gzdoom-gles/src/gl/utility/gl_geometric.h
Christoph Oelckers 4fb17561bc - optimize VSMatrix::Translate.
- use FVector3 for sprite rotations.
2016-05-01 12:39:08 +02:00

261 lines
6.1 KiB
C++

#ifndef __GL_GEOM
#define __GL_GEOM
#include "math.h"
#include "r_defs.h"
class Vector
{
public:
Vector()
{
SetX(0.f);
SetY(1.f);
SetZ(0.f);
m_length = 1.f;
}
Vector(float x, float y, float z)
{
SetX(x);
SetY(y);
SetZ(z);
m_length=-1.0f;
}
Vector(float *v)
{
SetX(v[0]);
SetY(v[1]);
SetZ(v[2]);
m_length=-1.0f;
}
Vector(vertex_t * v)
{
SetX((float)v->fX());
SetY((float)v->fY());
SetZ(0);
}
void Normalize()
{
float l = 1.f / Length();
SetX(X() * l);
SetY(Y() * l);
SetZ(Z() * l);
m_length=1.0f;
}
void UpdateLength()
{
m_length = sqrtf((X() * X()) + (Y() * Y()) + (Z() * Z()));
}
void Set(float *v)
{
SetX(v[0]);
SetY(v[1]);
SetZ(v[2]);
m_length=-1.0f;
}
void Set(float x, float y, float z)
{
SetX(x);
SetY(y);
SetZ(z);
m_length=-1.0f;
}
float Length()
{
if (m_length<0.0f) UpdateLength();
return m_length;
}
float Dist(Vector &v)
{
Vector t(X() - v.X(), Y() - v.Y(), Z() - v.Z());
return t.Length();
}
float Dot(Vector &v)
{
return (X() * v.X()) + (Y() * v.Y()) + (Z() * v.Z());
}
Vector Cross(Vector &v);
Vector operator- (Vector &v);
Vector operator+ (Vector &v);
Vector operator* (float f);
Vector operator/ (float f);
bool operator== (Vector &v);
bool operator!= (Vector &v) { return !((*this) == v); }
void GetRightUp(Vector &up, Vector &right);
float operator[] (int index) const { return m_vec[index]; }
float &operator[] (int index) { return m_vec[index]; }
float X() const { return m_vec[0]; }
float Y() const { return m_vec[1]; }
float Z() const { return m_vec[2]; }
void SetX(float x) { m_vec[0] = x; }
void SetY(float y) { m_vec[1] = y; }
void SetZ(float z) { m_vec[2] = z; }
void Scale(float scale);
Vector ProjectVector(Vector &a);
Vector ProjectPlane(Vector &right, Vector &up);
protected:
float m_vec[3];
float m_length;
};
class Plane
{
public:
Plane()
{
m_normal.Set(0.f, 1.f, 0.f);
m_d = 0.f;
}
void Init(float *v1, float *v2, float *v3);
void Init(float a, float b, float c, float d);
void Init(float *verts, int numVerts);
void Set(secplane_t &plane);
float DistToPoint(float x, float y, float z);
bool PointOnSide(float x, float y, float z);
bool PointOnSide(Vector &v) { return PointOnSide(v.X(), v.Y(), v.Z()); }
bool ValidNormal() { return m_normal.Length() == 1.f; }
float A() { return m_normal.X(); }
float B() { return m_normal.Y(); }
float C() { return m_normal.Z(); }
float D() { return m_d; }
const Vector &Normal() const { return m_normal; }
protected:
Vector m_normal;
float m_d;
};
class Matrix3x4 // used like a 4x4 matrix with the last row always being (0,0,0,1)
{
float m[3][4];
public:
void MakeIdentity()
{
memset(m, 0, sizeof(m));
m[0][0] = m[1][1] = m[2][2] = 1.f;
}
void Translate(float x, float y, float z)
{
m[0][3] = m[0][0]*x + m[0][1]*y + m[0][2]*z + m[0][3];
m[1][3] = m[1][0]*x + m[1][1]*y + m[1][2]*z + m[1][3];
m[2][3] = m[2][0]*x + m[2][1]*y + m[2][2]*z + m[2][3];
}
void Scale(float x, float y, float z)
{
m[0][0] *=x;
m[1][0] *=x;
m[2][0] *=x;
m[0][1] *=y;
m[1][1] *=y;
m[2][1] *=y;
m[0][2] *=z;
m[1][2] *=z;
m[2][2] *=z;
}
void Rotate(float ax, float ay, float az, float angle)
{
Matrix3x4 m1;
Vector axis(ax, ay, az);
axis.Normalize();
double c = cos(angle * M_PI/180.), s = sin(angle * M_PI/180.), t = 1 - c;
double sx = s*axis.X(), sy = s*axis.Y(), sz = s*axis.Z();
double tx, ty, txx, tyy, u, v;
tx = t*axis.X();
m1.m[0][0] = float( (txx=tx*axis.X()) + c );
m1.m[0][1] = float( (u=tx*axis.Y()) - sz);
m1.m[0][2] = float( (v=tx*axis.Z()) + sy);
ty = t*axis.Y();
m1.m[1][0] = float( u + sz);
m1.m[1][1] = float( (tyy=ty*axis.Y()) + c );
m1.m[1][2] = float( (u=ty*axis.Z()) - sx);
m1.m[2][0] = float( v - sy);
m1.m[2][1] = float( u + sx);
m1.m[2][2] = float( (t-txx-tyy) + c );
m1.m[0][3] = 0.f;
m1.m[1][3] = 0.f;
m1.m[2][3] = 0.f;
*this = (*this) * m1;
}
Matrix3x4 operator *(const Matrix3x4 &other)
{
Matrix3x4 result;
result.m[0][0] = m[0][0]*other.m[0][0] + m[0][1]*other.m[1][0] + m[0][2]*other.m[2][0];
result.m[0][1] = m[0][0]*other.m[0][1] + m[0][1]*other.m[1][1] + m[0][2]*other.m[2][1];
result.m[0][2] = m[0][0]*other.m[0][2] + m[0][1]*other.m[1][2] + m[0][2]*other.m[2][2];
result.m[0][3] = m[0][0]*other.m[0][3] + m[0][1]*other.m[1][3] + m[0][2]*other.m[2][3] + m[0][3];
result.m[1][0] = m[1][0]*other.m[0][0] + m[1][1]*other.m[1][0] + m[1][2]*other.m[2][0];
result.m[1][1] = m[1][0]*other.m[0][1] + m[1][1]*other.m[1][1] + m[1][2]*other.m[2][1];
result.m[1][2] = m[1][0]*other.m[0][2] + m[1][1]*other.m[1][2] + m[1][2]*other.m[2][2];
result.m[1][3] = m[1][0]*other.m[0][3] + m[1][1]*other.m[1][3] + m[1][2]*other.m[2][3] + m[1][3];
result.m[2][0] = m[2][0]*other.m[0][0] + m[2][1]*other.m[1][0] + m[2][2]*other.m[2][0];
result.m[2][1] = m[2][0]*other.m[0][1] + m[2][1]*other.m[1][1] + m[2][2]*other.m[2][1];
result.m[2][2] = m[2][0]*other.m[0][2] + m[2][1]*other.m[1][2] + m[2][2]*other.m[2][2];
result.m[2][3] = m[2][0]*other.m[0][3] + m[2][1]*other.m[1][3] + m[2][2]*other.m[2][3] + m[2][3];
return result;
}
Vector operator *(const Vector &vec)
{
Vector result;
result.SetX(vec.X()*m[0][0] + vec.Y()*m[0][1] + vec.Z()*m[0][2] + m[0][3]);
result.SetY(vec.X()*m[1][0] + vec.Y()*m[1][1] + vec.Z()*m[1][2] + m[1][3]);
result.SetZ(vec.X()*m[2][0] + vec.Y()*m[2][1] + vec.Z()*m[2][2] + m[2][3]);
return result;
}
FVector3 operator *(const FVector3 &vec)
{
FVector3 result;
result.X = vec.X*m[0][0] + vec.Y*m[0][1] + vec.Z*m[0][2] + m[0][3];
result.Y = vec.X*m[1][0] + vec.Y*m[1][1] + vec.Z*m[1][2] + m[1][3];
result.Z = vec.X*m[2][0] + vec.Y*m[2][1] + vec.Z*m[2][2] + m[2][3];
return result;
}
void MultiplyVector(float *f3 , float *f3o)
{
float x = f3[0] * m[0][0] + f3[1] * m[0][1] + f3[2] * m[0][2] + m[0][3];
float y = f3[0] * m[1][0] + f3[1] * m[1][1] + f3[2] * m[1][2] + m[1][3];
float z = f3[0] * m[2][0] + f3[1] * m[2][1] + f3[2] * m[2][2] + m[2][3];
f3o[2] = z; f3o[1] = y; f3o[0] = x;
}
};
#endif