gzdoom-gles/src/r_poly_cull.cpp
Magnus Norddahl 0108ff89d7 Bug fixes
2016-11-21 15:20:07 +01:00

251 lines
6.8 KiB
C++

/*
** Potential visible set (PVS) handling
** Copyright (c) 2016 Magnus Norddahl
**
** This software is provided 'as-is', without any express or implied
** warranty. In no event will the authors be held liable for any damages
** arising from the use of this software.
**
** Permission is granted to anyone to use this software for any purpose,
** including commercial applications, and to alter it and redistribute it
** freely, subject to the following restrictions:
**
** 1. The origin of this software must not be misrepresented; you must not
** claim that you wrote the original software. If you use this software
** in a product, an acknowledgment in the product documentation would be
** appreciated but is not required.
** 2. Altered source versions must be plainly marked as such, and must not be
** misrepresented as being the original software.
** 3. This notice may not be removed or altered from any source distribution.
**
*/
#include <stdlib.h>
#include "templates.h"
#include "doomdef.h"
#include "sbar.h"
#include "r_data/r_translate.h"
#include "r_poly_cull.h"
#include "r_poly.h"
void PolyCull::CullScene(const TriMatrix &worldToClip)
{
ClearSolidSegments();
PvsSectors.clear();
frustumPlanes = FrustumPlanes(worldToClip);
// Cull front to back
if (numnodes == 0)
{
PvsSectors.push_back(subsectors);
MaxCeilingHeight = subsectors->sector->ceilingplane.Zat0();
MinFloorHeight = subsectors->sector->floorplane.Zat0();
}
else
{
MaxCeilingHeight = 0.0;
MinFloorHeight = 0.0;
CullNode(nodes + numnodes - 1); // The head node is the last node output.
}
ClearSolidSegments();
}
void PolyCull::CullNode(void *node)
{
while (!((size_t)node & 1)) // Keep going until found a subsector
{
node_t *bsp = (node_t *)node;
// Decide which side the view point is on.
int side = PointOnSide(ViewPos, bsp);
// Recursively divide front space (toward the viewer).
CullNode(bsp->children[side]);
// Possibly divide back space (away from the viewer).
side ^= 1;
if (!CheckBBox(bsp->bbox[side]))
return;
node = bsp->children[side];
}
// Mark that we need to render this
subsector_t *sub = (subsector_t *)((BYTE *)node - 1);
MaxCeilingHeight = MAX(MaxCeilingHeight, sub->sector->ceilingplane.Zat0());
MinFloorHeight = MIN(MinFloorHeight, sub->sector->floorplane.Zat0());
PvsSectors.push_back(sub);
// Update culling info for further bsp clipping
for (uint32_t i = 0; i < sub->numlines; i++)
{
seg_t *line = &sub->firstline[i];
if ((line->sidedef == nullptr || !(line->sidedef->Flags & WALLF_POLYOBJ)) && line->backsector == nullptr)
{
int sx1, sx2;
if (GetSegmentRangeForLine(line->v1->fX(), line->v1->fY(), line->v2->fX(), line->v2->fY(), sx1, sx2))
{
MarkSegmentCulled(sx1, sx2);
}
}
}
}
void PolyCull::ClearSolidSegments()
{
SolidSegments.clear();
SolidSegments.reserve(SolidCullScale + 2);
SolidSegments.push_back({ -0x7fff, -SolidCullScale });
SolidSegments.push_back({ SolidCullScale , 0x7fff });
}
bool PolyCull::IsSegmentCulled(int x1, int x2) const
{
x1 = clamp(x1, -0x7ffe, 0x7ffd);
x2 = clamp(x2, -0x7ffd, 0x7ffe);
int next = 0;
while (SolidSegments[next].X2 <= x2)
next++;
return (x1 >= SolidSegments[next].X1 && x2 <= SolidSegments[next].X2);
}
void PolyCull::MarkSegmentCulled(int x1, int x2)
{
if (x1 >= x2)
return;
x1 = clamp(x1, -0x7ffe, 0x7ffd);
x2 = clamp(x2, -0x7ffd, 0x7ffe);
int cur = 0;
while (true)
{
if (SolidSegments[cur].X1 <= x1 && SolidSegments[cur].X2 >= x2) // Already fully marked
{
break;
}
else if (SolidSegments[cur].X2 >= x1 && SolidSegments[cur].X1 <= x2) // Merge segments
{
// Find last segment
int merge = cur;
while (merge + 1 != (int)SolidSegments.size() && SolidSegments[merge + 1].X1 <= x2)
merge++;
// Apply new merged range
SolidSegments[cur].X1 = MIN(SolidSegments[cur].X1, x1);
SolidSegments[cur].X2 = MAX(SolidSegments[merge].X2, x2);
// Remove additional segments we merged with
if (merge > cur)
SolidSegments.erase(SolidSegments.begin() + (cur + 1), SolidSegments.begin() + (merge + 1));
break;
}
else if (SolidSegments[cur].X1 > x1) // Insert new segment
{
SolidSegments.insert(SolidSegments.begin() + cur, { x1, x2 });
break;
}
cur++;
}
}
int PolyCull::PointOnSide(const DVector2 &pos, const node_t *node)
{
return DMulScale32(FLOAT2FIXED(pos.Y) - node->y, node->dx, node->x - FLOAT2FIXED(pos.X), node->dy) > 0;
}
bool PolyCull::CheckBBox(float *bspcoord)
{
// Start using a quick frustum AABB test:
AxisAlignedBoundingBox aabb(Vec3f(bspcoord[BOXLEFT], bspcoord[BOXBOTTOM], (float)ViewPos.Z - 1000.0f), Vec3f(bspcoord[BOXRIGHT], bspcoord[BOXTOP], (float)ViewPos.Z + 1000.0f));
auto result = IntersectionTest::frustum_aabb(frustumPlanes, aabb);
if (result == IntersectionTest::outside)
return false;
// Occlusion test using solid segments:
static const int lines[4][4] =
{
{ BOXLEFT, BOXBOTTOM, BOXRIGHT, BOXBOTTOM },
{ BOXRIGHT, BOXBOTTOM, BOXRIGHT, BOXTOP },
{ BOXRIGHT, BOXTOP, BOXLEFT, BOXTOP },
{ BOXLEFT, BOXTOP, BOXLEFT, BOXBOTTOM }
};
bool foundline = false;
int minsx1, maxsx2;
for (int i = 0; i < 4; i++)
{
int j = i < 3 ? i + 1 : 0;
float x1 = bspcoord[lines[i][0]];
float y1 = bspcoord[lines[i][1]];
float x2 = bspcoord[lines[i][2]];
float y2 = bspcoord[lines[i][3]];
int sx1, sx2;
if (GetSegmentRangeForLine(x1, y1, x2, y2, sx1, sx2))
{
if (foundline)
{
minsx1 = MIN(minsx1, sx1);
maxsx2 = MAX(maxsx2, sx2);
}
else
{
minsx1 = sx1;
maxsx2 = sx2;
foundline = true;
}
}
}
if (!foundline)
return false;
return !IsSegmentCulled(minsx1, maxsx2);
}
bool PolyCull::GetSegmentRangeForLine(double x1, double y1, double x2, double y2, int &sx1, int &sx2) const
{
double znear = 5.0;
// Transform to 2D view space:
x1 = x1 - ViewPos.X;
y1 = y1 - ViewPos.Y;
x2 = x2 - ViewPos.X;
y2 = y2 - ViewPos.Y;
double rx1 = x1 * ViewSin - y1 * ViewCos;
double rx2 = x2 * ViewSin - y2 * ViewCos;
double ry1 = x1 * ViewCos + y1 * ViewSin;
double ry2 = x2 * ViewCos + y2 * ViewSin;
// Cull if line is entirely behind view
if (ry1 < znear && ry2 < znear) return false;
// Clip line, if needed
double t1 = 0.0f, t2 = 1.0f;
if (ry1 < znear)
t1 = clamp((znear - ry1) / (ry2 - ry1), 0.0, 1.0);
if (ry2 < znear)
t2 = clamp((znear - ry1) / (ry2 - ry1), 0.0, 1.0);
if (t1 != 0.0 || t2 != 1.0)
{
double nx1 = rx1 * (1.0 - t1) + rx2 * t1;
double ny1 = ry1 * (1.0 - t1) + ry2 * t1;
double nx2 = rx1 * (1.0 - t2) + rx2 * t2;
double ny2 = ry1 * (1.0 - t2) + ry2 * t2;
rx1 = nx1;
rx2 = nx2;
ry1 = ny1;
ry2 = ny2;
}
sx1 = (int)floor(clamp(rx1 / ry1 * (SolidCullScale / 3), (double)-SolidCullScale, (double)SolidCullScale));
sx2 = (int)floor(clamp(rx2 / ry2 * (SolidCullScale / 3), (double)-SolidCullScale, (double)SolidCullScale));
if (sx1 > sx2)
std::swap(sx1, sx2);
return sx1 != sx2;
}