypeTable.FindType(RUNTIME_CLASS(PMap), (intptr_t)keytype, (intptr_t)valuetype, &bucket);
if (maptype == nullptr)
{
maptype = new PMap(keytype, valuetype);
TypeTable.AddType(maptype, RUNTIME_CLASS(PMap), (intptr_t)keytype, (intptr_t)valuetype, bucket);
}
return (PMap *)maptype;
}
/* PStruct ****************************************************************/
IMPLEMENT_CLASS(PStruct, false, false)
//==========================================================================
//
// PStruct - Default Constructor
//
//==========================================================================
PStruct::PStruct()
{
mDescriptiveName = "Struct";
Size = 0;
}
//==========================================================================
//
// PStruct - Parameterized Constructor
//
//==========================================================================
PStruct::PStruct(FName name, PTypeBase *outer)
: PNamedType(name, outer)
{
mDescriptiveName.Format("Struct<%s>", name.GetChars());
Size = 0;
HasNativeFields = false;
}
//==========================================================================
//
// PStruct :: SetDefaultValue
//
//==========================================================================
void PStruct::SetDefaultValue(void *base, unsigned offset, TArray<FTypeAndOffset> *special) const
{
for (const PField *field : Fields)
{
if (!(field->Flags & VARF_Transient))
{
field->Type->SetDefaultValue(base, unsigned(offset + field->Offset), special);
}
}
}
//==========================================================================
//
// PStruct :: SetPointer
//
//==========================================================================
void PStruct::SetPointer(void *base, unsigned offset, TArray<size_t> *special) const
{
for (const PField *field : Fields)
{
if (!(field->Flags & VARF_Transient))
{
field->Type->SetPointer(base, unsigned(offset + field->Offset), special);
}
}
}
//==========================================================================
//
// PStruct :: WriteValue
//
//==========================================================================
void PStruct::WriteValue(FSerializer &ar, const char *key,const void *addr) const
{
if (ar.BeginObject(key))
{
WriteFields(ar, addr, Fields);
ar.EndObject();
}
}
//==========================================================================
//
// PStruct :: ReadValue
//
//==========================================================================
bool PStruct::ReadValue(FSerializer &ar, const char *key, void *addr) const
{
if (ar.BeginObject(key))
{
bool ret = ReadFields(ar, addr);
ar.EndObject();
return ret;
}
return false;
}
//==========================================================================
//
// PStruct :: WriteFields STATIC
//
//==========================================================================
void PStruct::WriteFields(FSerializer &ar, const void *addr, const TArray<PField *> &fields)
{
for (unsigned i = 0; i < fields.Size(); ++i)
{
const PField *field = fields[i];
// Skip fields without or with native serialization
if (!(field->Flags & (VARF_Transient|VARF_Meta)))
{
field->Type->WriteValue(ar, field->SymbolName.GetChars(), (const uint8_t *)addr + field->Offset);
}
}
}
//==========================================================================
//
// PStruct :: ReadFields
//
//==========================================================================
bool PStruct::ReadFields(FSerializer &ar, void *addr) const
{
bool readsomething = false;
bool foundsomething = false;
const char *label;
while ((label = ar.GetKey()))
{
foundsomething = true;
const PSymbol *sym = Symbols.FindSymbol(FName(label, true), true);
if (sym == nullptr)
{
DPrintf(DMSG_ERROR, "Cannot find field %s in %s\n",
label, TypeName.GetChars());
}
else if (!sym->IsKindOf(RUNTIME_CLASS(PField)))
{
DPrintf(DMSG_ERROR, "Symbol %s in %s is not a field\n",
label, TypeName.GetChars());
}
else if ((static_cast<const PField *>(sym)->Flags & (VARF_Transient | VARF_Meta)))
{
DPrintf(DMSG_ERROR, "Symbol %s in %s is not a serializable field\n",
label, TypeName.GetChars());
}
else
{
readsomething |= static_cast<const PField *>(sym)->Type->ReadValue(ar, nullptr,
(uint8_t *)addr + static_cast<const PField *>(sym)->Offset);
}
}
return readsomething || !foundsomething;
}
//==========================================================================
//
// PStruct :: AddField
//
// Appends a new field to the end of a struct. Returns either the new field
// or nullptr if a symbol by that name already exists.
//
//==========================================================================
PField *PStruct::AddField(FName name, PType *type, uint32_t flags)
{
PField *field = new PField(name, type, flags);
// The new field is added to the end of this struct, alignment permitting.
field->Offset = (Size + (type->Align - 1)) & ~(type->Align - 1);
// Enlarge this struct to enclose the new field.
Size = unsigned(field->Offset + type->Size);
// This struct's alignment is the same as the largest alignment of any of
// its fields.
Align = MAX(Align, type->Align);
if (Symbols.AddSymbol(field) == nullptr)
{ // name is already in use
field->Destroy();
return nullptr;
}
Fields.Push(field);
return field;
}
//==========================================================================
//
// PStruct :: AddField
//
// Appends a new native field to the struct. Returns either the new field
// or nullptr if a symbol by that name already exists.
//
//==========================================================================
PField *PStruct::AddNativeField(FName name, PType *type, size_t address, uint32_t flags, int bitvalue)
{
PField *field = new PField(name, type, flags|VARF_Native|VARF_Transient, address, bitvalue);
if (Symbols.AddSymbol(field) == nullptr)
{ // name is already in use
field->Destroy();
return nullptr;
}
Fields.Push(field);
HasNativeFields = true;
return field;
}
//==========================================================================
//
// NewStruct
// Returns a PStruct for the given name and container, making sure not to
// create duplicates.
//
//==========================================================================
PStruct *NewStruct(FName name, PTypeBase *outer)
{
size_t bucket;
if (outer == nullptr) outer = Namespaces.GlobalNamespace;
PType *stype = TypeTable.FindType(RUNTIME_CLASS(PStruct), (intptr_t)outer, (intptr_t)name, &bucket);
if (stype == nullptr)
{
stype = new PStruct(name, outer);
TypeTable.AddType(stype, RUNTIME_CLASS(PStruct), (intptr_t)outer, (intptr_t)name, bucket);
}
return static_cast<PStruct *>(stype);
}
/* PNativeStruct ****************************************************************/
IMPLEMENT_CLASS(PNativeStruct, false, false)
//==========================================================================
//
// PNativeStruct - Parameterized Constructor
//
//==========================================================================
PNativeStruct::PNativeStruct(FName name, PTypeBase *outer)
: PStruct(name, outer)
{
mDescriptiveName.Format("NativeStruct<%s>", name.GetChars());
Size = 0;
HasNativeFields = true;
}
//==========================================================================
//
// NewNativeStruct
// Returns a PNativeStruct for the given name and container, making sure not to
// create duplicates.
//
//==========================================================================
PNativeStruct *NewNativeStruct(FName name, PTypeBase *outer)
{
size_t bucket;
if (outer == nullptr) outer = Namespaces.GlobalNamespace;
PType *stype = TypeTable.FindType(RUNTIME_CLASS(PNativeStruct), (intptr_t)outer, (intptr_t)name, &bucket);
if (stype == nullptr)
{
stype = new PNativeStruct(name, outer);
TypeTable.AddType(stype, RUNTIME_CLASS(PNativeStruct), (intptr_t)outer, (intptr_t)name, bucket);
}
return static_cast<PNativeStruct *>(stype);
}
/* PField *****************************************************************/
IMPLEMENT_CLASS(PField, false, false)
//==========================================================================
//
// PField - Default Constructor
//
//==========================================================================
PField::PField()
: PSymbol(NAME_None), Offset(0), Type(nullptr), Flags(0)
{
}
PField::PField(FName name, PType *type, uint32_t flags, size_t offset, int bitvalue)
: PSymbol(name), Offset(offset), Type(type), Flags(flags)
{
if (bitvalue != 0)
{
BitValue = 0;
unsigned val = bitvalue;
while ((val >>= 1)) BitValue++;
if (type->IsA(RUNTIME_CLASS(PInt)) && unsigned(BitValue) < 8u * type->Size)
{
// map to the single bytes in the actual variable. The internal bit instructions operate on 8 bit values.
#ifndef __BIG_ENDIAN__
Offset += BitValue / 8;
#else
Offset += type->Size - 1 - BitValue / 8;
#endif
BitValue &= 7;
Type = TypeBool;
}
else
{
// Just abort. Bit fields should only be defined internally.
I_Error("Trying to create an invalid bit field element: %s", name.GetChars());
}
}
else BitValue = -1;
}
VersionInfo PField::GetVersion()
{
VersionInfo Highest = { 0,0,0 };
if (!(Flags & VARF_Deprecated)) Highest = mVersion;
if (Type->mVersion > Highest) Highest = Type->mVersion;
return Highest;
}
/* PProperty *****************************************************************/
IMPLEMENT_CLASS(PProperty, false, false)
//==========================================================================
//
// PField - Default Constructor
//
//==========================================================================
PProperty::PProperty()
: PSymbol(NAME_None)
{
}
PProperty::PProperty(FName name, TArray<PField *> &fields)
: PSymbol(name)
{
Variables = std::move(fields);
}
/* PPrototype *************************************************************/
IMPLEMENT_CLASS(PPrototype, false, false)
//==========================================================================
//
// PPrototype - Default Constructor
//
//==========================================================================
PPrototype::PPrototype()
{
}
//==========================================================================
//
// PPrototype - Parameterized Constructor
//
//==========================================================================
PPrototype::PPrototype(const TArray<PType *> &rettypes, const TArray<PType *> &argtypes)
: ArgumentTypes(argtypes), ReturnTypes(rettypes)
{
}
//==========================================================================
//
// PPrototype :: IsMatch
//
//==========================================================================
bool PPrototype::IsMatch(intptr_t id1, intptr_t id2) const
{
const TArray<PType *> *args = (const TArray<PType *> *)id1;
const TArray<PType *> *rets = (const TArray<PType *> *)id2;
return *args == ArgumentTypes && *rets == ReturnTypes;
}
//==========================================================================
//
// PPrototype :: GetTypeIDs
//
//==========================================================================
void PPrototype::GetTypeIDs(intptr_t &id1, intptr_t &id2) const
{
id1 = (intptr_t)&ArgumentTypes;
id2 = (intptr_t)&ReturnTypes;
}
//==========================================================================
//
// PPrototype :: PropagateMark
//
//==========================================================================
size_t PPrototype::PropagateMark()
{
GC::MarkArray(ArgumentTypes);
GC::MarkArray(ReturnTypes);
return (ArgumentTypes.Size() + ReturnTypes.Size()) * sizeof(void*) +
Super::PropagateMark();
}
//==========================================================================
//
// NewPrototype
//
// Returns a PPrototype for the given return and argument types, making sure
// not to create duplicates.
//
//==========================================================================
PPrototype *NewPrototype(const TArray<PType *> &rettypes, const TArray<PType *> &argtypes)
{
size_t bucket;
PType *proto = TypeTable.FindType(RUNTIME_CLASS(PPrototype), (intptr_t)&argtypes, (intptr_t)&rettypes, &bucket);
if (proto == nullptr)
{
proto = new PPrototype(rettypes, argtypes);
TypeTable.AddType(proto, RUNTIME_CLASS(PPrototype), (intptr_t)&argtypes, (intptr_t)&rettypes, bucket);
}
return static_cast<PPrototype *>(proto);
}
/* PClass *****************************************************************/
IMPLEMENT_CLASS(PClass, false, false)
//==========================================================================
//
// PClass :: WriteValue
//
// Similar to PStruct's version, except it also needs to traverse parent
// classes.
//
//==========================================================================
static void RecurseWriteFields(const PClass *type, FSerializer &ar, const void *addr)
{
if (type != nullptr)
{
RecurseWriteFields(type->ParentClass, ar, addr);
// Don't write this part if it has no non-transient variables
for (unsigned i = 0; i < type->Fields.Size(); ++i)
{
if (!(type->Fields[i]->Flags & (VARF_Transient|VARF_Meta)))
{
// Tag this section with the class it came from in case
// a more-derived class has variables that shadow a less-
// derived class. Whether or not that is a language feature
// that will actually be allowed remains to be seen.
FString key;
key.Format("class:%s", type->TypeName.GetChars());
if (ar.BeginObject(key.GetChars()))
{
PStruct::WriteFields(ar, addr, type->Fields);
ar.EndObject();
}
break;
}
}
}
}
void PClass::WriteValue(FSerializer &ar, const char *key,const void *addr) const
{
if (ar.BeginObject(key))
{
RecurseWriteFields(this, ar, addr);
ar.EndObject();
}
}
// Same as WriteValue, but does not create a new object in the serializer
// This is so that user variables do not contain unnecessary subblocks.
void PClass::WriteAllFields(FSerializer &ar, const void *addr) const
{
RecurseWriteFields(this, ar, addr);
}
//==========================================================================
//
// PClass :: ReadValue
//
//==========================================================================
bool PClass::ReadValue(FSerializer &ar, const char *key, void *addr) const
{
if (ar.BeginObject(key))
{
bool ret = ReadAllFields(ar, addr);
ar.EndObject();
return ret;
}
return true;
}
bool PClass::ReadAllFields(FSerializer &ar, void *addr) const
{
bool readsomething = false;
bool foundsomething = false;
const char *key;
key = ar.GetKey();
if (strcmp(key, "classtype"))
{
// this does not represent a DObject
Printf(TEXTCOLOR_RED "trying to read user variables but got a non-object (first key is '%s')", key);
ar.mErrors++;
return false;
}
while ((key = ar.GetKey()))
{
if (strncmp(key, "class:", 6))
{
// We have read all user variable blocks.
break;
}
foundsomething = true;
PClass *type = PClass::FindClass(key + 6);
if (type != nullptr)
{
// Only read it if the type is related to this one.
const PClass *parent;
for (parent = this; parent != nullptr; parent = parent->ParentClass)
{
if (parent == type)
{
break;
}
}
if (parent != nullptr)
{
if (ar.BeginObject(nullptr))
{
readsomething |= type->ReadFields(ar, addr);
ar.EndObject();
}
}
else
{
DPrintf(DMSG_ERROR, "Unknown superclass %s of class %s\n",
type->TypeName.GetChars(), TypeName.GetChars());
}
}
else
{
DPrintf(DMSG_ERROR, "Unknown superclass %s of class %s\n",
key+6, TypeName.GetChars());
}
}
return readsomething || !foundsomething;
}
//==========================================================================
//
// cregcmp
//
// Sorter to keep built-in types in a deterministic order. (Needed?)
//
//==========================================================================
static int cregcmp (const void *a, const void *b) NO_SANITIZE
{
const PClass *class1 = *(const PClass **)a;
const PClass *class2 = *(const PClass **)b;
return strcmp(class1->TypeName, class2->TypeName);
}
//==========================================================================
//
// PClass :: StaticInit STATIC
//
// Creates class metadata for all built-in types.
//
//==========================================================================
void PClass::StaticInit ()
{
atterm (StaticShutdown);
StaticBootstrap();
Namespaces.GlobalNamespace = Namespaces.NewNamespace(0);
FAutoSegIterator probe(CRegHead, CRegTail);
while (*++probe != nullptr)
{
((ClassReg *)*probe)->RegisterClass ();
}
// Keep built-in classes in consistant order. I did this before, though
// I'm not sure if this is really necessary to maintain any sort of sync.
qsort(&AllClasses[0], AllClasses.Size(), sizeof(AllClasses[0]), cregcmp);
// Set all symbol table relations here so that they are valid right from the start.
for (auto c : AllClasses)
{
if (c->ParentClass != nullptr)
{
c->Symbols.SetParentTable(&c->ParentClass->Symbols);
}
}
}
//==========================================================================
//
// PClass :: StaticShutdown STATIC
//
// Frees all static class data.
//
//==========================================================================
void PClass::StaticShutdown ()
{
// delete all variables containing pointers to script functions.
for (auto p : FunctionPtrList)
{
*p = nullptr;
}
FunctionPtrList.Clear();
VMFunction::DeleteAll();
// Make a full garbage collection here so that all destroyed but uncollected higher level objects
// that still exist are properly taken down before the low level data is deleted.
GC::FullGC();
// From this point onward no scripts may be called anymore because the data needed by the VM is getting deleted now.
// This flags DObject::Destroy not to call any scripted OnDestroy methods anymore.
bVMOperational = false;
// PendingWeapon must be cleared manually because it is not subjected to the GC if it contains WP_NOCHANGE, which is just RUNTIME_CLASS(AWWeapon).
// But that will get cleared here, confusing the GC if the value is left in.
for (auto &p : players)
{
p.PendingWeapon = nullptr;
}
// Unless something went wrong, anything left here should be class and type objects only, which do not own any scripts.
bShutdown = true;
TypeTable.Clear();
Namespaces.ReleaseSymbols();
ClassDataAllocator.FreeAllBlocks();
AllClasses.Clear();
PClassActor::AllActorClasses.Clear();
FAutoSegIterator probe(CRegHead, CRegTail);
while (*++probe != nullptr)
{
auto cr = ((ClassReg *)*probe);
cr->MyClass = nullptr;
}
}
//==========================================================================
//
// PClass :: StaticBootstrap STATIC
//
//==========================================================================
void PClass::StaticBootstrap()
{
PClass *cls = new PClass;
PClass::RegistrationInfo.SetupClass(cls);
// The PClassClass constructor initialized these to nullptr, because the
// PClass metadata had not been created yet. Now it has, so we know what
// they should be and can insert them into the type table successfully.
cls->InsertIntoHash();
// Create parent objects before we go so that these definitions are complete.
cls->ParentClass = PClass::RegistrationInfo.ParentType->RegisterClass();
}
//==========================================================================
//
// PClass Constructor
//
//==========================================================================
PClass::PClass()
{
Size = sizeof(DObject);
ParentClass = nullptr;
Pointers = nullptr;
FlatPointers = nullptr;
ArrayPointers = nullptr;
HashNext = nullptr;
Defaults = nullptr;
bRuntimeClass = false;
bExported = false;
bDecorateClass = false;
ConstructNative = nullptr;
Meta = nullptr;
mDescriptiveName = "Class";
PClass::AllClasses.Push(this);
}
//==========================================================================
//
// PClass Destructor
//
//==========================================================================
PClass::~PClass()
{
if (Defaults != nullptr)
{
M_Free(Defaults);
Defaults = nullptr;
}
if (Meta != nullptr)
{
M_Free(Meta);
Meta = nullptr;
}
}
//==========================================================================
//
// ClassReg :: RegisterClass
//
// Create metadata describing the built-in class this struct is intended
// for.
//
//==========================================================================
PClass *ClassReg::RegisterClass()
{
static ClassReg *const metaclasses[] =
{
&PClass::RegistrationInfo,
&PClassActor::RegistrationInfo,
};
// Skip classes that have already been registered
if (MyClass != nullptr)
{
return MyClass;
}
// Add type to list
PClass *cls;
if (MetaClassNum >= countof(metaclasses))
{
assert(0 && "Class registry has an invalid meta class identifier");
}
if (metaclasses[MetaClassNum]->MyClass == nullptr)
{ // Make sure the meta class is already registered before registering this one
metaclasses[MetaClassNum]->RegisterClass();
}
cls = static_cast<PClass *>(metaclasses[MetaClassNum]->MyClass->CreateNew());
SetupClass(cls);
cls->InsertIntoHash();
if (ParentType != nullptr)
{
cls->ParentClass = ParentType->RegisterClass();
}
return cls;
}
//==========================================================================
//
// ClassReg :: SetupClass
//
// Copies the class-defining parameters from a ClassReg to the Class object
// created for it.
//
//==========================================================================
void ClassReg::SetupClass(PClass *cls)
{
assert(MyClass == nullptr);
MyClass = cls;
cls->TypeName = FName(Name+1);
cls->Size = SizeOf;
cls->Pointers = Pointers;
cls->ConstructNative = ConstructNative;
cls->mDescriptiveName.Format("Class<%s>", cls->TypeName.GetChars());
}
//==========================================================================
//
// PClass :: InsertIntoHash
//
// Add class to the type table.
//
//==========================================================================
void PClass::InsertIntoHash ()
{
size_t bucket;
PType *found;
found = TypeTable.FindType(RUNTIME_CLASS(PClass), 0, TypeName, &bucket);
if (found != nullptr)
{ // This type has already been inserted
I_Error("Tried to register class '%s' more than once.\n", TypeName.GetChars());
}
else
{
TypeTable.AddType(this, RUNTIME_CLASS(PClass), 0, TypeName, bucket);
}
}
//==========================================================================
//
// PClass :: FindParentClass
//
// Finds a parent class that matches the given name, including itself.
//
//==========================================================================
const PClass *PClass::FindParentClass(FName name) const
{
for (const PClass *type = this; type != nullptr; type = type->ParentClass)
{
if (type->TypeName == name)
{
return type;
}
}
return nullptr;
}
//==========================================================================
//
// PClass :: FindClass
//
// Find a type, passed the name as a name.
//
//==========================================================================
PClass *PClass::FindClass (FName zaname)
{
if (zaname == NAME_None)
{
return nullptr;
}
return static_cast<PClass *>(TypeTable.FindType(RUNTIME_CLASS(PClass), 0, zaname, nullptr));
}
//==========================================================================
//
// PClass :: CreateNew
//
// Create a new object that this class represents
//
//==========================================================================
DObject *PClass::CreateNew()
{
uint8_t *mem = (uint8_t *)M_Malloc (Size);
assert (mem != nullptr);
// Set this object's defaults before constructing it.
if (Defaults != nullptr)
memcpy (mem, Defaults, Size);
else
memset (mem, 0, Size);
if (ConstructNative == nullptr)
{
M_Free(mem);
I_Error("Attempt to instantiate abstract class %s.", TypeName.GetChars());
}
ConstructNative (mem);
((DObject *)mem)->SetClass (const_cast<PClass *>(this));
InitializeSpecials(mem, Defaults, &PClass::SpecialInits);
return (DObject *)mem;
}
//==========================================================================
//
// PClass :: InitializeSpecials
//
// Initialize special fields (e.g. strings) of a newly-created instance.
//
//==========================================================================
void PClass::InitializeSpecials(void *addr, void *defaults, TArray<FTypeAndOffset> PClass::*Inits)
{
// Once we reach a native class, we can stop going up the family tree,
// since native classes handle initialization natively.
if ((!bRuntimeClass && Inits == &PClass::SpecialInits) || ParentClass == nullptr)
{
return;
}
ParentClass->InitializeSpecials(addr, defaults, Inits);
for (auto tao : (this->*Inits))
{
tao.first->InitializeValue((char*)addr + tao.second, defaults == nullptr? nullptr : ((char*)defaults) + tao.second);
}
}
//==========================================================================
//
// PClass :: DestroySpecials
//
// Destroy special fields (e.g. strings) of an instance that is about to be
// deleted.
//
//==========================================================================
void PClass::DestroySpecials(void *addr)
{
// Once we reach a native class, we can stop going up the family tree,
// since native classes handle deinitialization natively.
if (!bRuntimeClass)
{
return;
}
assert(ParentClass != nullptr);
ParentClass->DestroySpecials(addr);
for (auto tao : SpecialInits)
{
tao.first->DestroyValue((uint8_t *)addr + tao.second);
}
}
//==========================================================================
//
// PClass :: Derive
//
// Copies inheritable values into the derived class and other miscellaneous setup.
//
//==========================================================================
void PClass::Derive(PClass *newclass, FName name)
{
newclass->bRuntimeClass = true;
newclass->ParentClass = this;
newclass->ConstructNative = ConstructNative;
newclass->Symbols.SetParentTable(&this->Symbols);
newclass->TypeName = name;
newclass->mDescriptiveName.Format("Class<%s>", name.GetChars());
newclass->mVersion = mVersion;
newclass->MetaSize = MetaSize;
}
//==========================================================================
//
// PClassActor :: InitializeNativeDefaults
//
//==========================================================================
void PClass::InitializeDefaults()
{
if (IsKindOf(RUNTIME_CLASS(PClassActor)))
{
assert(Defaults == nullptr);
Defaults = (uint8_t *)M_Malloc(Size);
// run the constructor on the defaults to set the vtbl pointer which is needed to run class-aware functions on them.
// Temporarily setting bSerialOverride prevents linking into the thinker chains.
auto s = DThinker::bSerialOverride;
DThinker::bSerialOverride = true;
ConstructNative(Defaults);
DThinker::bSerialOverride = s;
// We must unlink the defaults from the class list because it's just a static block of data to the engine.
DObject *optr = (DObject*)Defaults;
GC::Root = optr->ObjNext;
optr->ObjNext = nullptr;
optr->SetClass(this);
// Copy the defaults from the parent but leave the DObject part alone because it contains important data.
if (ParentClass->Defaults != nullptr)
{
memcpy(Defaults + sizeof(DObject), ParentClass->Defaults + sizeof(DObject), ParentClass->Size - sizeof(DObject));
if (Size > ParentClass->Size)
{
memset(Defaults + ParentClass->Size, 0, Size - ParentClass->Size);
}
}
else
{
memset(Defaults + sizeof(DObject), 0, Size - sizeof(DObject));
}
assert(MetaSize >= ParentClass->MetaSize);
if (MetaSize != 0)
{
Meta = (uint8_t*)M_Malloc(MetaSize);
// Copy the defaults from the parent but leave the DObject part alone because it contains important data.
if (ParentClass->Meta != nullptr)
{
memcpy(Meta, ParentClass->Meta, ParentClass->MetaSize);
if (MetaSize > ParentClass->MetaSize)
{
memset(Meta + ParentClass->MetaSize, 0, MetaSize - ParentClass->MetaSize);
}
}
else
{
memset(Meta, 0, MetaSize);
}
if (MetaSize > 0) memcpy(Meta, ParentClass->Meta, ParentClass->MetaSize);
else memset(Meta, 0, MetaSize);
}
}
if (bRuntimeClass)
{
// Copy parent values from the parent defaults.
assert(ParentClass != nullptr);
if (Defaults != nullptr) ParentClass->InitializeSpecials(Defaults, ParentClass->Defaults, &PClass::SpecialInits);
if (Meta != nullptr) ParentClass->InitializeSpecials(Meta, ParentClass->Meta, &PClass::MetaInits);
for (const PField *field : Fields)
{
if (!(field->Flags & VARF_Native) && !(field->Flags & VARF_Meta))
{
field->Type->SetDefaultValue(Defaults, unsigned(field->Offset), &SpecialInits);
}
}
}
if (Meta != nullptr) ParentClass->InitializeSpecials(Meta, ParentClass->Meta, &PClass::MetaInits);
for (const PField *field : Fields)
{
if (!(field->Flags & VARF_Native) && (field->Flags & VARF_Meta))
{
field->Type->SetDefaultValue(Meta, unsigned(field->Offset), &MetaInits);
}
}
}
//==========================================================================
//
// PClass :: DeriveData
//
// Copies inheritable data to the child class.
//
//==========================================================================
void PClass::DeriveData(PClass *newclass)
{
}
//==========================================================================
//
// PClass :: CreateDerivedClass
//
// Create a new class based on an existing class
//
//==========================================================================
PClass *PClass::CreateDerivedClass(FName name, unsigned int size)
{
assert(size >= Size);
PClass *type;
bool notnew;
const PClass *existclass = FindClass(name);
if (existclass != nullptr)
{
// This is a placeholder so fill it in
if (existclass->Size == TentativeClass)
{
type = const_cast<PClass*>(existclass);
if (!IsDescendantOf(type->ParentClass))
{
I_Error("%s must inherit from %s but doesn't.", name.GetChars(), type->ParentClass->TypeName.GetChars());
}
DPrintf(DMSG_SPAMMY, "Defining placeholder class %s\n", name.GetChars());
notnew = true;
}
else
{
// a different class with the same name already exists. Let the calling code deal with this.
return nullptr;
}
}
else
{
type = static_cast<PClass *>(GetClass()->CreateNew());
notnew = false;
}
type->TypeName = name;
type->bRuntimeClass = true;
Derive(type, name);
type->Size = size;
if (size != TentativeClass)
{
type->InitializeDefaults();
type->Virtuals = Virtuals;
DeriveData(type);
}
else
type->ObjectFlags &= OF_Transient;
if (!notnew)
{
type->InsertIntoHash();
}
return type;
}
//==========================================================================
//
// PStruct :: AddField
//
// Appends a new metadata field to the end of a struct. Returns either the new field
// or nullptr if a symbol by that name already exists.
//
//==========================================================================
PField *PClass::AddMetaField(FName name, PType *type, uint32_t flags)
{
PField *field = new PField(name, type, flags);
// The new field is added to the end of this struct, alignment permitting.
field->Offset = (MetaSize + (type->Align - 1)) & ~(type->Align - 1);
// Enlarge this struct to enclose the new field.
MetaSize = unsigned(field->Offset + type->Size);
// This struct's alignment is the same as the largest alignment of any of
// its fields.
Align = MAX(Align, type->Align);
if (Symbols.AddSymbol(field) == nullptr)
{ // name is already in use
field->Destroy();
return nullptr;
}
Fields.Push(field);
return field;
}
//==========================================================================
//
// PClass :: AddField
//
//==========================================================================
PField *PClass::AddField(FName name, PType *type, uint32_t flags)
{
if (!(flags & VARF_Meta))
{
unsigned oldsize = Size;
PField *field = Super::AddField(name, type, flags);
// Only initialize the defaults if they have already been created.
// For ZScript this is not the case, it will first define all fields before
// setting up any defaults for any class.
if (field != nullptr && !(flags & VARF_Native) && Defaults != nullptr)
{
Defaults = (uint8_t *)M_Realloc(Defaults, Size);
memset(Defaults + oldsize, 0, Size - oldsize);
}
return field;
}
else
{
unsigned oldsize = MetaSize;
PField *field = AddMetaField(name, type, flags);
// Only initialize the defaults if they have already been created.
// For ZScript this is not the case, it will first define all fields before
// setting up any defaults for any class.
if (field != nullptr && !(flags & VARF_Native) && Meta != nullptr)
{
Meta = (uint8_t *)M_Realloc(Meta, MetaSize);
memset(Meta + oldsize, 0, MetaSize - oldsize);
}
return field;
}
}
//==========================================================================
//
// PClass :: FindClassTentative
//
// Like FindClass but creates a placeholder if no class is found.
// This will be filled in when the actual class is constructed.
//
//==========================================================================
PClass *PClass::FindClassTentative(FName name)
{
if (name == NAME_None)
{
return nullptr;
}
size_t bucket;
PType *found = TypeTable.FindType(RUNTIME_CLASS(PClass),
/*FIXME:Outer*/0, name, &bucket);
if (found != nullptr)
{
return static_cast<PClass *>(found);
}
PClass *type = static_cast<PClass *>(GetClass()->CreateNew());
DPrintf(DMSG_SPAMMY, "Creating placeholder class %s : %s\n", name.GetChars(), TypeName.GetChars());
Derive(type, name);
type->Size = TentativeClass;
TypeTable.AddType(type, RUNTIME_CLASS(PClass), 0, name, bucket);
return type;
}
//==========================================================================
//
// PClass :: FindVirtualIndex
//
// Compares a prototype with the existing list of virtual functions
// and returns an index if something matching is found.
//
//==========================================================================
int PClass::FindVirtualIndex(FName name, PPrototype *proto)
{
for (unsigned i = 0; i < Virtuals.Size(); i++)
{
if (Virtuals[i]->Name == name)
{
auto vproto = Virtuals[i]->Proto;
if (vproto->ReturnTypes.Size() != proto->ReturnTypes.Size() ||
vproto->ArgumentTypes.Size() != proto->ArgumentTypes.Size())
{
continue; // number of parameters does not match, so it's incompatible
}
bool fail = false;
// The first argument is self and will mismatch so just skip it.
for (unsigned a = 1; a < proto->ArgumentTypes.Size(); a++)
{
if (proto->ArgumentTypes[a] != vproto->ArgumentTypes[a])
{
fail = true;
break;
}
}
if (fail) continue;
for (unsigned a = 0; a < proto->ReturnTypes.Size(); a++)
{
if (proto->ReturnTypes[a] != vproto->ReturnTypes[a])
{
fail = true;
break;
}
}
if (!fail) return i;
}
}
return -1;
}
//==========================================================================
//
// PClass :: BuildFlatPointers
//
// Create the FlatPointers array, if it doesn't exist already.
// It comprises all the Pointers from superclasses plus this class's own
// Pointers. If this class does not define any new Pointers, then
// FlatPointers will be set to the same array as the super class.
//
//==========================================================================
void PClass::BuildFlatPointers ()
{
if (FlatPointers != nullptr)
{ // Already built: Do nothing.
return;
}
else if (ParentClass == nullptr)
{ // No parent (i.e. DObject: FlatPointers is the same as Pointers.
if (Pointers == nullptr)
{ // No pointers: Make FlatPointers a harmless non-nullptr.
FlatPointers = &TheEnd;
}
else
{
FlatPointers = Pointers;
}
}
else
{
ParentClass->BuildFlatPointers ();
TArray<size_t> ScriptPointers;
// Collect all pointers in scripted fields. These are not part of the Pointers list.
for (auto field : Fields)
{
if (!(field->Flags & VARF_Native))
{
field->Type->SetPointer(Defaults, unsigned(field->Offset), &ScriptPointers);
}
}
if (Pointers == nullptr && ScriptPointers.Size() == 0)
{ // No new pointers: Just use the same FlatPointers as the parent.
FlatPointers = ParentClass->FlatPointers;
}
else
{ // New pointers: Create a new FlatPointers array and add them.
int numPointers, numSuperPointers;
if (Pointers != nullptr)
{
// Count pointers defined by this class.
for (numPointers = 0; Pointers[numPointers] != ~(size_t)0; numPointers++)
{
}
}
else numPointers = 0;
// Count pointers defined by superclasses.
for (numSuperPointers = 0; ParentClass->FlatPointers[numSuperPointers] != ~(size_t)0; numSuperPointers++)
{ }
// Concatenate them into a new array
size_t *flat = (size_t*)ClassDataAllocator.Alloc(sizeof(size_t) * (numPointers + numSuperPointers + ScriptPointers.Size() + 1));
if (numSuperPointers > 0)
{
memcpy (flat, ParentClass->FlatPointers, sizeof(size_t)*numSuperPointers);
}
if (numPointers > 0)
{
memcpy(flat + numSuperPointers, Pointers, sizeof(size_t)*numPointers);
}
if (ScriptPointers.Size() > 0)
{
memcpy(flat + numSuperPointers + numPointers, &ScriptPointers[0], sizeof(size_t) * ScriptPointers.Size());
}
flat[numSuperPointers + numPointers + ScriptPointers.Size()] = ~(size_t)0;
FlatPointers = flat;
}
}
}
//==========================================================================
//
// PClass :: BuildArrayPointers
//
// same as above, but creates a list to dynamic object arrays
//
//==========================================================================
void PClass::BuildArrayPointers()
{
if (ArrayPointers != nullptr)
{ // Already built: Do nothing.
return;
}
else if (ParentClass == nullptr)
{ // No parent (i.e. DObject: FlatPointers is the same as Pointers.
ArrayPointers = &TheEnd;
}
else
{
ParentClass->BuildArrayPointers();
TArray<size_t> ScriptPointers;
// Collect all arrays to pointers in scripted fields.
for (auto field : Fields)
{
if (!(field->Flags & VARF_Native))
{
field->Type->SetPointerArray(Defaults, unsigned(field->Offset), &ScriptPointers);
}
}
if (ScriptPointers.Size() == 0)
{ // No new pointers: Just use the same ArrayPointers as the parent.
ArrayPointers = ParentClass->ArrayPointers;
}
else
{ // New pointers: Create a new FlatPointers array and add them.
int numSuperPointers;
// Count pointers defined by superclasses.
for (numSuperPointers = 0; ParentClass->ArrayPointers[numSuperPointers] != ~(size_t)0; numSuperPointers++)
{
}
// Concatenate them into a new array
size_t *flat = (size_t*)ClassDataAllocator.Alloc(sizeof(size_t) * (numSuperPointers + ScriptPointers.Size() + 1));
if (numSuperPointers > 0)
{
memcpy(flat, ParentClass->ArrayPointers, sizeof(size_t)*numSuperPointers);
}
if (ScriptPointers.Size() > 0)
{
memcpy(flat + numSuperPointers, &ScriptPointers[0], sizeof(size_t) * ScriptPointers.Size());
}
flat[numSuperPointers + ScriptPointers.Size()] = ~(size_t)0;
ArrayPointers = flat;
}
}
}
//==========================================================================
//
// PClass :: NativeClass
//
// Finds the native type underlying this class.
//
//==========================================================================
const PClass *PClass::NativeClass() const
{
const PClass *cls = this;
while (cls && cls->bRuntimeClass)
cls = cls->ParentClass;
return cls;
}
VMFunction *PClass::FindFunction(FName clsname, FName funcname)
{
auto cls = PClass::FindClass(clsname);
if (!cls) return nullptr;
auto func = dyn_cast<PFunction>(cls->Symbols.FindSymbol(funcname, true));
if (!func) return nullptr;
return func->Variants[0].Implementation;
}
void PClass::FindFunction(VMFunction **pptr, FName clsname, FName funcname)
{
auto cls = PClass::FindClass(clsname);
if (!cls) return;
auto func = dyn_cast<PFunction>(cls->Symbols.FindSymbol(funcname, true));
if (!func) return;
*pptr = func->Variants[0].Implementation;
FunctionPtrList.Push(pptr);
}
/* FTypeTable **************************************************************/
//==========================================================================
//
// FTypeTable :: FindType
//
//==========================================================================
PType *FTypeTable::FindType(PClass *metatype, intptr_t parm1, intptr_t parm2, size_t *bucketnum)
{
size_t bucket = Hash(metatype, parm1, parm2) % HASH_SIZE;
if (bucketnum != nullptr)
{
*bucketnum = bucket;
}
for (PType *type = TypeHash[bucket]; type != nullptr; type = type->HashNext)
{
if (type->TypeTableType == metatype && type->IsMatch(parm1, parm2))
{
return type;
}
}
return nullptr;
}
//==========================================================================
//
// FTypeTable :: AddType - Fully Parameterized Version
//
//==========================================================================
void FTypeTable::AddType(PType *type, PClass *metatype, intptr_t parm1, intptr_t parm2, size_t bucket)
{
#ifdef _DEBUG
size_t bucketcheck;
assert(FindType(metatype, parm1, parm2, &bucketcheck) == nullptr && "Type must not be inserted more than once");
assert(bucketcheck == bucket && "Passed bucket was wrong");
#endif
type->TypeTableType = metatype;
type->HashNext = TypeHash[bucket];
TypeHash[bucket] = type;
type->Release();
}
//==========================================================================
//
// FTypeTable :: AddType - Simple Version
//
//==========================================================================
void FTypeTable::AddType(PType *type)
{
intptr_t parm1, parm2;
size_t bucket;
// Type table stuff id only needed to let all classes hash to the same group. For all other types this is pointless.
type->TypeTableType = type->GetClass();
PClass *metatype = type->TypeTableType;
type->GetTypeIDs(parm1, parm2);
bucket = Hash(metatype, parm1, parm2) % HASH_SIZE;
assert(FindType(metatype, parm1, parm2, nullptr) == nullptr && "Type must not be inserted more than once");
type->HashNext = TypeHash[bucket];
TypeHash[bucket] = type;
type->Release();
}
//==========================================================================
//
// FTypeTable :: Hash STATIC
//
//==========================================================================
size_t FTypeTable::Hash(const PClass *p1, intptr_t p2, intptr_t p3)
{
size_t i1 = (size_t)p1;
// Swap the high and low halves of i1. The compiler should be smart enough
// to transform this into a ROR or ROL.
i1 = (i1 >> (sizeof(size_t)*4)) | (i1 << (sizeof(size_t)*4));
if (p1 != RUNTIME_CLASS(PPrototype))
{
size_t i2 = (size_t)p2;
size_t i3 = (size_t)p3;
return (~i1 ^ i2) + i3 * 961748927; // i3 is multiplied by a prime
}
else
{ // Prototypes need to hash the TArrays at p2 and p3
const TArray<PType *> *a2 = (const TArray<PType *> *)p2;
const TArray<PType *> *a3 = (const TArray<PType *> *)p3;
for (unsigned i = 0; i < a2->Size(); ++i)
{
i1 = (i1 * 961748927) + (size_t)((*a2)[i]);
}
for (unsigned i = 0; i < a3->Size(); ++i)
{
i1 = (i1 * 961748927) + (size_t)((*a3)[i]);
}
return i1;
}
}
//==========================================================================
//
// FTypeTable :: Clear
//
//==========================================================================
void FTypeTable::Clear()
{
for (size_t i = 0; i < countof(TypeTable.TypeHash); ++i)
{
for (PType *ty = TypeTable.TypeHash[i]; ty != nullptr;)
{
auto next = ty->HashNext;
delete ty;
ty = next;
}
}
memset(TypeHash, 0, sizeof(TypeHash));
}
#include "c_dispatch.h"
CCMD(typetable)
{
DumpTypeTable();
}