gzdoom-gles/src/polyrenderer/drawers/poly_drawer8.h

455 lines
17 KiB
C++

/*
** Projected triangle drawer
** Copyright (c) 2016 Magnus Norddahl
**
** This software is provided 'as-is', without any express or implied
** warranty. In no event will the authors be held liable for any damages
** arising from the use of this software.
**
** Permission is granted to anyone to use this software for any purpose,
** including commercial applications, and to alter it and redistribute it
** freely, subject to the following restrictions:
**
** 1. The origin of this software must not be misrepresented; you must not
** claim that you wrote the original software. If you use this software
** in a product, an acknowledgment in the product documentation would be
** appreciated but is not required.
** 2. Altered source versions must be plainly marked as such, and must not be
** misrepresented as being the original software.
** 3. This notice may not be removed or altered from any source distribution.
**
*/
#pragma once
#include "screen_triangle.h"
template<typename BlendT, typename SamplerT>
class TriScreenDrawer8
{
public:
static void Execute(const TriDrawTriangleArgs *args, WorkerThreadData *thread)
{
using namespace TriScreenDrawerModes;
int numSpans = thread->NumFullSpans;
auto fullSpans = thread->FullSpans;
int numBlocks = thread->NumPartialBlocks;
auto partialBlocks = thread->PartialBlocks;
int startX = thread->StartX;
int startY = thread->StartY;
auto flags = args->uniforms->flags;
bool is_fixed_light = (flags & TriUniforms::fixed_light) == TriUniforms::fixed_light;
uint32_t lightmask = is_fixed_light ? 0 : 0xffffffff;
auto colormaps = args->colormaps;
uint32_t srcalpha = args->uniforms->srcalpha;
uint32_t destalpha = args->uniforms->destalpha;
// Calculate gradients
const TriVertex &v1 = *args->v1;
const TriVertex &v2 = *args->v2;
const TriVertex &v3 = *args->v3;
ScreenTriangleStepVariables gradientX;
ScreenTriangleStepVariables gradientY;
ScreenTriangleStepVariables start;
gradientX.W = FindGradientX(v1.x, v1.y, v2.x, v2.y, v3.x, v3.y, v1.w, v2.w, v3.w);
gradientY.W = FindGradientY(v1.x, v1.y, v2.x, v2.y, v3.x, v3.y, v1.w, v2.w, v3.w);
start.W = v1.w + gradientX.W * (startX - v1.x) + gradientY.W * (startY - v1.y);
for (int i = 0; i < TriVertex::NumVarying; i++)
{
gradientX.Varying[i] = FindGradientX(v1.x, v1.y, v2.x, v2.y, v3.x, v3.y, v1.varying[i] * v1.w, v2.varying[i] * v2.w, v3.varying[i] * v3.w);
gradientY.Varying[i] = FindGradientY(v1.x, v1.y, v2.x, v2.y, v3.x, v3.y, v1.varying[i] * v1.w, v2.varying[i] * v2.w, v3.varying[i] * v3.w);
start.Varying[i] = v1.varying[i] * v1.w + gradientX.Varying[i] * (startX - v1.x) + gradientY.Varying[i] * (startY - v1.y);
}
// Output
uint8_t * RESTRICT destOrg = args->dest;
int pitch = args->pitch;
// Light
uint32_t light = args->uniforms->light;
float shade = (64.0f - (light * 255 / 256 + 12.0f) * 32.0f / 128.0f) / 32.0f;
float globVis = args->uniforms->globvis * (1.0f / 32.0f);
// Sampling stuff
uint32_t color = args->uniforms->color;
const uint8_t * RESTRICT translation = args->translation;
const uint8_t * RESTRICT texPixels = args->texturePixels;
uint32_t texWidth = args->textureWidth;
uint32_t texHeight = args->textureHeight;
for (int i = 0; i < numSpans; i++)
{
const auto &span = fullSpans[i];
uint8_t *dest = destOrg + span.X + span.Y * pitch;
int width = span.Length;
int height = 8;
ScreenTriangleStepVariables blockPosY;
blockPosY.W = start.W + gradientX.W * (span.X - startX) + gradientY.W * (span.Y - startY);
for (int j = 0; j < TriVertex::NumVarying; j++)
blockPosY.Varying[j] = start.Varying[j] + gradientX.Varying[j] * (span.X - startX) + gradientY.Varying[j] * (span.Y - startY);
for (int y = 0; y < height; y++)
{
ScreenTriangleStepVariables blockPosX = blockPosY;
float rcpW = 0x01000000 / blockPosX.W;
int32_t varyingPos[TriVertex::NumVarying];
for (int j = 0; j < TriVertex::NumVarying; j++)
varyingPos[j] = (int32_t)(blockPosX.Varying[j] * rcpW);
fixed_t lightpos = FRACUNIT - (int)(clamp(shade - MIN(24.0f / 32.0f, globVis * blockPosY.W), 0.0f, 31.0f / 32.0f) * (float)FRACUNIT);
lightpos = (lightpos & lightmask) | ((light << 8) & ~lightmask);
for (int x = 0; x < width; x++)
{
blockPosX.W += gradientX.W * 8;
for (int j = 0; j < TriVertex::NumVarying; j++)
blockPosX.Varying[j] += gradientX.Varying[j] * 8;
rcpW = 0x01000000 / blockPosX.W;
int32_t varyingStep[TriVertex::NumVarying];
for (int j = 0; j < TriVertex::NumVarying; j++)
{
int32_t nextPos = (int32_t)(blockPosX.Varying[j] * rcpW);
varyingStep[j] = (nextPos - varyingPos[j]) / 8;
}
fixed_t lightnext = FRACUNIT - (fixed_t)(clamp(shade - MIN(24.0f / 32.0f, globVis * blockPosX.W), 0.0f, 31.0f / 32.0f) * (float)FRACUNIT);
fixed_t lightstep = (lightnext - lightpos) / 8;
lightstep = lightstep & lightmask;
for (int ix = 0; ix < 8; ix++)
{
int lightshade = lightpos >> 8;
uint8_t bgcolor = dest[x * 8 + ix];
uint8_t fgcolor = Sample(varyingPos[0], varyingPos[1], texPixels, texWidth, texHeight, color, translation);
uint32_t fgshade = SampleShade(varyingPos[0], varyingPos[1], texPixels, texWidth, texHeight);
dest[x * 8 + ix] = ShadeAndBlend(fgcolor, bgcolor, fgshade, lightshade, colormaps, srcalpha, destalpha);
for (int j = 0; j < TriVertex::NumVarying; j++)
varyingPos[j] += varyingStep[j];
lightpos += lightstep;
}
}
blockPosY.W += gradientY.W;
for (int j = 0; j < TriVertex::NumVarying; j++)
blockPosY.Varying[j] += gradientY.Varying[j];
dest += pitch;
}
}
for (int i = 0; i < numBlocks; i++)
{
const auto &block = partialBlocks[i];
ScreenTriangleStepVariables blockPosY;
blockPosY.W = start.W + gradientX.W * (block.X - startX) + gradientY.W * (block.Y - startY);
for (int j = 0; j < TriVertex::NumVarying; j++)
blockPosY.Varying[j] = start.Varying[j] + gradientX.Varying[j] * (block.X - startX) + gradientY.Varying[j] * (block.Y - startY);
uint8_t *dest = destOrg + block.X + block.Y * pitch;
uint32_t mask0 = block.Mask0;
uint32_t mask1 = block.Mask1;
// mask0 loop:
for (int y = 0; y < 4; y++)
{
ScreenTriangleStepVariables blockPosX = blockPosY;
float rcpW = 0x01000000 / blockPosX.W;
int32_t varyingPos[TriVertex::NumVarying];
for (int j = 0; j < TriVertex::NumVarying; j++)
varyingPos[j] = (int32_t)(blockPosX.Varying[j] * rcpW);
fixed_t lightpos = FRACUNIT - (fixed_t)(clamp(shade - MIN(24.0f / 32.0f, globVis * blockPosY.W), 0.0f, 31.0f / 32.0f) * (float)FRACUNIT);
lightpos = (lightpos & lightmask) | ((light << 8) & ~lightmask);
blockPosX.W += gradientX.W * 8;
for (int j = 0; j < TriVertex::NumVarying; j++)
blockPosX.Varying[j] += gradientX.Varying[j] * 8;
rcpW = 0x01000000 / blockPosX.W;
int32_t varyingStep[TriVertex::NumVarying];
for (int j = 0; j < TriVertex::NumVarying; j++)
{
int32_t nextPos = (int32_t)(blockPosX.Varying[j] * rcpW);
varyingStep[j] = (nextPos - varyingPos[j]) / 8;
}
fixed_t lightnext = FRACUNIT - (fixed_t)(clamp(shade - MIN(24.0f / 32.0f, globVis * blockPosX.W), 0.0f, 31.0f / 32.0f) * (float)FRACUNIT);
fixed_t lightstep = (lightnext - lightpos) / 8;
lightstep = lightstep & lightmask;
for (int x = 0; x < 8; x++)
{
if (mask0 & (1 << 31))
{
int lightshade = lightpos >> 8;
uint8_t bgcolor = dest[x];
uint8_t fgcolor = Sample(varyingPos[0], varyingPos[1], texPixels, texWidth, texHeight, color, translation);
uint32_t fgshade = SampleShade(varyingPos[0], varyingPos[1], texPixels, texWidth, texHeight);
dest[x] = ShadeAndBlend(fgcolor, bgcolor, fgshade, lightshade, colormaps, srcalpha, destalpha);
}
for (int j = 0; j < TriVertex::NumVarying; j++)
varyingPos[j] += varyingStep[j];
lightpos += lightstep;
mask0 <<= 1;
}
blockPosY.W += gradientY.W;
for (int j = 0; j < TriVertex::NumVarying; j++)
blockPosY.Varying[j] += gradientY.Varying[j];
dest += pitch;
}
// mask1 loop:
for (int y = 0; y < 4; y++)
{
ScreenTriangleStepVariables blockPosX = blockPosY;
float rcpW = 0x01000000 / blockPosX.W;
int32_t varyingPos[TriVertex::NumVarying];
for (int j = 0; j < TriVertex::NumVarying; j++)
varyingPos[j] = (int32_t)(blockPosX.Varying[j] * rcpW);
fixed_t lightpos = FRACUNIT - (fixed_t)(clamp(shade - MIN(24.0f / 32.0f, globVis * blockPosY.W), 0.0f, 31.0f / 32.0f) * (float)FRACUNIT);
lightpos = (lightpos & lightmask) | ((light << 8) & ~lightmask);
blockPosX.W += gradientX.W * 8;
for (int j = 0; j < TriVertex::NumVarying; j++)
blockPosX.Varying[j] += gradientX.Varying[j] * 8;
rcpW = 0x01000000 / blockPosX.W;
int32_t varyingStep[TriVertex::NumVarying];
for (int j = 0; j < TriVertex::NumVarying; j++)
{
int32_t nextPos = (int32_t)(blockPosX.Varying[j] * rcpW);
varyingStep[j] = (nextPos - varyingPos[j]) / 8;
}
fixed_t lightnext = FRACUNIT - (fixed_t)(clamp(shade - MIN(24.0f / 32.0f, globVis * blockPosX.W), 0.0f, 31.0f / 32.0f) * (float)FRACUNIT);
fixed_t lightstep = (lightnext - lightpos) / 8;
lightstep = lightstep & lightmask;
for (int x = 0; x < 8; x++)
{
if (mask1 & (1 << 31))
{
int lightshade = lightpos >> 8;
uint8_t bgcolor = dest[x];
uint8_t fgcolor = Sample(varyingPos[0], varyingPos[1], texPixels, texWidth, texHeight, color, translation);
uint32_t fgshade = SampleShade(varyingPos[0], varyingPos[1], texPixels, texWidth, texHeight);
dest[x] = ShadeAndBlend(fgcolor, bgcolor, fgshade, lightshade, colormaps, srcalpha, destalpha);
}
for (int j = 0; j < TriVertex::NumVarying; j++)
varyingPos[j] += varyingStep[j];
lightpos += lightstep;
mask1 <<= 1;
}
blockPosY.W += gradientY.W;
for (int j = 0; j < TriVertex::NumVarying; j++)
blockPosY.Varying[j] += gradientY.Varying[j];
dest += pitch;
}
}
}
private:
FORCEINLINE static unsigned int Sample(int32_t u, int32_t v, const uint8_t *texPixels, int texWidth, int texHeight, uint32_t color, const uint8_t *translation)
{
using namespace TriScreenDrawerModes;
uint8_t texel;
if (SamplerT::Mode == (int)Samplers::Shaded || SamplerT::Mode == (int)Samplers::Fill)
{
return color;
}
else if (SamplerT::Mode == (int)Samplers::Translated)
{
uint32_t texelX = ((((uint32_t)u << 8) >> 16) * texWidth) >> 16;
uint32_t texelY = ((((uint32_t)v << 8) >> 16) * texHeight) >> 16;
return translation[texPixels[texelX * texHeight + texelY]];
}
else
{
uint32_t texelX = ((((uint32_t)u << 8) >> 16) * texWidth) >> 16;
uint32_t texelY = ((((uint32_t)v << 8) >> 16) * texHeight) >> 16;
texel = texPixels[texelX * texHeight + texelY];
}
if (SamplerT::Mode == (int)Samplers::Skycap)
{
int start_fade = 2; // How fast it should fade out
int alpha_top = clamp(v >> (16 - start_fade), 0, 256);
int alpha_bottom = clamp(((2 << 24) - v) >> (16 - start_fade), 0, 256);
int a = MIN(alpha_top, alpha_bottom);
int inv_a = 256 - a;
if (a == 256)
return texel;
uint32_t texelrgb = GPalette.BaseColors[texel].d;
uint32_t r = RPART(texelrgb);
uint32_t g = GPART(texelrgb);
uint32_t b = BPART(texelrgb);
uint32_t capcolor_red = RPART(color);
uint32_t capcolor_green = GPART(color);
uint32_t capcolor_blue = BPART(color);
r = (r * a + capcolor_red * inv_a + 127) >> 8;
g = (g * a + capcolor_green * inv_a + 127) >> 8;
b = (b * a + capcolor_blue * inv_a + 127) >> 8;
return RGB256k.All[((r >> 2) << 12) | ((g >> 2) << 6) | (b >> 2)];
}
else
{
return texel;
}
}
FORCEINLINE static unsigned int SampleShade(int32_t u, int32_t v, const uint8_t *texPixels, int texWidth, int texHeight)
{
using namespace TriScreenDrawerModes;
if (SamplerT::Mode == (int)Samplers::Shaded)
{
uint32_t texelX = ((((uint32_t)u << 8) >> 16) * texWidth) >> 16;
uint32_t texelY = ((((uint32_t)v << 8) >> 16) * texHeight) >> 16;
unsigned int sampleshadeout = texPixels[texelX * texHeight + texelY];
sampleshadeout += sampleshadeout >> 7; // 255 -> 256
return sampleshadeout;
}
else
{
return 0;
}
}
FORCEINLINE static uint8_t ShadeAndBlend(uint8_t fgcolor, uint8_t bgcolor, uint32_t fgshade, uint32_t lightshade, const uint8_t *colormaps, uint32_t srcalpha, uint32_t destalpha)
{
using namespace TriScreenDrawerModes;
lightshade = ((256 - lightshade) * NUMCOLORMAPS) & 0xffffff00;
uint8_t shadedfg = colormaps[lightshade + fgcolor];
if (BlendT::Mode == (int)BlendModes::Opaque)
{
return shadedfg;
}
else if (BlendT::Mode == (int)BlendModes::Masked)
{
return (fgcolor != 0) ? shadedfg : bgcolor;
}
else if (BlendT::Mode == (int)BlendModes::AddSrcColorOneMinusSrcColor)
{
int32_t fg_r = GPalette.BaseColors[shadedfg].r;
int32_t fg_g = GPalette.BaseColors[shadedfg].g;
int32_t fg_b = GPalette.BaseColors[shadedfg].b;
int32_t bg_r = GPalette.BaseColors[bgcolor].r;
int32_t bg_g = GPalette.BaseColors[bgcolor].g;
int32_t bg_b = GPalette.BaseColors[bgcolor].b;
int32_t inv_fg_r = 256 - (fg_r + (fg_r >> 7));
int32_t inv_fg_g = 256 - (fg_g + (fg_g >> 7));
int32_t inv_fg_b = 256 - (fg_b + (fg_b >> 7));
fg_r = MIN<int32_t>(fg_r + ((bg_r * inv_fg_r + 127) >> 8), 255);
fg_g = MIN<int32_t>(fg_g + ((bg_g * inv_fg_g + 127) >> 8), 255);
fg_b = MIN<int32_t>(fg_b + ((bg_b * inv_fg_b + 127) >> 8), 255);
shadedfg = RGB256k.All[((fg_r >> 2) << 12) | ((fg_g >> 2) << 6) | (fg_b >> 2)];
return (fgcolor != 0) ? shadedfg : bgcolor;
}
else if (BlendT::Mode == (int)BlendModes::Shaded)
{
uint32_t alpha = fgshade;
uint32_t inv_alpha = 256 - fgshade;
int32_t fg_r = GPalette.BaseColors[shadedfg].r;
int32_t fg_g = GPalette.BaseColors[shadedfg].g;
int32_t fg_b = GPalette.BaseColors[shadedfg].b;
int32_t bg_r = GPalette.BaseColors[bgcolor].r;
int32_t bg_g = GPalette.BaseColors[bgcolor].g;
int32_t bg_b = GPalette.BaseColors[bgcolor].b;
fg_r = (fg_r * alpha + bg_r * inv_alpha + 127) >> 8;
fg_g = (fg_g * alpha + bg_g * inv_alpha + 127) >> 8;
fg_b = (fg_b * alpha + bg_b * inv_alpha + 127) >> 8;
shadedfg = RGB256k.All[((fg_r >> 2) << 12) | ((fg_g >> 2) << 6) | (fg_b >> 2)];
return (alpha != 0) ? shadedfg : bgcolor;
}
else if (BlendT::Mode == (int)BlendModes::AddClampShaded)
{
uint32_t alpha = fgshade;
int32_t fg_r = GPalette.BaseColors[shadedfg].r;
int32_t fg_g = GPalette.BaseColors[shadedfg].g;
int32_t fg_b = GPalette.BaseColors[shadedfg].b;
int32_t bg_r = GPalette.BaseColors[bgcolor].r;
int32_t bg_g = GPalette.BaseColors[bgcolor].g;
int32_t bg_b = GPalette.BaseColors[bgcolor].b;
fg_r = MIN<int32_t>(bg_r + ((fg_r * alpha + 127) >> 8), 255);
fg_g = MIN<int32_t>(bg_g + ((fg_g * alpha + 127) >> 8), 255);
fg_b = MIN<int32_t>(bg_b + ((fg_b * alpha + 127) >> 8), 255);
shadedfg = RGB256k.All[((fg_r >> 2) << 12) | ((fg_g >> 2) << 6) | (fg_b >> 2)];
return (alpha != 0) ? shadedfg : bgcolor;
}
else
{
int32_t fg_r = GPalette.BaseColors[shadedfg].r;
int32_t fg_g = GPalette.BaseColors[shadedfg].g;
int32_t fg_b = GPalette.BaseColors[shadedfg].b;
int32_t bg_r = GPalette.BaseColors[bgcolor].r;
int32_t bg_g = GPalette.BaseColors[bgcolor].g;
int32_t bg_b = GPalette.BaseColors[bgcolor].b;
if (BlendT::Mode == (int)BlendModes::AddClamp)
{
fg_r = MIN<int32_t>((fg_r * srcalpha + bg_r * destalpha + 127) >> 8, 255);
fg_g = MIN<int32_t>((fg_g * srcalpha + bg_g * destalpha + 127) >> 8, 255);
fg_b = MIN<int32_t>((fg_b * srcalpha + bg_b * destalpha + 127) >> 8, 255);
}
else if (BlendT::Mode == (int)BlendModes::SubClamp)
{
fg_r = MAX<int32_t>((fg_r * srcalpha - bg_r * destalpha + 127) >> 8, 0);
fg_g = MAX<int32_t>((fg_g * srcalpha - bg_g * destalpha + 127) >> 8, 0);
fg_b = MAX<int32_t>((fg_b * srcalpha - bg_b * destalpha + 127) >> 8, 0);
}
else if (BlendT::Mode == (int)BlendModes::RevSubClamp)
{
fg_r = MAX<int32_t>((bg_r * srcalpha - fg_r * destalpha + 127) >> 8, 0);
fg_g = MAX<int32_t>((bg_g * srcalpha - fg_g * destalpha + 127) >> 8, 0);
fg_b = MAX<int32_t>((bg_b * srcalpha - fg_b * destalpha + 127) >> 8, 0);
}
shadedfg = RGB256k.All[((fg_r >> 2) << 12) | ((fg_g >> 2) << 6) | (fg_b >> 2)];
return (fgcolor != 0) ? shadedfg : bgcolor;
}
}
static float FindGradientX(float x0, float y0, float x1, float y1, float x2, float y2, float c0, float c1, float c2)
{
float top = (c1 - c2) * (y0 - y2) - (c0 - c2) * (y1 - y2);
float bottom = (x1 - x2) * (y0 - y2) - (x0 - x2) * (y1 - y2);
return top / bottom;
}
static float FindGradientY(float x0, float y0, float x1, float y1, float x2, float y2, float c0, float c1, float c2)
{
float top = (c1 - c2) * (x0 - x2) - (c0 - c2) * (x1 - x2);
float bottom = (x0 - x2) * (y1 - y2) - (x1 - x2) * (y0 - y2);
return top / bottom;
}
};