gzdoom-gles/src/nodebuild_utility.cpp
Christoph Oelckers e06ba32525 SVN r26 (trunk)
2006-04-11 08:36:23 +00:00

530 lines
14 KiB
C++

/*
** nodebuild_utility.cpp
**
** Miscellaneous node builder utility functions.
**
**---------------------------------------------------------------------------
** Copyright 2002-2005 Randy Heit
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
** 4. When not used as part of ZDoom or a ZDoom derivative, this code will be
** covered by the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or (at
** your option) any later version.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#include <stdlib.h>
#ifdef _MSC_VER
#include <malloc.h>
#endif
#include <string.h>
#include <stdio.h>
#include "nodebuild.h"
#include "m_bbox.h"
#include "r_main.h"
#include "i_system.h"
static const int PO_LINE_START = 1;
static const int PO_LINE_EXPLICIT = 5;
#if 0
#define D(x) x
#else
#define D(x) do{}while(0)
#endif
#if 0
#define P(x) x
#else
#define P(x) do{}while(0)
#endif
angle_t FNodeBuilder::PointToAngle (fixed_t x, fixed_t y)
{
const double rad2bam = double(1<<30) / M_PI;
double ang = atan2 (double(y), double(x));
if (ang < 0.0)
{
ang = 2*M_PI+ang;
}
return angle_t(ang * rad2bam) << 1;
}
void FNodeBuilder::FindUsedVertices (vertex_t *oldverts, int max)
{
size_t *map = (size_t *)alloca (max*sizeof(size_t));
int i;
FPrivVert newvert;
memset (&map[0], -1, sizeof(size_t)*max);
newvert.segs = DWORD_MAX;
newvert.segs2 = DWORD_MAX;
for (i = 0; i < Level.NumLines; ++i)
{
ptrdiff_t v1 = Level.Lines[i].v1 - oldverts;
ptrdiff_t v2 = Level.Lines[i].v2 - oldverts;
if (map[v1] == (size_t)-1)
{
newvert.x = oldverts[v1].x;
newvert.y = oldverts[v1].y;
map[v1] = SelectVertexExact (newvert);
}
if (map[v2] == (size_t)-1)
{
newvert.x = oldverts[v2].x;
newvert.y = oldverts[v2].y;
map[v2] = SelectVertexExact (newvert);
}
Level.Lines[i].v1 = (vertex_t *)map[v1];
Level.Lines[i].v2 = (vertex_t *)map[v2];
}
}
int FNodeBuilder::SelectVertexExact (FPrivVert &vertex)
{
for (unsigned int i = 0; i < Vertices.Size(); ++i)
{
if (Vertices[i].x == vertex.x && Vertices[i].y == vertex.y)
{
return (int)i;
}
}
return (int)Vertices.Push (vertex);
}
// For every sidedef in the map, create a corresponding seg.
void FNodeBuilder::MakeSegsFromSides ()
{
FPrivSeg *share1, *share2;
FPrivSeg seg;
int i, j;
seg.next = DWORD_MAX;
seg.loopnum = 0;
seg.partner = DWORD_MAX;
if (Level.NumLines == 0)
{
I_Error ("Map is empty.\n");
}
for (i = 0; i < Level.NumLines; ++i)
{
share1 = NULL;
if (Level.Lines[i].sidenum[0] != NO_SIDE)
{
seg.linedef = i;
seg.sidedef = Level.Lines[i].sidenum[0];
seg.frontsector = Level.Lines[i].frontsector;
seg.backsector = Level.Lines[i].backsector;
seg.v1 = (int)(size_t)Level.Lines[i].v1;
seg.v2 = (int)(size_t)Level.Lines[i].v2;
seg.nextforvert = Vertices[seg.v1].segs;
seg.nextforvert2 = Vertices[seg.v2].segs2;
share1 = CheckSegForDuplicate (&seg);
if (share1 == NULL)
{
j = (int)Segs.Push (seg);
Vertices[seg.v1].segs = j;
Vertices[seg.v2].segs2 = j;
}
else
{
Printf ("Linedefs %d and %d share endpoints.\n", i, share1->linedef);
}
}
else
{
Printf ("Linedef %d does not have a front side.\n", i);
}
if (Level.Lines[i].sidenum[1] != NO_SIDE)
{
seg.linedef = i;
seg.sidedef = Level.Lines[i].sidenum[1];
seg.frontsector = Level.Lines[i].backsector;
seg.backsector = Level.Lines[i].frontsector;
seg.v1 = (int)(size_t)Level.Lines[i].v2;
seg.v2 = (int)(size_t)Level.Lines[i].v1;
seg.nextforvert = Vertices[seg.v1].segs;
seg.nextforvert2 = Vertices[seg.v2].segs2;
share2 = CheckSegForDuplicate (&seg);
if (share2 == NULL)
{
j = (int)Segs.Push (seg);
Vertices[seg.v1].segs = j;
Vertices[seg.v2].segs2 = j;
if (Level.Lines[i].sidenum[0] != NO_SIDE && share1 == NULL)
{
Segs[j-1].partner = j;
Segs[j].partner = j-1;
}
}
else if (share1 == NULL || share2->linedef != share1->linedef)
{
Printf ("Linedefs %d and %d share endpoints.\n", i, share2->linedef);
}
}
}
}
// Check for another seg with the same start and end vertices as this one.
// Combined with its use above, this will find two-sided lines that are shadowed
// by another one- or two-sided line, and it will also find one-sided lines that
// shadow each other. It will not find one-sided lines that share endpoints but
// face opposite directions. Although they should probably be a single two-sided
// line, leaving them in will not generate bad nodes.
FNodeBuilder::FPrivSeg *FNodeBuilder::CheckSegForDuplicate (const FNodeBuilder::FPrivSeg *check)
{
DWORD segnum;
// Check for segs facing the same direction
for (segnum = check->nextforvert; segnum != DWORD_MAX; segnum = Segs[segnum].nextforvert)
{
if (Segs[segnum].v2 == check->v2)
{
return &Segs[segnum];
}
}
return NULL;
}
// Group colinear segs together so that only one seg per line needs to be checked
// by SelectSplitter().
void FNodeBuilder::GroupSegPlanes ()
{
const int bucketbits = 12;
FPrivSeg *buckets[1<<bucketbits] = { 0 };
int i, planenum;
for (i = 0; i < (int)Segs.Size(); ++i)
{
FPrivSeg *seg = &Segs[i];
seg->next = i+1;
seg->hashnext = NULL;
}
Segs[Segs.Size()-1].next = DWORD_MAX;
for (i = planenum = 0; i < (int)Segs.Size(); ++i)
{
FPrivSeg *seg = &Segs[i];
fixed_t x1 = Vertices[seg->v1].x;
fixed_t y1 = Vertices[seg->v1].y;
fixed_t x2 = Vertices[seg->v2].x;
fixed_t y2 = Vertices[seg->v2].y;
angle_t ang = PointToAngle (x2 - x1, y2 - y1);
if (ang >= 1u<<31)
ang += 1u<<31;
FPrivSeg *check = buckets[ang >>= 31-bucketbits];
while (check != NULL)
{
fixed_t cx1 = Vertices[check->v1].x;
fixed_t cy1 = Vertices[check->v1].y;
fixed_t cdx = Vertices[check->v2].x - cx1;
fixed_t cdy = Vertices[check->v2].y - cy1;
if (PointOnSide (x1, y1, cx1, cy1, cdx, cdy) == 0 &&
PointOnSide (x2, y2, cx1, cy1, cdx, cdy) == 0)
{
break;
}
check = check->hashnext;
}
if (check != NULL)
{
seg->planenum = check->planenum;
const FSimpleLine *line = &Planes[seg->planenum];
if (line->dx != 0)
{
if ((line->dx > 0 && x2 > x1) || (line->dx < 0 && x2 < x1))
{
seg->planefront = true;
}
else
{
seg->planefront = false;
}
}
else
{
if ((line->dy > 0 && y2 > y1) || (line->dy < 0 && y2 < y1))
{
seg->planefront = true;
}
else
{
seg->planefront = false;
}
}
}
else
{
seg->hashnext = buckets[ang];
buckets[ang] = seg;
seg->planenum = planenum++;
seg->planefront = true;
FSimpleLine pline = { Vertices[seg->v1].x,
Vertices[seg->v1].y,
Vertices[seg->v2].x - Vertices[seg->v1].x,
Vertices[seg->v2].y - Vertices[seg->v1].y };
Planes.Push (pline);
}
}
D(Printf ("%d planes from %d segs\n", planenum, Segs.Size()));
planenum = (planenum+7)/8;
PlaneChecked.Reserve (planenum);
}
// Find "loops" of segs surrounding polyobject's origin. Note that a polyobject's origin
// is not solely defined by the polyobject's anchor, but also by the polyobject itself.
// For the split avoidance to work properly, you must have a convex, complete loop of
// segs surrounding the polyobject origin. All the maps in hexen.wad have complete loops of
// segs around their polyobjects, but they are not all convex: The doors at the start of MAP01
// and some of the pillars in MAP02 that surround the entrance to MAP06 are not convex.
// Heuristic() uses some special weighting to make these cases work properly.
void FNodeBuilder::FindPolyContainers (TArray<FPolyStart> &spots, TArray<FPolyStart> &anchors)
{
int loop = 1;
for (unsigned int i = 0; i < spots.Size(); ++i)
{
FPolyStart *spot = &spots[i];
fixed_t bbox[4];
if (GetPolyExtents (spot->polynum, bbox))
{
FPolyStart *anchor;
unsigned int j;
for (j = 0; j < anchors.Size(); ++j)
{
anchor = &anchors[j];
if (anchor->polynum == spot->polynum)
{
break;
}
}
if (j < anchors.Size())
{
vertex_t mid;
vertex_t center;
mid.x = bbox[BOXLEFT] + (bbox[BOXRIGHT]-bbox[BOXLEFT])/2;
mid.y = bbox[BOXBOTTOM] + (bbox[BOXTOP]-bbox[BOXBOTTOM])/2;
center.x = mid.x - anchor->x + spot->x;
center.y = mid.y - anchor->y + spot->y;
// Scan right for the seg closest to the polyobject's center after it
// gets moved to its start spot.
fixed_t closestdist = FIXED_MAX;
DWORD closestseg = 0;
P(Printf ("start %d,%d -- center %d, %d\n", spot->x>>16, spot->y>>16, center.x>>16, center.y>>16));
for (unsigned int j = 0; j < Segs.Size(); ++j)
{
FPrivSeg *seg = &Segs[j];
FPrivVert *v1 = &Vertices[seg->v1];
FPrivVert *v2 = &Vertices[seg->v2];
fixed_t dy = v2->y - v1->y;
if (dy == 0)
{ // Horizontal, so skip it
continue;
}
if ((v1->y < center.y && v2->y < center.y) || (v1->y > center.y && v2->y > center.y))
{ // Not crossed
continue;
}
fixed_t dx = v2->x - v1->x;
if (PointOnSide (center.x, center.y, v1->x, v1->y, dx, dy) <= 0)
{
fixed_t t = DivScale30 (center.y - v1->y, dy);
fixed_t sx = v1->x + MulScale30 (dx, t);
fixed_t dist = sx - spot->x;
if (dist < closestdist && dist >= 0)
{
closestdist = dist;
closestseg = (long)j;
}
}
}
if (closestseg >= 0)
{
loop = MarkLoop (closestseg, loop);
P(Printf ("Found polyobj in sector %d (loop %d)\n", Segs[closestseg].frontsector,
Segs[closestseg].loopnum));
}
}
}
}
}
int FNodeBuilder::MarkLoop (DWORD firstseg, int loopnum)
{
DWORD seg;
sector_t *sec = Segs[firstseg].frontsector;
if (Segs[firstseg].loopnum != 0)
{ // already marked
return loopnum;
}
seg = firstseg;
do
{
FPrivSeg *s1 = &Segs[seg];
s1->loopnum = loopnum;
P(Printf ("Mark seg %d (%d,%d)-(%d,%d)\n", seg,
Vertices[s1->v1].x>>16, Vertices[s1->v1].y>>16,
Vertices[s1->v2].x>>16, Vertices[s1->v2].y>>16));
DWORD bestseg = DWORD_MAX;
DWORD tryseg = Vertices[s1->v2].segs;
angle_t bestang = ANGLE_MAX;
angle_t ang1 = PointToAngle (Vertices[s1->v2].x - Vertices[s1->v1].x,
Vertices[s1->v2].y - Vertices[s1->v1].y);
while (tryseg != DWORD_MAX)
{
FPrivSeg *s2 = &Segs[tryseg];
if (s2->frontsector == sec)
{
angle_t ang2 = PointToAngle (Vertices[s2->v1].x - Vertices[s2->v2].x,
Vertices[s2->v1].y - Vertices[s2->v2].y);
angle_t angdiff = ang2 - ang1;
if (angdiff < bestang && angdiff > 0)
{
bestang = angdiff;
bestseg = tryseg;
}
}
tryseg = s2->nextforvert;
}
seg = bestseg;
} while (seg != DWORD_MAX && Segs[seg].loopnum == 0);
return loopnum + 1;
}
// Find the bounding box for a specific polyobject.
bool FNodeBuilder::GetPolyExtents (int polynum, fixed_t bbox[4])
{
unsigned int i;
bbox[BOXLEFT] = bbox[BOXBOTTOM] = FIXED_MAX;
bbox[BOXRIGHT] = bbox[BOXTOP] = FIXED_MIN;
// Try to find a polyobj marked with a start line
for (i = 0; i < Segs.Size(); ++i)
{
if (Level.Lines[Segs[i].linedef].special == PO_LINE_START &&
Level.Lines[Segs[i].linedef].args[0] == polynum)
{
break;
}
}
if (i < Segs.Size())
{
vertex_t start;
unsigned int vert;
vert = Segs[i].v1;
start.x = Vertices[vert].x;
start.y = Vertices[vert].y;
do
{
AddSegToBBox (bbox, &Segs[i]);
vert = Segs[i].v2;
i = Vertices[vert].segs;
} while (i != DWORD_MAX && (Vertices[vert].x != start.x || Vertices[vert].y != start.y));
return true;
}
// Try to find a polyobj marked with explicit lines
bool found = false;
for (i = 0; i < Segs.Size(); ++i)
{
if (Level.Lines[Segs[i].linedef].special == PO_LINE_EXPLICIT &&
Level.Lines[Segs[i].linedef].args[0] == polynum)
{
AddSegToBBox (bbox, &Segs[i]);
found = true;
}
}
return found;
}
void FNodeBuilder::AddSegToBBox (fixed_t bbox[4], const FPrivSeg *seg)
{
FPrivVert *v1 = &Vertices[seg->v1];
FPrivVert *v2 = &Vertices[seg->v2];
if (v1->x < bbox[BOXLEFT]) bbox[BOXLEFT] = v1->x;
if (v1->x > bbox[BOXRIGHT]) bbox[BOXRIGHT] = v1->x;
if (v1->y < bbox[BOXBOTTOM]) bbox[BOXBOTTOM] = v1->y;
if (v1->y > bbox[BOXTOP]) bbox[BOXTOP] = v1->y;
if (v2->x < bbox[BOXLEFT]) bbox[BOXLEFT] = v2->x;
if (v2->x > bbox[BOXRIGHT]) bbox[BOXRIGHT] = v2->x;
if (v2->y < bbox[BOXBOTTOM]) bbox[BOXBOTTOM] = v2->y;
if (v2->y > bbox[BOXTOP]) bbox[BOXTOP] = v2->y;
}