gzdoom-gles/libraries/adlmidi/adlmidi_midiplay.cpp
Christoph Oelckers a4f05f5741 - made libadl its own library subproject.
This is to improve compile times because the MSVC compiler tends to become slow with large lists of source files in a single project.
This new project is still our stripped down copy of libadl, not the original, because that project contains a large amount of baggage we do not need.

# Conflicts:
#	src/CMakeLists.txt

# Conflicts:
#	src/sound/mididevices/music_adlmidi_mididevice.cpp
2020-01-04 22:56:56 +01:00

2193 lines
70 KiB
C++

/*
* libADLMIDI is a free MIDI to WAV conversion library with OPL3 emulation
*
* Original ADLMIDI code: Copyright (c) 2010-2014 Joel Yliluoma <bisqwit@iki.fi>
* ADLMIDI Library API: Copyright (c) 2015-2018 Vitaly Novichkov <admin@wohlnet.ru>
*
* Library is based on the ADLMIDI, a MIDI player for Linux and Windows with OPL3 emulation:
* http://iki.fi/bisqwit/source/adlmidi.html
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "adlmidi_private.hpp"
// Mapping from MIDI volume level to OPL level value.
static const uint_fast32_t DMX_volume_mapping_table[128] =
{
0, 1, 3, 5, 6, 8, 10, 11,
13, 14, 16, 17, 19, 20, 22, 23,
25, 26, 27, 29, 30, 32, 33, 34,
36, 37, 39, 41, 43, 45, 47, 49,
50, 52, 54, 55, 57, 59, 60, 61,
63, 64, 66, 67, 68, 69, 71, 72,
73, 74, 75, 76, 77, 79, 80, 81,
82, 83, 84, 84, 85, 86, 87, 88,
89, 90, 91, 92, 92, 93, 94, 95,
96, 96, 97, 98, 99, 99, 100, 101,
101, 102, 103, 103, 104, 105, 105, 106,
107, 107, 108, 109, 109, 110, 110, 111,
112, 112, 113, 113, 114, 114, 115, 115,
116, 117, 117, 118, 118, 119, 119, 120,
120, 121, 121, 122, 122, 123, 123, 123,
124, 124, 125, 125, 126, 126, 127, 127,
};
static const uint_fast32_t W9X_volume_mapping_table[32] =
{
63, 63, 40, 36, 32, 28, 23, 21,
19, 17, 15, 14, 13, 12, 11, 10,
9, 8, 7, 6, 5, 5, 4, 4,
3, 3, 2, 2, 1, 1, 0, 0
};
//static const char MIDIsymbols[256+1] =
//"PPPPPPhcckmvmxbd" // Ins 0-15
//"oooooahoGGGGGGGG" // Ins 16-31
//"BBBBBBBBVVVVVHHM" // Ins 32-47
//"SSSSOOOcTTTTTTTT" // Ins 48-63
//"XXXXTTTFFFFFFFFF" // Ins 64-79
//"LLLLLLLLpppppppp" // Ins 80-95
//"XXXXXXXXGGGGGTSS" // Ins 96-111
//"bbbbMMMcGXXXXXXX" // Ins 112-127
//"????????????????" // Prc 0-15
//"????????????????" // Prc 16-31
//"???DDshMhhhCCCbM" // Prc 32-47
//"CBDMMDDDMMDDDDDD" // Prc 48-63
//"DDDDDDDDDDDDDDDD" // Prc 64-79
//"DD??????????????" // Prc 80-95
//"????????????????" // Prc 96-111
//"????????????????"; // Prc 112-127
static const uint8_t PercussionMap[256] =
"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"//GM
"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" // 3 = bass drum
"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" // 4 = snare
"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" // 5 = tom
"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" // 6 = cymbal
"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" // 7 = hihat
"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"
"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"
"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"//GP0
"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"//GP16
//2 3 4 5 6 7 8 940 1 2 3 4 5 6 7
"\0\0\0\3\3\0\0\7\0\5\7\5\0\5\7\5"//GP32
//8 950 1 2 3 4 5 6 7 8 960 1 2 3
"\5\6\5\0\6\0\5\6\0\6\0\6\5\5\5\5"//GP48
//4 5 6 7 8 970 1 2 3 4 5 6 7 8 9
"\5\0\0\0\0\0\7\0\0\0\0\0\0\0\0\0"//GP64
"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"
"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"
"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
enum { MasterVolumeDefault = 127 };
inline bool isXgPercChannel(uint8_t msb, uint8_t lsb)
{
return (msb == 0x7E || msb == 0x7F) && (lsb == 0);
}
void MIDIplay::AdlChannel::addAge(int64_t us)
{
const int64_t neg = 1000 * static_cast<int64_t>(-0x1FFFFFFFll);
if(users_empty())
{
koff_time_until_neglible_us = std::max(koff_time_until_neglible_us - us, neg);
if(koff_time_until_neglible_us < 0)
koff_time_until_neglible_us = 0;
}
else
{
koff_time_until_neglible_us = 0;
for(LocationData *i = users_first; i; i = i->next)
{
if(!i->fixed_sustain)
i->kon_time_until_neglible_us = std::max(i->kon_time_until_neglible_us - us, neg);
i->vibdelay_us += us;
}
}
}
MIDIplay::MIDIplay(unsigned long sampleRate):
m_cmfPercussionMode(false),
m_masterVolume(MasterVolumeDefault),
m_sysExDeviceId(0),
m_synthMode(Mode_XG),
m_arpeggioCounter(0)
#if defined(ADLMIDI_AUDIO_TICK_HANDLER)
, m_audioTickCounter(0)
#endif
{
m_midiDevices.clear();
m_setup.emulator = adl_getLowestEmulator();
m_setup.runAtPcmRate = false;
m_setup.PCM_RATE = sampleRate;
m_setup.mindelay = 1.0 / (double)m_setup.PCM_RATE;
m_setup.maxdelay = 512.0 / (double)m_setup.PCM_RATE;
m_setup.bankId = 0;
m_setup.numFourOps = -1;
m_setup.numChips = 2;
m_setup.deepTremoloMode = -1;
m_setup.deepVibratoMode = -1;
m_setup.rhythmMode = -1;
m_setup.logarithmicVolumes = false;
m_setup.volumeScaleModel = ADLMIDI_VolumeModel_AUTO;
//m_setup.SkipForward = 0;
m_setup.scaleModulators = -1;
m_setup.fullRangeBrightnessCC74 = false;
m_setup.delay = 0.0;
m_setup.carry = 0.0;
m_setup.tick_skip_samples_delay = 0;
#ifndef ADLMIDI_DISABLE_MIDI_SEQUENCER
initSequencerInterface();
#endif
resetMIDI();
applySetup();
realTime_ResetState();
}
void MIDIplay::applySetup()
{
m_synth.m_musicMode = OPL3::MODE_MIDI;
m_setup.tick_skip_samples_delay = 0;
m_synth.m_runAtPcmRate = m_setup.runAtPcmRate;
#ifndef DISABLE_EMBEDDED_BANKS
if(m_synth.m_embeddedBank != OPL3::CustomBankTag)
m_synth.m_insBankSetup = adlbanksetup[m_setup.bankId];
#endif
m_synth.m_deepTremoloMode = m_setup.deepTremoloMode < 0 ?
m_synth.m_insBankSetup.deepTremolo :
(m_setup.deepTremoloMode != 0);
m_synth.m_deepVibratoMode = m_setup.deepVibratoMode < 0 ?
m_synth.m_insBankSetup.deepVibrato :
(m_setup.deepVibratoMode != 0);
m_synth.m_rhythmMode = m_setup.rhythmMode < 0 ?
m_synth.m_insBankSetup.adLibPercussions :
(m_setup.rhythmMode != 0);
m_synth.m_scaleModulators = m_setup.scaleModulators < 0 ?
m_synth.m_insBankSetup.scaleModulators :
(m_setup.scaleModulators != 0);
if(m_setup.logarithmicVolumes)
m_synth.setVolumeScaleModel(ADLMIDI_VolumeModel_NativeOPL3);
else
m_synth.setVolumeScaleModel(static_cast<ADLMIDI_VolumeModels>(m_setup.volumeScaleModel));
if(m_setup.volumeScaleModel == ADLMIDI_VolumeModel_AUTO)//Use bank default volume model
m_synth.m_volumeScale = (OPL3::VolumesScale)m_synth.m_insBankSetup.volumeModel;
m_synth.m_numChips = m_setup.numChips;
m_cmfPercussionMode = false;
if(m_setup.numFourOps >= 0)
m_synth.m_numFourOps = m_setup.numFourOps;
else
adlCalculateFourOpChannels(this, true);
m_synth.reset(m_setup.emulator, m_setup.PCM_RATE, this);
m_chipChannels.clear();
m_chipChannels.resize(m_synth.m_numChannels);
// Reset the arpeggio counter
m_arpeggioCounter = 0;
}
void MIDIplay::partialReset()
{
realTime_panic();
m_setup.tick_skip_samples_delay = 0;
m_synth.m_runAtPcmRate = m_setup.runAtPcmRate;
m_synth.reset(m_setup.emulator, m_setup.PCM_RATE, this);
m_chipChannels.clear();
m_chipChannels.resize((size_t)m_synth.m_numChannels);
}
void MIDIplay::resetMIDI()
{
m_masterVolume = MasterVolumeDefault;
m_sysExDeviceId = 0;
m_synthMode = Mode_XG;
m_arpeggioCounter = 0;
m_midiChannels.clear();
m_midiChannels.resize(16, MIDIchannel());
caugh_missing_instruments.clear();
caugh_missing_banks_melodic.clear();
caugh_missing_banks_percussion.clear();
}
void MIDIplay::TickIterators(double s)
{
for(uint16_t c = 0; c < m_synth.m_numChannels; ++c)
m_chipChannels[c].addAge(static_cast<int64_t>(s * 1e6));
updateVibrato(s);
updateArpeggio(s);
#if !defined(ADLMIDI_AUDIO_TICK_HANDLER)
updateGlide(s);
#endif
}
void MIDIplay::realTime_ResetState()
{
for(size_t ch = 0; ch < m_midiChannels.size(); ch++)
{
MIDIchannel &chan = m_midiChannels[ch];
chan.resetAllControllers();
chan.volume = (m_synth.m_musicMode == OPL3::MODE_RSXX) ? 127 : 100;
chan.vibpos = 0.0;
chan.lastlrpn = 0;
chan.lastmrpn = 0;
chan.nrpn = false;
if((m_synthMode & Mode_GS) != 0)// Reset custom drum channels on GS
chan.is_xg_percussion = false;
noteUpdateAll(uint16_t(ch), Upd_All);
noteUpdateAll(uint16_t(ch), Upd_Off);
}
m_masterVolume = MasterVolumeDefault;
}
bool MIDIplay::realTime_NoteOn(uint8_t channel, uint8_t note, uint8_t velocity)
{
if(note >= 128)
note = 127;
if((m_synth.m_musicMode == OPL3::MODE_RSXX) && (velocity != 0))
{
// Check if this is just a note after-touch
MIDIchannel::activenoteiterator i = m_midiChannels[channel].activenotes_find(note);
if(i)
{
const int veloffset = i->ains->midi_velocity_offset;
velocity = (uint8_t)std::min(127, std::max(1, (int)velocity + veloffset));
i->vol = velocity;
noteUpdate(channel, i, Upd_Volume);
return false;
}
}
if(static_cast<size_t>(channel) > m_midiChannels.size())
channel = channel % 16;
noteOff(channel, note);
// On Note on, Keyoff the note first, just in case keyoff
// was omitted; this fixes Dance of sugar-plum fairy
// by Microsoft. Now that we've done a Keyoff,
// check if we still need to do a Keyon.
// vol=0 and event 8x are both Keyoff-only.
if(velocity == 0)
return false;
MIDIchannel &midiChan = m_midiChannels[channel];
size_t midiins = midiChan.patch;
bool isPercussion = (channel % 16 == 9) || midiChan.is_xg_percussion;
size_t bank = (midiChan.bank_msb * 256) + midiChan.bank_lsb;
if(isPercussion)
{
// == XG bank numbers ==
// 0x7E00 - XG "SFX Kits" SFX1/SFX2 channel (16128 signed decimal)
// 0x7F00 - XG "Drum Kits" Percussion channel (16256 signed decimal)
// MIDI instrument defines the patch:
if((m_synthMode & Mode_XG) != 0)
{
// Let XG SFX1/SFX2 bank will go in 128...255 range of LSB in WOPN file)
// Let XG Percussion bank will use (0...127 LSB range in WOPN file)
// Choose: SFX or Drum Kits
bank = midiins + ((bank == 0x7E00) ? 128 : 0);
}
else
{
bank = midiins;
}
midiins = note; // Percussion instrument
}
if(isPercussion)
bank += OPL3::PercussionTag;
const adlinsdata2 *ains = &OPL3::m_emptyInstrument;
//Set bank bank
const OPL3::Bank *bnk = NULL;
bool caughtMissingBank = false;
if((bank & ~static_cast<uint16_t>(OPL3::PercussionTag)) > 0)
{
OPL3::BankMap::iterator b = m_synth.m_insBanks.find(bank);
if(b != m_synth.m_insBanks.end())
bnk = &b->second;
if(bnk)
ains = &bnk->ins[midiins];
else
caughtMissingBank = true;
}
//Or fall back to bank ignoring LSB (GS)
if((ains->flags & adlinsdata::Flag_NoSound) && ((m_synthMode & Mode_GS) != 0))
{
size_t fallback = bank & ~(size_t)0x7F;
if(fallback != bank)
{
OPL3::BankMap::iterator b = m_synth.m_insBanks.find(fallback);
caughtMissingBank = false;
if(b != m_synth.m_insBanks.end())
bnk = &b->second;
if(bnk)
ains = &bnk->ins[midiins];
else
caughtMissingBank = true;
}
}
if(caughtMissingBank && hooks.onDebugMessage)
{
std::set<size_t> &missing = (isPercussion) ?
caugh_missing_banks_percussion : caugh_missing_banks_melodic;
const char *text = (isPercussion) ?
"percussion" : "melodic";
if(missing.insert(bank).second)
{
hooks.onDebugMessage(hooks.onDebugMessage_userData,
"[%i] Playing missing %s MIDI bank %i (patch %i)",
channel, text, (bank & ~static_cast<uint16_t>(OPL3::PercussionTag)), midiins);
}
}
//Or fall back to first bank
if((ains->flags & adlinsdata::Flag_NoSound) != 0)
{
OPL3::BankMap::iterator b = m_synth.m_insBanks.find(bank & OPL3::PercussionTag);
if(b != m_synth.m_insBanks.end())
bnk = &b->second;
if(bnk)
ains = &bnk->ins[midiins];
}
const int veloffset = ains->midi_velocity_offset;
velocity = (uint8_t)std::min(127, std::max(1, (int)velocity + veloffset));
int32_t tone = note;
if(!isPercussion && (bank > 0)) // For non-zero banks
{
if(ains->flags & adlinsdata::Flag_NoSound)
{
if(hooks.onDebugMessage && caugh_missing_instruments.insert(static_cast<uint8_t>(midiins)).second)
{
hooks.onDebugMessage(hooks.onDebugMessage_userData,
"[%i] Caught a blank instrument %i (offset %i) in the MIDI bank %u",
channel, m_midiChannels[channel].patch, midiins, bank);
}
bank = 0;
midiins = midiChan.patch;
}
}
if(ains->tone)
{
/*if(ains->tone < 20)
tone += ains->tone;
else*/
if(ains->tone < 128)
tone = ains->tone;
else
tone -= ains->tone - 128;
}
//uint16_t i[2] = { ains->adlno1, ains->adlno2 };
bool is_2op = !(ains->flags & (adlinsdata::Flag_Pseudo4op|adlinsdata::Flag_Real4op));
bool pseudo_4op = ains->flags & adlinsdata::Flag_Pseudo4op;
#ifndef __WATCOMC__
MIDIchannel::NoteInfo::Phys voices[MIDIchannel::NoteInfo::MaxNumPhysChans] =
{
{0, ains->adl[0], false},
{0, (!is_2op) ? ains->adl[1] : ains->adl[0], pseudo_4op}
};
#else /* Unfortunately, WatCom can't brace-initialize structure that incluses structure fields */
MIDIchannel::NoteInfo::Phys voices[MIDIchannel::NoteInfo::MaxNumPhysChans];
voices[0].chip_chan = 0;
voices[0].ains = ains->adl[0];
voices[0].pseudo4op = false;
voices[1].chip_chan = 0;
voices[1].ains = (!is_2op) ? ains->adl[1] : ains->adl[0];
voices[1].pseudo4op = pseudo_4op;
#endif /* __WATCOMC__ */
if((m_synth.m_rhythmMode == 1) && PercussionMap[midiins & 0xFF])
voices[1] = voices[0];//i[1] = i[0];
bool isBlankNote = (ains->flags & adlinsdata::Flag_NoSound) != 0;
if(hooks.onDebugMessage)
{
if(isBlankNote && caugh_missing_instruments.insert(static_cast<uint8_t>(midiins)).second)
hooks.onDebugMessage(hooks.onDebugMessage_userData, "[%i] Playing missing instrument %i", channel, midiins);
}
if(isBlankNote)
{
// Don't even try to play the blank instrument! But, insert the dummy note.
std::pair<MIDIchannel::activenoteiterator, bool>
dummy = midiChan.activenotes_insert(note);
dummy.first->isBlank = true;
dummy.first->ains = NULL;
dummy.first->chip_channels_count = 0;
// Record the last note on MIDI channel as source of portamento
midiChan.portamentoSource = static_cast<int8_t>(note);
return false;
}
// Allocate AdLib channel (the physical sound channel for the note)
int32_t adlchannel[MIDIchannel::NoteInfo::MaxNumPhysChans] = { -1, -1 };
for(uint32_t ccount = 0; ccount < MIDIchannel::NoteInfo::MaxNumPhysChans; ++ccount)
{
if(ccount == 1)
{
if(voices[0] == voices[1])
break; // No secondary channel
if(adlchannel[0] == -1)
break; // No secondary if primary failed
}
int32_t c = -1;
int32_t bs = -0x7FFFFFFFl;
for(size_t a = 0; a < (size_t)m_synth.m_numChannels; ++a)
{
if(ccount == 1 && static_cast<int32_t>(a) == adlchannel[0]) continue;
// ^ Don't use the same channel for primary&secondary
if(is_2op || pseudo_4op)
{
// Only use regular channels
uint32_t expected_mode = 0;
if(m_synth.m_rhythmMode)
{
if(m_cmfPercussionMode)
expected_mode = channel < 11 ? 0 : (3 + channel - 11); // CMF
else
expected_mode = PercussionMap[midiins & 0xFF];
}
if(m_synth.m_channelCategory[a] != expected_mode)
continue;
}
else
{
if(ccount == 0)
{
// Only use four-op master channels
if(m_synth.m_channelCategory[a] != OPL3::ChanCat_4op_Master)
continue;
}
else
{
// The secondary must be played on a specific channel.
if(a != static_cast<uint32_t>(adlchannel[0]) + 3)
continue;
}
}
int64_t s = calculateChipChannelGoodness(a, voices[ccount]);
if(s > bs)
{
bs = (int32_t)s; // Best candidate wins
c = static_cast<int32_t>(a);
}
}
if(c < 0)
{
if(hooks.onDebugMessage)
hooks.onDebugMessage(hooks.onDebugMessage_userData,
"ignored unplaceable note [bank %i, inst %i, note %i, MIDI channel %i]",
bank, midiChan.patch, note, channel);
continue; // Could not play this note. Ignore it.
}
prepareChipChannelForNewNote(static_cast<size_t>(c), voices[ccount]);
adlchannel[ccount] = c;
}
if(adlchannel[0] < 0 && adlchannel[1] < 0)
{
// The note could not be played, at all.
return false;
}
//if(hooks.onDebugMessage)
// hooks.onDebugMessage(hooks.onDebugMessage_userData, "i1=%d:%d, i2=%d:%d", i[0],adlchannel[0], i[1],adlchannel[1]);
if(midiChan.softPedal) // Apply Soft Pedal level reducing
velocity = static_cast<uint8_t>(std::floor(static_cast<float>(velocity) * 0.8f));
// Allocate active note for MIDI channel
std::pair<MIDIchannel::activenoteiterator, bool>
ir = midiChan.activenotes_insert(note);
ir.first->vol = velocity;
ir.first->vibrato = midiChan.noteAftertouch[note];
ir.first->noteTone = static_cast<int16_t>(tone);
ir.first->currentTone = tone;
ir.first->glideRate = HUGE_VAL;
ir.first->midiins = midiins;
ir.first->isPercussion = isPercussion;
ir.first->isBlank = isBlankNote;
ir.first->ains = ains;
ir.first->chip_channels_count = 0;
int8_t currentPortamentoSource = midiChan.portamentoSource;
double currentPortamentoRate = midiChan.portamentoRate;
bool portamentoEnable =
midiChan.portamentoEnable && currentPortamentoRate != HUGE_VAL && !isPercussion;
// Record the last note on MIDI channel as source of portamento
midiChan.portamentoSource = static_cast<int8_t>(note);
// midiChan.portamentoSource = portamentoEnable ? (int8_t)note : (int8_t)-1;
// Enable gliding on portamento note
if (portamentoEnable && currentPortamentoSource >= 0)
{
ir.first->currentTone = currentPortamentoSource;
ir.first->glideRate = currentPortamentoRate;
++midiChan.gliding_note_count;
}
for(unsigned ccount = 0; ccount < MIDIchannel::NoteInfo::MaxNumPhysChans; ++ccount)
{
int32_t c = adlchannel[ccount];
if(c < 0)
continue;
uint16_t chipChan = static_cast<uint16_t>(adlchannel[ccount]);
ir.first->phys_ensure_find_or_create(chipChan)->assign(voices[ccount]);
}
noteUpdate(channel, ir.first, Upd_All | Upd_Patch);
for(unsigned ccount = 0; ccount < MIDIchannel::NoteInfo::MaxNumPhysChans; ++ccount)
{
int32_t c = adlchannel[ccount];
if(c < 0)
continue;
m_chipChannels[c].recent_ins = voices[ccount];
m_chipChannels[c].addAge(0);
}
return true;
}
void MIDIplay::realTime_NoteOff(uint8_t channel, uint8_t note)
{
if(static_cast<size_t>(channel) > m_midiChannels.size())
channel = channel % 16;
noteOff(channel, note);
}
void MIDIplay::realTime_NoteAfterTouch(uint8_t channel, uint8_t note, uint8_t atVal)
{
if(static_cast<size_t>(channel) > m_midiChannels.size())
channel = channel % 16;
MIDIchannel &chan = m_midiChannels[channel];
MIDIchannel::activenoteiterator i = m_midiChannels[channel].activenotes_find(note);
if(i)
{
i->vibrato = atVal;
}
uint8_t oldAtVal = chan.noteAftertouch[note % 128];
if(atVal != oldAtVal)
{
chan.noteAftertouch[note % 128] = atVal;
bool inUse = atVal != 0;
for(unsigned n = 0; !inUse && n < 128; ++n)
inUse = chan.noteAftertouch[n] != 0;
chan.noteAfterTouchInUse = inUse;
}
}
void MIDIplay::realTime_ChannelAfterTouch(uint8_t channel, uint8_t atVal)
{
if(static_cast<size_t>(channel) > m_midiChannels.size())
channel = channel % 16;
m_midiChannels[channel].aftertouch = atVal;
}
void MIDIplay::realTime_Controller(uint8_t channel, uint8_t type, uint8_t value)
{
if(static_cast<size_t>(channel) > m_midiChannels.size())
channel = channel % 16;
switch(type)
{
case 1: // Adjust vibrato
//UI.PrintLn("%u:vibrato %d", MidCh,value);
m_midiChannels[channel].vibrato = value;
break;
case 0: // Set bank msb (GM bank)
m_midiChannels[channel].bank_msb = value;
if((m_synthMode & Mode_GS) == 0)// Don't use XG drums on GS synth mode
m_midiChannels[channel].is_xg_percussion = isXgPercChannel(m_midiChannels[channel].bank_msb, m_midiChannels[channel].bank_lsb);
break;
case 32: // Set bank lsb (XG bank)
m_midiChannels[channel].bank_lsb = value;
if((m_synthMode & Mode_GS) == 0)// Don't use XG drums on GS synth mode
m_midiChannels[channel].is_xg_percussion = isXgPercChannel(m_midiChannels[channel].bank_msb, m_midiChannels[channel].bank_lsb);
break;
case 5: // Set portamento msb
m_midiChannels[channel].portamento = static_cast<uint16_t>((m_midiChannels[channel].portamento & 0x007F) | (value << 7));
updatePortamento(channel);
break;
case 37: // Set portamento lsb
m_midiChannels[channel].portamento = static_cast<uint16_t>((m_midiChannels[channel].portamento & 0x3F80) | (value));
updatePortamento(channel);
break;
case 65: // Enable/disable portamento
m_midiChannels[channel].portamentoEnable = value >= 64;
updatePortamento(channel);
break;
case 7: // Change volume
m_midiChannels[channel].volume = value;
noteUpdateAll(channel, Upd_Volume);
break;
case 74: // Change brightness
m_midiChannels[channel].brightness = value;
noteUpdateAll(channel, Upd_Volume);
break;
case 64: // Enable/disable sustain
m_midiChannels[channel].sustain = (value >= 64);
if(!m_midiChannels[channel].sustain)
killSustainingNotes(channel, -1, AdlChannel::LocationData::Sustain_Pedal);
break;
case 66: // Enable/disable sostenuto
if(value >= 64) //Find notes and mark them as sostenutoed
markSostenutoNotes(channel);
else
killSustainingNotes(channel, -1, AdlChannel::LocationData::Sustain_Sostenuto);
break;
case 67: // Enable/disable soft-pedal
m_midiChannels[channel].softPedal = (value >= 64);
break;
case 11: // Change expression (another volume factor)
m_midiChannels[channel].expression = value;
noteUpdateAll(channel, Upd_Volume);
break;
case 10: // Change panning
m_midiChannels[channel].panning = value;
noteUpdateAll(channel, Upd_Pan);
break;
case 121: // Reset all controllers
m_midiChannels[channel].resetAllControllers();
noteUpdateAll(channel, Upd_Pan + Upd_Volume + Upd_Pitch);
// Kill all sustained notes
killSustainingNotes(channel, -1, AdlChannel::LocationData::Sustain_ANY);
break;
case 120: // All sounds off
noteUpdateAll(channel, Upd_OffMute);
break;
case 123: // All notes off
noteUpdateAll(channel, Upd_Off);
break;
case 91:
break; // Reverb effect depth. We don't do per-channel reverb.
case 92:
break; // Tremolo effect depth. We don't do...
case 93:
break; // Chorus effect depth. We don't do.
case 94:
break; // Celeste effect depth. We don't do.
case 95:
break; // Phaser effect depth. We don't do.
case 98:
m_midiChannels[channel].lastlrpn = value;
m_midiChannels[channel].nrpn = true;
break;
case 99:
m_midiChannels[channel].lastmrpn = value;
m_midiChannels[channel].nrpn = true;
break;
case 100:
m_midiChannels[channel].lastlrpn = value;
m_midiChannels[channel].nrpn = false;
break;
case 101:
m_midiChannels[channel].lastmrpn = value;
m_midiChannels[channel].nrpn = false;
break;
case 113:
break; // Related to pitch-bender, used by missimp.mid in Duke3D
case 6:
setRPN(channel, value, true);
break;
case 38:
setRPN(channel, value, false);
break;
case 103:
if(m_synth.m_musicMode == OPL3::MODE_CMF)
m_cmfPercussionMode = (value != 0);
break; // CMF (ctrl 0x67) rhythm mode
default:
break;
//UI.PrintLn("Ctrl %d <- %d (ch %u)", ctrlno, value, MidCh);
}
}
void MIDIplay::realTime_PatchChange(uint8_t channel, uint8_t patch)
{
if(static_cast<size_t>(channel) > m_midiChannels.size())
channel = channel % 16;
m_midiChannels[channel].patch = patch;
}
void MIDIplay::realTime_PitchBend(uint8_t channel, uint16_t pitch)
{
if(static_cast<size_t>(channel) > m_midiChannels.size())
channel = channel % 16;
m_midiChannels[channel].bend = int(pitch) - 8192;
noteUpdateAll(channel, Upd_Pitch);
}
void MIDIplay::realTime_PitchBend(uint8_t channel, uint8_t msb, uint8_t lsb)
{
if(static_cast<size_t>(channel) > m_midiChannels.size())
channel = channel % 16;
m_midiChannels[channel].bend = int(lsb) + int(msb) * 128 - 8192;
noteUpdateAll(channel, Upd_Pitch);
}
void MIDIplay::realTime_BankChangeLSB(uint8_t channel, uint8_t lsb)
{
if(static_cast<size_t>(channel) > m_midiChannels.size())
channel = channel % 16;
m_midiChannels[channel].bank_lsb = lsb;
}
void MIDIplay::realTime_BankChangeMSB(uint8_t channel, uint8_t msb)
{
if(static_cast<size_t>(channel) > m_midiChannels.size())
channel = channel % 16;
m_midiChannels[channel].bank_msb = msb;
}
void MIDIplay::realTime_BankChange(uint8_t channel, uint16_t bank)
{
if(static_cast<size_t>(channel) > m_midiChannels.size())
channel = channel % 16;
m_midiChannels[channel].bank_lsb = uint8_t(bank & 0xFF);
m_midiChannels[channel].bank_msb = uint8_t((bank >> 8) & 0xFF);
}
void MIDIplay::setDeviceId(uint8_t id)
{
m_sysExDeviceId = id;
}
bool MIDIplay::realTime_SysEx(const uint8_t *msg, size_t size)
{
if(size < 4 || msg[0] != 0xF0 || msg[size - 1] != 0xF7)
return false;
unsigned manufacturer = msg[1];
unsigned dev = msg[2];
msg += 3;
size -= 4;
switch(manufacturer)
{
default:
break;
case Manufacturer_UniversalNonRealtime:
case Manufacturer_UniversalRealtime:
return doUniversalSysEx(
dev, manufacturer == Manufacturer_UniversalRealtime, msg, size);
case Manufacturer_Roland:
return doRolandSysEx(dev, msg, size);
case Manufacturer_Yamaha:
return doYamahaSysEx(dev, msg, size);
}
return false;
}
bool MIDIplay::doUniversalSysEx(unsigned dev, bool realtime, const uint8_t *data, size_t size)
{
bool devicematch = dev == 0x7F || dev == m_sysExDeviceId;
if(size < 2 || !devicematch)
return false;
unsigned address =
(((unsigned)data[0] & 0x7F) << 8) |
(((unsigned)data[1] & 0x7F));
data += 2;
size -= 2;
switch(((unsigned)realtime << 16) | address)
{
case (0 << 16) | 0x0901: // GM System On
if(hooks.onDebugMessage)
hooks.onDebugMessage(hooks.onDebugMessage_userData, "SysEx: GM System On");
m_synthMode = Mode_GM;
realTime_ResetState();
return true;
case (0 << 16) | 0x0902: // GM System Off
if(hooks.onDebugMessage)
hooks.onDebugMessage(hooks.onDebugMessage_userData, "SysEx: GM System Off");
m_synthMode = Mode_XG;//TODO: TEMPORARY, make something RIGHT
realTime_ResetState();
return true;
case (1 << 16) | 0x0401: // MIDI Master Volume
if(size != 2)
break;
unsigned volume =
(((unsigned)data[0] & 0x7F)) |
(((unsigned)data[1] & 0x7F) << 7);
m_masterVolume = static_cast<uint8_t>(volume >> 7);
for(size_t ch = 0; ch < m_midiChannels.size(); ch++)
noteUpdateAll(uint16_t(ch), Upd_Volume);
return true;
}
return false;
}
bool MIDIplay::doRolandSysEx(unsigned dev, const uint8_t *data, size_t size)
{
bool devicematch = dev == 0x7F || (dev & 0x0F) == m_sysExDeviceId;
if(size < 6 || !devicematch)
return false;
unsigned model = data[0] & 0x7F;
unsigned mode = data[1] & 0x7F;
unsigned checksum = data[size - 1] & 0x7F;
data += 2;
size -= 3;
#if !defined(ADLMIDI_SKIP_ROLAND_CHECKSUM)
{
unsigned checkvalue = 0;
for(size_t i = 0; i < size; ++i)
checkvalue += data[i] & 0x7F;
checkvalue = (128 - (checkvalue & 127)) & 127;
if(checkvalue != checksum)
{
if(hooks.onDebugMessage)
hooks.onDebugMessage(hooks.onDebugMessage_userData, "SysEx: Caught invalid roland SysEx message!");
return false;
}
}
#endif
unsigned address =
(((unsigned)data[0] & 0x7F) << 16) |
(((unsigned)data[1] & 0x7F) << 8) |
(((unsigned)data[2] & 0x7F));
unsigned target_channel = 0;
/* F0 41 10 42 12 40 00 7F 00 41 F7 */
if((address & 0xFFF0FF) == 0x401015) // Turn channel 1 into percussion
{
address = 0x401015;
target_channel = data[1] & 0x0F;
}
data += 3;
size -= 3;
if(mode != RolandMode_Send) // don't have MIDI-Out reply ability
return false;
// Mode Set
// F0 {41 10 42 12} {40 00 7F} {00 41} F7
// Custom drum channels
// F0 {41 10 42 12} {40 1<ch> 15} {<state> <sum>} F7
switch((model << 24) | address)
{
case (RolandModel_GS << 24) | 0x00007F: // System Mode Set
{
if(size != 1 || (dev & 0xF0) != 0x10)
break;
unsigned mode = data[0] & 0x7F;
ADL_UNUSED(mode);//TODO: Hook this correctly!
if(hooks.onDebugMessage)
hooks.onDebugMessage(hooks.onDebugMessage_userData, "SysEx: Caught Roland System Mode Set: %02X", mode);
m_synthMode = Mode_GS;
realTime_ResetState();
return true;
}
case (RolandModel_GS << 24) | 0x40007F: // Mode Set
{
if(size != 1 || (dev & 0xF0) != 0x10)
break;
unsigned value = data[0] & 0x7F;
ADL_UNUSED(value);//TODO: Hook this correctly!
if(hooks.onDebugMessage)
hooks.onDebugMessage(hooks.onDebugMessage_userData, "SysEx: Caught Roland Mode Set: %02X", value);
m_synthMode = Mode_GS;
realTime_ResetState();
return true;
}
case (RolandModel_GS << 24) | 0x401015: // Percussion channel
{
if(size != 1 || (dev & 0xF0) != 0x10)
break;
if(m_midiChannels.size() < 16)
break;
unsigned value = data[0] & 0x7F;
const uint8_t channels_map[16] =
{
9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15
};
if(hooks.onDebugMessage)
hooks.onDebugMessage(hooks.onDebugMessage_userData,
"SysEx: Caught Roland Percussion set: %02X on channel %u (from %X)",
value, channels_map[target_channel], target_channel);
m_midiChannels[channels_map[target_channel]].is_xg_percussion = ((value == 0x01)) || ((value == 0x02));
return true;
}
}
return false;
}
bool MIDIplay::doYamahaSysEx(unsigned dev, const uint8_t *data, size_t size)
{
bool devicematch = dev == 0x7F || (dev & 0x0F) == m_sysExDeviceId;
if(size < 1 || !devicematch)
return false;
unsigned model = data[0] & 0x7F;
++data;
--size;
switch((model << 8) | (dev & 0xF0))
{
case (YamahaModel_XG << 8) | 0x10: // parameter change
{
if(size < 3)
break;
unsigned address =
(((unsigned)data[0] & 0x7F) << 16) |
(((unsigned)data[1] & 0x7F) << 8) |
(((unsigned)data[2] & 0x7F));
data += 3;
size -= 3;
switch(address)
{
case 0x00007E: // XG System On
if(size != 1)
break;
unsigned value = data[0] & 0x7F;
ADL_UNUSED(value);//TODO: Hook this correctly!
if(hooks.onDebugMessage)
hooks.onDebugMessage(hooks.onDebugMessage_userData, "SysEx: Caught Yamaha XG System On: %02X", value);
m_synthMode = Mode_XG;
realTime_ResetState();
return true;
}
break;
}
}
return false;
}
void MIDIplay::realTime_panic()
{
panic();
killSustainingNotes(-1, -1, AdlChannel::LocationData::Sustain_ANY);
}
void MIDIplay::realTime_deviceSwitch(size_t track, const char *data, size_t length)
{
const std::string indata(data, length);
m_currentMidiDevice[track] = chooseDevice(indata);
}
size_t MIDIplay::realTime_currentDevice(size_t track)
{
if(m_currentMidiDevice.empty())
return 0;
return m_currentMidiDevice[track];
}
void MIDIplay::realTime_rawOPL(uint8_t reg, uint8_t value)
{
if((reg & 0xF0) == 0xC0)
value |= 0x30;
//std::printf("OPL poke %02X, %02X\n", reg, value);
//std::fflush(stdout);
m_synth.writeReg(0, reg, value);
}
#if defined(ADLMIDI_AUDIO_TICK_HANDLER)
void MIDIplay::AudioTick(uint32_t chipId, uint32_t rate)
{
if(chipId != 0) // do first chip ticks only
return;
uint32_t tickNumber = m_audioTickCounter++;
double timeDelta = 1.0 / rate;
enum { portamentoInterval = 32 }; // for efficiency, set rate limit on pitch updates
if(tickNumber % portamentoInterval == 0)
{
double portamentoDelta = timeDelta * portamentoInterval;
updateGlide(portamentoDelta);
}
}
#endif
void MIDIplay::noteUpdate(size_t midCh,
MIDIplay::MIDIchannel::activenoteiterator i,
unsigned props_mask,
int32_t select_adlchn)
{
MIDIchannel::NoteInfo &info = *i;
const int16_t noteTone = info.noteTone;
const double currentTone = info.currentTone;
const uint8_t vol = info.vol;
const int midiins = static_cast<int>(info.midiins);
const adlinsdata2 &ains = *info.ains;
AdlChannel::Location my_loc;
my_loc.MidCh = static_cast<uint16_t>(midCh);
my_loc.note = info.note;
if(info.isBlank)
{
if(props_mask & Upd_Off)
m_midiChannels[midCh].activenotes_erase(i);
return;
}
for(unsigned ccount = 0, ctotal = info.chip_channels_count; ccount < ctotal; ccount++)
{
const MIDIchannel::NoteInfo::Phys &ins = info.chip_channels[ccount];
uint16_t c = ins.chip_chan;
if(select_adlchn >= 0 && c != select_adlchn) continue;
if(props_mask & Upd_Patch)
{
m_synth.setPatch(c, ins.ains);
AdlChannel::LocationData *d = m_chipChannels[c].users_find_or_create(my_loc);
if(d) // inserts if necessary
{
d->sustained = AdlChannel::LocationData::Sustain_None;
d->vibdelay_us = 0;
d->fixed_sustain = (ains.ms_sound_kon == static_cast<uint16_t>(adlNoteOnMaxTime));
d->kon_time_until_neglible_us = 1000 * ains.ms_sound_kon;
d->ins = ins;
}
}
}
for(unsigned ccount = 0; ccount < info.chip_channels_count; ccount++)
{
const MIDIchannel::NoteInfo::Phys &ins = info.chip_channels[ccount];
uint16_t c = ins.chip_chan;
uint16_t c_slave = info.chip_channels[1].chip_chan;
if(select_adlchn >= 0 && c != select_adlchn)
continue;
if(props_mask & Upd_Off) // note off
{
if(!m_midiChannels[midCh].sustain)
{
AdlChannel::LocationData *k = m_chipChannels[c].users_find(my_loc);
bool do_erase_user = (k && ((k->sustained & AdlChannel::LocationData::Sustain_Sostenuto) == 0));
if(do_erase_user)
m_chipChannels[c].users_erase(k);
if(hooks.onNote)
hooks.onNote(hooks.onNote_userData, c, noteTone, midiins, 0, 0.0);
if(do_erase_user && m_chipChannels[c].users_empty())
{
m_synth.noteOff(c);
if(props_mask & Upd_Mute) // Mute the note
{
m_synth.touchNote(c, 0);
m_chipChannels[c].koff_time_until_neglible_us = 0;
}
else
{
m_chipChannels[c].koff_time_until_neglible_us = 1000 * int64_t(ains.ms_sound_koff);
}
}
}
else
{
// Sustain: Forget about the note, but don't key it off.
// Also will avoid overwriting it very soon.
AdlChannel::LocationData *d = m_chipChannels[c].users_find_or_create(my_loc);
if(d)
d->sustained |= AdlChannel::LocationData::Sustain_Pedal; // note: not erased!
if(hooks.onNote)
hooks.onNote(hooks.onNote_userData, c, noteTone, midiins, -1, 0.0);
}
info.phys_erase_at(&ins); // decrements channel count
--ccount; // adjusts index accordingly
continue;
}
if(props_mask & Upd_Pan)
m_synth.setPan(c, m_midiChannels[midCh].panning);
if(props_mask & Upd_Volume)
{
uint_fast32_t volume;
bool is_percussion = (midCh == 9) || m_midiChannels[midCh].is_xg_percussion;
uint_fast32_t brightness = is_percussion ? 127 : m_midiChannels[midCh].brightness;
if(!m_setup.fullRangeBrightnessCC74)
{
// Simulate post-High-Pass filter result which affects sounding by half level only
if(brightness >= 64)
brightness = 127;
else
brightness *= 2;
}
switch(m_synth.m_volumeScale)
{
default:
case OPL3::VOLUME_Generic:
{
volume = vol * m_masterVolume * m_midiChannels[midCh].volume * m_midiChannels[midCh].expression;
/* If the channel has arpeggio, the effective volume of
* *this* instrument is actually lower due to timesharing.
* To compensate, add extra volume that corresponds to the
* time this note is *not* heard.
* Empirical tests however show that a full equal-proportion
* increment sounds wrong. Therefore, using the square root.
*/
//volume = (int)(volume * std::sqrt( (double) ch[c].users.size() ));
// The formula below: SOLVE(V=127^4 * 2^( (A-63.49999) / 8), A)
volume = volume > (8725 * 127) ? static_cast<uint_fast32_t>(std::log(static_cast<double>(volume)) * 11.541560327111707 - 1.601379199767093e+02) : 0;
// The incorrect formula below: SOLVE(V=127^4 * (2^(A/63)-1), A)
//opl.Touch_Real(c, volume>(11210*127) ? 91.61112 * std::log((4.8819E-7/127)*volume + 1.0)+0.5 : 0);
}
break;
case OPL3::VOLUME_NATIVE:
{
volume = vol * m_midiChannels[midCh].volume * m_midiChannels[midCh].expression;
// volume = volume * m_masterVolume / (127 * 127 * 127) / 2;
volume = (volume * m_masterVolume) / 4096766;
}
break;
case OPL3::VOLUME_DMX:
{
volume = 2 * (m_midiChannels[midCh].volume * m_midiChannels[midCh].expression * m_masterVolume / 16129) + 1;
//volume = 2 * (Ch[MidCh].volume) + 1;
volume = (DMX_volume_mapping_table[(vol < 128) ? vol : 127] * volume) >> 9;
}
break;
case OPL3::VOLUME_APOGEE:
{
volume = (m_midiChannels[midCh].volume * m_midiChannels[midCh].expression * m_masterVolume / 16129);
volume = ((64 * (vol + 0x80)) * volume) >> 15;
//volume = ((63 * (vol + 0x80)) * Ch[MidCh].volume) >> 15;
}
break;
case OPL3::VOLUME_9X:
{
//volume = 63 - W9X_volume_mapping_table[(((vol * Ch[MidCh].volume /** Ch[MidCh].expression*/) * m_masterVolume / 16129 /*2048383*/) >> 2)];
volume = 63 - W9X_volume_mapping_table[((vol * m_midiChannels[midCh].volume * m_midiChannels[midCh].expression * m_masterVolume / 2048383) >> 2)];
//volume = W9X_volume_mapping_table[vol >> 2] + volume;
}
break;
}
m_synth.touchNote(c, static_cast<uint8_t>(volume), static_cast<uint8_t>(brightness));
/* DEBUG ONLY!!!
static uint32_t max = 0;
if(volume == 0)
max = 0;
if(volume > max)
max = volume;
printf("%d\n", max);
fflush(stdout);
*/
}
if(props_mask & Upd_Pitch)
{
AdlChannel::LocationData *d = m_chipChannels[c].users_find(my_loc);
// Don't bend a sustained note
if(!d || (d->sustained == AdlChannel::LocationData::Sustain_None))
{
double midibend = m_midiChannels[midCh].bend * m_midiChannels[midCh].bendsense;
double bend = midibend + ins.ains.finetune;
double phase = 0.0;
uint8_t vibrato = std::max(m_midiChannels[midCh].vibrato, m_midiChannels[midCh].aftertouch);
vibrato = std::max(vibrato, i->vibrato);
if((ains.flags & adlinsdata::Flag_Pseudo4op) && ins.pseudo4op)
{
phase = ains.voice2_fine_tune;//0.125; // Detune the note slightly (this is what Doom does)
}
if(vibrato && (!d || d->vibdelay_us >= m_midiChannels[midCh].vibdelay_us))
bend += static_cast<double>(vibrato) * m_midiChannels[midCh].vibdepth * std::sin(m_midiChannels[midCh].vibpos);
#define BEND_COEFFICIENT 172.4387
m_synth.noteOn(c, c_slave, BEND_COEFFICIENT * std::exp(0.057762265 * (currentTone + bend + phase)));
#undef BEND_COEFFICIENT
if(hooks.onNote)
hooks.onNote(hooks.onNote_userData, c, noteTone, midiins, vol, midibend);
}
}
}
if(info.chip_channels_count == 0)
{
if(i->glideRate != HUGE_VAL)
--m_midiChannels[midCh].gliding_note_count;
m_midiChannels[midCh].activenotes_erase(i);
}
}
void MIDIplay::noteUpdateAll(size_t midCh, unsigned props_mask)
{
for(MIDIchannel::activenoteiterator
i = m_midiChannels[midCh].activenotes_begin(); i;)
{
MIDIchannel::activenoteiterator j(i++);
noteUpdate(midCh, j, props_mask);
}
}
const std::string &MIDIplay::getErrorString()
{
return errorStringOut;
}
void MIDIplay::setErrorString(const std::string &err)
{
errorStringOut = err;
}
int64_t MIDIplay::calculateChipChannelGoodness(size_t c, const MIDIchannel::NoteInfo::Phys &ins) const
{
const AdlChannel &chan = m_chipChannels[c];
int64_t koff_ms = chan.koff_time_until_neglible_us / 1000;
int64_t s = -koff_ms;
// Rate channel with a releasing note
if(s < 0 && chan.users_empty())
{
s -= 40000;
// If it's same instrument, better chance to get it when no free channels
if(chan.recent_ins == ins)
s = (m_synth.m_musicMode == OPL3::MODE_CMF) ? 0 : -koff_ms;
return s;
}
// Same midi-instrument = some stability
for(AdlChannel::LocationData *j = chan.users_first; j; j = j->next)
{
s -= 4000000;
int64_t kon_ms = j->kon_time_until_neglible_us / 1000;
s -= (j->sustained == AdlChannel::LocationData::Sustain_None) ?
kon_ms : (kon_ms / 2);
MIDIchannel::activenoteiterator
k = const_cast<MIDIchannel &>(m_midiChannels[j->loc.MidCh]).activenotes_find(j->loc.note);
if(k)
{
// Same instrument = good
if(j->ins == ins)
{
s += 300;
// Arpeggio candidate = even better
if(j->vibdelay_us < 70000
|| j->kon_time_until_neglible_us > 20000000)
s += 10;
}
// Percussion is inferior to melody
s += k->isPercussion ? 50 : 0;
/*
if(k->second.midiins >= 25
&& k->second.midiins < 40
&& j->second.ins != ins)
{
s -= 14000; // HACK: Don't clobber the bass or the guitar
}
*/
}
// If there is another channel to which this note
// can be evacuated to in the case of congestion,
// increase the score slightly.
unsigned n_evacuation_stations = 0;
for(size_t c2 = 0; c2 < static_cast<size_t>(m_synth.m_numChannels); ++c2)
{
if(c2 == c) continue;
if(m_synth.m_channelCategory[c2]
!= m_synth.m_channelCategory[c]) continue;
for(AdlChannel::LocationData *m = m_chipChannels[c2].users_first; m; m = m->next)
{
if(m->sustained != AdlChannel::LocationData::Sustain_None) continue;
if(m->vibdelay_us >= 200000) continue;
if(m->ins != j->ins) continue;
n_evacuation_stations += 1;
}
}
s += (int64_t)n_evacuation_stations * 4;
}
return s;
}
void MIDIplay::prepareChipChannelForNewNote(size_t c, const MIDIchannel::NoteInfo::Phys &ins)
{
if(m_chipChannels[c].users_empty()) return; // Nothing to do
//bool doing_arpeggio = false;
for(AdlChannel::LocationData *jnext = m_chipChannels[c].users_first; jnext;)
{
AdlChannel::LocationData *j = jnext;
jnext = jnext->next;
if(j->sustained == AdlChannel::LocationData::Sustain_None)
{
// Collision: Kill old note,
// UNLESS we're going to do arpeggio
MIDIchannel::activenoteiterator i
(m_midiChannels[j->loc.MidCh].activenotes_ensure_find(j->loc.note));
// Check if we can do arpeggio.
if((j->vibdelay_us < 70000
|| j->kon_time_until_neglible_us > 20000000)
&& j->ins == ins)
{
// Do arpeggio together with this note.
//doing_arpeggio = true;
continue;
}
killOrEvacuate(c, j, i);
// ^ will also erase j from ch[c].users.
}
}
// Kill all sustained notes on this channel
// Don't keep them for arpeggio, because arpeggio requires
// an intact "activenotes" record. This is a design flaw.
killSustainingNotes(-1, static_cast<int32_t>(c), AdlChannel::LocationData::Sustain_ANY);
// Keyoff the channel so that it can be retriggered,
// unless the new note will be introduced as just an arpeggio.
if(m_chipChannels[c].users_empty())
m_synth.noteOff(c);
}
void MIDIplay::killOrEvacuate(size_t from_channel,
AdlChannel::LocationData *j,
MIDIplay::MIDIchannel::activenoteiterator i)
{
uint32_t maxChannels = ADL_MAX_CHIPS * 18;
// Before killing the note, check if it can be
// evacuated to another channel as an arpeggio
// instrument. This helps if e.g. all channels
// are full of strings and we want to do percussion.
// FIXME: This does not care about four-op entanglements.
for(uint32_t c = 0; c < m_synth.m_numChannels; ++c)
{
uint16_t cs = static_cast<uint16_t>(c);
if(c >= maxChannels)
break;
if(c == from_channel)
continue;
if(m_synth.m_channelCategory[c] != m_synth.m_channelCategory[from_channel])
continue;
AdlChannel &adlch = m_chipChannels[c];
if(adlch.users_size == AdlChannel::users_max)
continue; // no room for more arpeggio on channel
for(AdlChannel::LocationData *m = adlch.users_first; m; m = m->next)
{
if(m->vibdelay_us >= 200000
&& m->kon_time_until_neglible_us < 10000000) continue;
if(m->ins != j->ins)
continue;
if(hooks.onNote)
{
hooks.onNote(hooks.onNote_userData,
(int)from_channel,
i->noteTone,
static_cast<int>(i->midiins), 0, 0.0);
hooks.onNote(hooks.onNote_userData,
(int)c,
i->noteTone,
static_cast<int>(i->midiins),
i->vol, 0.0);
}
i->phys_erase(static_cast<uint16_t>(from_channel));
i->phys_ensure_find_or_create(cs)->assign(j->ins);
if(!m_chipChannels[cs].users_insert(*j))
assert(false);
m_chipChannels[from_channel].users_erase(j);
return;
}
}
/*UI.PrintLn(
"collision @%u: [%ld] <- ins[%3u]",
c,
//ch[c].midiins<128?'M':'P', ch[c].midiins&127,
ch[c].age, //adlins[ch[c].insmeta].ms_sound_kon,
ins
);*/
// Kill it
noteUpdate(j->loc.MidCh,
i,
Upd_Off,
static_cast<int32_t>(from_channel));
}
void MIDIplay::panic()
{
for(uint8_t chan = 0; chan < m_midiChannels.size(); chan++)
{
for(uint8_t note = 0; note < 128; note++)
realTime_NoteOff(chan, note);
}
}
void MIDIplay::killSustainingNotes(int32_t midCh, int32_t this_adlchn, uint32_t sustain_type)
{
uint32_t first = 0, last = m_synth.m_numChannels;
if(this_adlchn >= 0)
{
first = static_cast<uint32_t>(this_adlchn);
last = first + 1;
}
for(uint32_t c = first; c < last; ++c)
{
if(m_chipChannels[c].users_empty())
continue; // Nothing to do
for(AdlChannel::LocationData *jnext = m_chipChannels[c].users_first; jnext;)
{
AdlChannel::LocationData *j = jnext;
jnext = jnext->next;
if((midCh < 0 || j->loc.MidCh == midCh)
&& ((j->sustained & sustain_type) != 0))
{
int midiins = '?';
if(hooks.onNote)
hooks.onNote(hooks.onNote_userData, (int)c, j->loc.note, midiins, 0, 0.0);
j->sustained &= ~sustain_type;
if(j->sustained == AdlChannel::LocationData::Sustain_None)
m_chipChannels[c].users_erase(j);//Remove only when note is clean from any holders
}
}
// Keyoff the channel, if there are no users left.
if(m_chipChannels[c].users_empty())
m_synth.noteOff(c);
}
}
void MIDIplay::markSostenutoNotes(int32_t midCh)
{
uint32_t first = 0, last = m_synth.m_numChannels;
for(uint32_t c = first; c < last; ++c)
{
if(m_chipChannels[c].users_empty())
continue; // Nothing to do
for(AdlChannel::LocationData *jnext = m_chipChannels[c].users_first; jnext;)
{
AdlChannel::LocationData *j = jnext;
jnext = jnext->next;
if((j->loc.MidCh == midCh) && (j->sustained == AdlChannel::LocationData::Sustain_None))
j->sustained |= AdlChannel::LocationData::Sustain_Sostenuto;
}
}
}
void MIDIplay::setRPN(size_t midCh, unsigned value, bool MSB)
{
bool nrpn = m_midiChannels[midCh].nrpn;
unsigned addr = m_midiChannels[midCh].lastmrpn * 0x100 + m_midiChannels[midCh].lastlrpn;
switch(addr + nrpn * 0x10000 + MSB * 0x20000)
{
case 0x0000 + 0*0x10000 + 1*0x20000: // Pitch-bender sensitivity
m_midiChannels[midCh].bendsense_msb = value;
m_midiChannels[midCh].updateBendSensitivity();
break;
case 0x0000 + 0*0x10000 + 0*0x20000: // Pitch-bender sensitivity LSB
m_midiChannels[midCh].bendsense_lsb = value;
m_midiChannels[midCh].updateBendSensitivity();
break;
case 0x0108 + 1*0x10000 + 1*0x20000:
if((m_synthMode & Mode_XG) != 0) // Vibrato speed
{
if(value == 64) m_midiChannels[midCh].vibspeed = 1.0;
else if(value < 100) m_midiChannels[midCh].vibspeed = 1.0 / (1.6e-2 * (value ? value : 1));
else m_midiChannels[midCh].vibspeed = 1.0 / (0.051153846 * value - 3.4965385);
m_midiChannels[midCh].vibspeed *= 2 * 3.141592653 * 5.0;
}
break;
case 0x0109 + 1*0x10000 + 1*0x20000:
if((m_synthMode & Mode_XG) != 0) // Vibrato depth
{
m_midiChannels[midCh].vibdepth = (((int)value - 64) * 0.15) * 0.01;
}
break;
case 0x010A + 1*0x10000 + 1*0x20000:
if((m_synthMode & Mode_XG) != 0) // Vibrato delay in millisecons
{
m_midiChannels[midCh].vibdelay_us = value ? int64_t(209.2 * std::exp(0.0795 * (double)value)) : 0;
}
break;
default:/* UI.PrintLn("%s %04X <- %d (%cSB) (ch %u)",
"NRPN"+!nrpn, addr, value, "LM"[MSB], MidCh);*/
break;
}
}
void MIDIplay::updatePortamento(size_t midCh)
{
double rate = HUGE_VAL;
uint16_t midival = m_midiChannels[midCh].portamento;
if(m_midiChannels[midCh].portamentoEnable && midival > 0)
rate = 350.0 * std::pow(2.0, -0.062 * (1.0 / 128) * midival);
m_midiChannels[midCh].portamentoRate = rate;
}
void MIDIplay::noteOff(size_t midCh, uint8_t note)
{
MIDIchannel::activenoteiterator
i = m_midiChannels[midCh].activenotes_find(note);
if(i)
noteUpdate(midCh, i, Upd_Off);
}
void MIDIplay::updateVibrato(double amount)
{
for(size_t a = 0, b = m_midiChannels.size(); a < b; ++a)
{
if(m_midiChannels[a].hasVibrato() && !m_midiChannels[a].activenotes_empty())
{
noteUpdateAll(static_cast<uint16_t>(a), Upd_Pitch);
m_midiChannels[a].vibpos += amount * m_midiChannels[a].vibspeed;
}
else
m_midiChannels[a].vibpos = 0.0;
}
}
size_t MIDIplay::chooseDevice(const std::string &name)
{
std::map<std::string, size_t>::iterator i = m_midiDevices.find(name);
if(i != m_midiDevices.end())
return i->second;
size_t n = m_midiDevices.size() * 16;
m_midiDevices.insert(std::make_pair(name, n));
m_midiChannels.resize(n + 16);
return n;
}
void MIDIplay::updateArpeggio(double) // amount = amount of time passed
{
// If there is an adlib channel that has multiple notes
// simulated on the same channel, arpeggio them.
#if 0
const unsigned desired_arpeggio_rate = 40; // Hz (upper limit)
# if 1
static unsigned cache = 0;
amount = amount; // Ignore amount. Assume we get a constant rate.
cache += MaxSamplesAtTime * desired_arpeggio_rate;
if(cache < PCM_RATE) return;
cache %= PCM_RATE;
# else
static double arpeggio_cache = 0;
arpeggio_cache += amount * desired_arpeggio_rate;
if(arpeggio_cache < 1.0) return;
arpeggio_cache = 0.0;
# endif
#endif
++m_arpeggioCounter;
for(uint32_t c = 0; c < m_synth.m_numChannels; ++c)
{
retry_arpeggio:
if(c > uint32_t(std::numeric_limits<int32_t>::max()))
break;
size_t n_users = m_chipChannels[c].users_size;
if(n_users > 1)
{
AdlChannel::LocationData *i = m_chipChannels[c].users_first;
size_t rate_reduction = 3;
if(n_users >= 3)
rate_reduction = 2;
if(n_users >= 4)
rate_reduction = 1;
for(size_t count = (m_arpeggioCounter / rate_reduction) % n_users,
n = 0; n < count; ++n)
i = i->next;
if(i->sustained == AdlChannel::LocationData::Sustain_None)
{
if(i->kon_time_until_neglible_us <= 0)
{
noteUpdate(
i->loc.MidCh,
m_midiChannels[ i->loc.MidCh ].activenotes_ensure_find(i->loc.note),
Upd_Off,
static_cast<int32_t>(c));
goto retry_arpeggio;
}
noteUpdate(
i->loc.MidCh,
m_midiChannels[ i->loc.MidCh ].activenotes_ensure_find(i->loc.note),
Upd_Pitch | Upd_Volume | Upd_Pan,
static_cast<int32_t>(c));
}
}
}
}
void MIDIplay::updateGlide(double amount)
{
size_t num_channels = m_midiChannels.size();
for(size_t channel = 0; channel < num_channels; ++channel)
{
MIDIchannel &midiChan = m_midiChannels[channel];
if(midiChan.gliding_note_count == 0)
continue;
for(MIDIchannel::activenoteiterator it = midiChan.activenotes_begin();
it; ++it)
{
double finalTone = it->noteTone;
double previousTone = it->currentTone;
bool directionUp = previousTone < finalTone;
double toneIncr = amount * (directionUp ? +it->glideRate : -it->glideRate);
double currentTone = previousTone + toneIncr;
bool glideFinished = !(directionUp ? (currentTone < finalTone) : (currentTone > finalTone));
currentTone = glideFinished ? finalTone : currentTone;
if(currentTone != previousTone)
{
it->currentTone = currentTone;
noteUpdate(static_cast<uint16_t>(channel), it, Upd_Pitch);
}
}
}
}
void MIDIplay::describeChannels(char *str, char *attr, size_t size)
{
if (!str || size <= 0)
return;
OPL3 &synth = m_synth;
uint32_t numChannels = synth.m_numChannels;
uint32_t index = 0;
while(index < numChannels && index < size - 1)
{
const AdlChannel &adlChannel = m_chipChannels[index];
AdlChannel::LocationData *loc = adlChannel.users_first;
if(!loc) // off
{
str[index] = '-';
}
else if(loc->next) // arpeggio
{
str[index] = '@';
}
else // on
{
switch(synth.m_channelCategory[index])
{
case OPL3::ChanCat_Regular:
str[index] = '+';
break;
case OPL3::ChanCat_4op_Master:
case OPL3::ChanCat_4op_Slave:
str[index] = '#';
break;
default: // rhythm-mode percussion
str[index] = 'r';
break;
}
}
uint8_t attribute = 0;
if (loc) // 4-bit color index of MIDI channel
attribute |= (uint8_t)(loc->loc.MidCh & 0xF);
attr[index] = (char)attribute;
++index;
}
str[index] = 0;
attr[index] = 0;
}
#ifndef ADLMIDI_DISABLE_CPP_EXTRAS
struct AdlInstrumentTester::Impl
{
uint32_t cur_gm;
uint32_t ins_idx;
std::vector<uint32_t> adl_ins_list;
OPL3 *opl;
MIDIplay *play;
};
ADLMIDI_EXPORT AdlInstrumentTester::AdlInstrumentTester(ADL_MIDIPlayer *device)
: P(new Impl)
{
#ifndef DISABLE_EMBEDDED_BANKS
MIDIplay *play = reinterpret_cast<MIDIplay *>(device->adl_midiPlayer);
P->cur_gm = 0;
P->ins_idx = 0;
P->play = play;
P->opl = play ? &play->m_synth : NULL;
#else
ADL_UNUSED(device);
#endif
}
ADLMIDI_EXPORT AdlInstrumentTester::~AdlInstrumentTester()
{
delete P;
}
ADLMIDI_EXPORT void AdlInstrumentTester::FindAdlList()
{
#ifndef DISABLE_EMBEDDED_BANKS
const unsigned NumBanks = (unsigned)adl_getBanksCount();
std::set<unsigned> adl_ins_set;
for(unsigned bankno = 0; bankno < NumBanks; ++bankno)
adl_ins_set.insert(banks[bankno][P->cur_gm]);
P->adl_ins_list.assign(adl_ins_set.begin(), adl_ins_set.end());
P->ins_idx = 0;
NextAdl(0);
P->opl->silenceAll();
#endif
}
ADLMIDI_EXPORT void AdlInstrumentTester::Touch(unsigned c, unsigned volume) // Volume maxes at 127*127*127
{
#ifndef DISABLE_EMBEDDED_BANKS
OPL3 *opl = P->opl;
if(opl->m_volumeScale == OPL3::VOLUME_NATIVE)
opl->touchNote(c, static_cast<uint8_t>(volume * 127 / (127 * 127 * 127) / 2));
else
{
// The formula below: SOLVE(V=127^3 * 2^( (A-63.49999) / 8), A)
opl->touchNote(c, static_cast<uint8_t>(volume > 8725 ? static_cast<unsigned int>(std::log((double)volume) * 11.541561 + (0.5 - 104.22845)) : 0));
// The incorrect formula below: SOLVE(V=127^3 * (2^(A/63)-1), A)
//Touch_Real(c, volume>11210 ? 91.61112 * std::log(4.8819E-7*volume + 1.0)+0.5 : 0);
}
#else
ADL_UNUSED(c);
ADL_UNUSED(volume);
#endif
}
ADLMIDI_EXPORT void AdlInstrumentTester::DoNote(int note)
{
#ifndef DISABLE_EMBEDDED_BANKS
MIDIplay *play = P->play;
OPL3 *opl = P->opl;
if(P->adl_ins_list.empty()) FindAdlList();
const unsigned meta = P->adl_ins_list[P->ins_idx];
const adlinsdata2 ains = adlinsdata2::from_adldata(::adlins[meta]);
int tone = (P->cur_gm & 128) ? (P->cur_gm & 127) : (note + 50);
if(ains.tone)
{
/*if(ains.tone < 20)
tone += ains.tone;
else */
if(ains.tone < 128)
tone = ains.tone;
else
tone -= ains.tone - 128;
}
double hertz = 172.00093 * std::exp(0.057762265 * (tone + 0.0));
int32_t adlchannel[2] = { 0, 3 };
if((ains.flags & (adlinsdata::Flag_Pseudo4op|adlinsdata::Flag_Real4op)) == 0)
{
adlchannel[1] = -1;
adlchannel[0] = 6; // single-op
if(play->hooks.onDebugMessage)
{
play->hooks.onDebugMessage(play->hooks.onDebugMessage_userData,
"noteon at %d for %g Hz\n", adlchannel[0], hertz);
}
}
else
{
if(play->hooks.onDebugMessage)
{
play->hooks.onDebugMessage(play->hooks.onDebugMessage_userData,
"noteon at %d and %d for %g Hz\n", adlchannel[0], adlchannel[1], hertz);
}
}
opl->noteOff(0);
opl->noteOff(3);
opl->noteOff(6);
for(unsigned c = 0; c < 2; ++c)
{
if(adlchannel[c] < 0) continue;
opl->setPatch(static_cast<size_t>(adlchannel[c]), ains.adl[c]);
opl->touchNote(static_cast<size_t>(adlchannel[c]), 63);
opl->setPan(static_cast<size_t>(adlchannel[c]), 0x30);
opl->noteOn(static_cast<size_t>(adlchannel[c]), static_cast<size_t>(adlchannel[1]), hertz);
}
#else
ADL_UNUSED(note);
#endif
}
ADLMIDI_EXPORT void AdlInstrumentTester::NextGM(int offset)
{
#ifndef DISABLE_EMBEDDED_BANKS
P->cur_gm = (P->cur_gm + 256 + (uint32_t)offset) & 0xFF;
FindAdlList();
#else
ADL_UNUSED(offset);
#endif
}
ADLMIDI_EXPORT void AdlInstrumentTester::NextAdl(int offset)
{
#ifndef DISABLE_EMBEDDED_BANKS
//OPL3 *opl = P->opl;
if(P->adl_ins_list.empty()) FindAdlList();
const unsigned NumBanks = (unsigned)adl_getBanksCount();
P->ins_idx = (uint32_t)((int32_t)P->ins_idx + (int32_t)P->adl_ins_list.size() + offset) % (int32_t)P->adl_ins_list.size();
#if 0
UI.Color(15);
std::fflush(stderr);
std::printf("SELECTED G%c%d\t%s\n",
cur_gm < 128 ? 'M' : 'P', cur_gm < 128 ? cur_gm + 1 : cur_gm - 128,
"<-> select GM, ^v select ins, qwe play note");
std::fflush(stdout);
UI.Color(7);
std::fflush(stderr);
#endif
for(size_t a = 0, n = P->adl_ins_list.size(); a < n; ++a)
{
const unsigned i = P->adl_ins_list[a];
const adlinsdata2 ains = adlinsdata2::from_adldata(::adlins[i]);
char ToneIndication[8] = " ";
if(ains.tone)
{
/*if(ains.tone < 20)
snprintf(ToneIndication, 8, "+%-2d", ains.tone);
else*/
if(ains.tone < 128)
snprintf(ToneIndication, 8, "=%-2d", ains.tone);
else
snprintf(ToneIndication, 8, "-%-2d", ains.tone - 128);
}
std::printf("%s%s%s%u\t",
ToneIndication,
(ains.flags & (adlinsdata::Flag_Pseudo4op|adlinsdata::Flag_Real4op)) ? "[2]" : " ",
(P->ins_idx == a) ? "->" : "\t",
i
);
for(unsigned bankno = 0; bankno < NumBanks; ++bankno)
if(banks[bankno][P->cur_gm] == i)
std::printf(" %u", bankno);
std::printf("\n");
}
#else
ADL_UNUSED(offset);
#endif
}
ADLMIDI_EXPORT bool AdlInstrumentTester::HandleInputChar(char ch)
{
#ifndef DISABLE_EMBEDDED_BANKS
static const char notes[] = "zsxdcvgbhnjmq2w3er5t6y7ui9o0p";
// c'd'ef'g'a'bC'D'EF'G'A'Bc'd'e
switch(ch)
{
case '/':
case 'H':
case 'A':
NextAdl(-1);
break;
case '*':
case 'P':
case 'B':
NextAdl(+1);
break;
case '-':
case 'K':
case 'D':
NextGM(-1);
break;
case '+':
case 'M':
case 'C':
NextGM(+1);
break;
case 3:
#if !((!defined(__WIN32__) || defined(__CYGWIN__)) && !defined(__DJGPP__))
case 27:
#endif
return false;
default:
const char *p = std::strchr(notes, ch);
if(p && *p)
DoNote((int)(p - notes) - 12);
}
#else
ADL_UNUSED(ch);
#endif
return true;
}
#endif /* ADLMIDI_DISABLE_CPP_EXTRAS */
// Implement the user map data structure.
bool MIDIplay::AdlChannel::users_empty() const
{
return !users_first;
}
MIDIplay::AdlChannel::LocationData *MIDIplay::AdlChannel::users_find(Location loc)
{
LocationData *user = NULL;
for(LocationData *curr = users_first; !user && curr; curr = curr->next)
if(curr->loc == loc)
user = curr;
return user;
}
MIDIplay::AdlChannel::LocationData *MIDIplay::AdlChannel::users_allocate()
{
// remove free cells front
LocationData *user = users_free_cells;
if(!user)
return NULL;
users_free_cells = user->next;
if(users_free_cells)
users_free_cells->prev = NULL;
// add to users front
if(users_first)
users_first->prev = user;
user->prev = NULL;
user->next = users_first;
users_first = user;
++users_size;
return user;
}
MIDIplay::AdlChannel::LocationData *MIDIplay::AdlChannel::users_find_or_create(Location loc)
{
LocationData *user = users_find(loc);
if(!user)
{
user = users_allocate();
if(!user)
return NULL;
LocationData *prev = user->prev, *next = user->next;
*user = LocationData();
user->prev = prev;
user->next = next;
user->loc = loc;
}
return user;
}
MIDIplay::AdlChannel::LocationData *MIDIplay::AdlChannel::users_insert(const LocationData &x)
{
LocationData *user = users_find(x.loc);
if(!user)
{
user = users_allocate();
if(!user)
return NULL;
LocationData *prev = user->prev, *next = user->next;
*user = x;
user->prev = prev;
user->next = next;
}
return user;
}
void MIDIplay::AdlChannel::users_erase(LocationData *user)
{
if(user->prev)
user->prev->next = user->next;
if(user->next)
user->next->prev = user->prev;
if(user == users_first)
users_first = user->next;
user->prev = NULL;
user->next = users_free_cells;
users_free_cells = user;
--users_size;
}
void MIDIplay::AdlChannel::users_clear()
{
users_first = NULL;
users_free_cells = users_cells;
users_size = 0;
for(size_t i = 0; i < users_max; ++i)
{
users_cells[i].prev = (i > 0) ? &users_cells[i - 1] : NULL;
users_cells[i].next = (i + 1 < users_max) ? &users_cells[i + 1] : NULL;
}
}
void MIDIplay::AdlChannel::users_assign(const LocationData *users, size_t count)
{
ADL_UNUSED(count);//Avoid warning for release builds
assert(count <= users_max);
if(users == users_first && users)
{
// self assignment
assert(users_size == count);
return;
}
users_clear();
const LocationData *src_cell = users;
// move to the last
if(src_cell)
{
while(src_cell->next)
src_cell = src_cell->next;
}
// push cell copies in reverse order
while(src_cell)
{
LocationData *dst_cell = users_allocate();
assert(dst_cell);
LocationData *prev = dst_cell->prev, *next = dst_cell->next;
*dst_cell = *src_cell;
dst_cell->prev = prev;
dst_cell->next = next;
src_cell = src_cell->prev;
}
assert(users_size == count);
}