- Replaced max(dot(a,b), 0.0) with clamp as some rounding errors caused pow to receive negative values when then value was subtracted from 1.0 (undefined glsl behavior)

- Fixed that surface angle attenuation was getting applied twice
This commit is contained in:
Magnus Norddahl 2018-02-03 23:56:55 +01:00
parent 7b9a334f77
commit 769867475c

View file

@ -432,7 +432,7 @@ vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness)
return F0 + (max(vec3(1.0 - roughness), F0) - F0) * pow(1.0 - cosTheta, 5.0); return F0 + (max(vec3(1.0 - roughness), F0) - F0) * pow(1.0 - cosTheta, 5.0);
} }
float pointLightAttenuationQuadratic(vec4 lightpos, float lightcolorA) float quadraticDistanceAttenuation(vec4 lightpos)
{ {
float strength = (1.0 + lightpos.w * lightpos.w * 0.25) * 0.5; float strength = (1.0 + lightpos.w * lightpos.w * 0.25) * 0.5;
@ -440,21 +440,17 @@ float pointLightAttenuationQuadratic(vec4 lightpos, float lightcolorA)
float attenuation = strength / (1.0 + dot(distVec, distVec)); float attenuation = strength / (1.0 + dot(distVec, distVec));
if (attenuation <= 1.0 / 256.0) return 0.0; if (attenuation <= 1.0 / 256.0) return 0.0;
return attenuation;
}
float shadowAttenuation(vec4 lightpos, float lightcolorA)
{
#ifdef SUPPORTS_SHADOWMAPS #ifdef SUPPORTS_SHADOWMAPS
float shadowIndex = abs(lightcolorA) - 1.0; float shadowIndex = abs(lightcolorA) - 1.0;
attenuation *= shadowmapAttenuation(lightpos, shadowIndex); return shadowmapAttenuation(lightpos, shadowIndex);
#else
return 1.0;
#endif #endif
if (lightcolorA >= 0.0) // Sign bit is the attenuated light flag
{
return attenuation;
}
else
{
vec3 lightDirection = normalize(lightpos.xyz - pixelpos.xyz);
vec3 pixelnormal = ApplyNormalMap();
return attenuation * diffuseContribution(lightDirection, pixelnormal);
}
} }
vec3 applyLight(vec3 albedo, vec3 ambientLight) vec3 applyLight(vec3 albedo, vec3 ambientLight)
@ -464,12 +460,11 @@ vec3 applyLight(vec3 albedo, vec3 ambientLight)
albedo = pow(albedo, vec3(2.2)); // sRGB to linear albedo = pow(albedo, vec3(2.2)); // sRGB to linear
ambientLight = pow(ambientLight, vec3(2.2)); ambientLight = pow(ambientLight, vec3(2.2));
vec3 normal = ApplyNormalMap();
float metallic = texture(metallictexture, vTexCoord.st).r; float metallic = texture(metallictexture, vTexCoord.st).r;
float roughness = texture(roughnesstexture, vTexCoord.st).r; float roughness = texture(roughnesstexture, vTexCoord.st).r;
float ao = texture(aotexture, vTexCoord.st).r; float ao = texture(aotexture, vTexCoord.st).r;
vec3 N = normalize(normal); vec3 N = ApplyNormalMap();
vec3 V = normalize(uCameraPos.xyz - worldpos); vec3 V = normalize(uCameraPos.xyz - worldpos);
vec3 F0 = mix(vec3(0.04), albedo, metallic); vec3 F0 = mix(vec3(0.04), albedo, metallic);
@ -494,28 +489,33 @@ vec3 applyLight(vec3 albedo, vec3 ambientLight)
vec3 L = normalize(lightpos.xyz - worldpos); vec3 L = normalize(lightpos.xyz - worldpos);
vec3 H = normalize(V + L); vec3 H = normalize(V + L);
//float distance = length(lightpos.xyz - worldpos);
//float attenuation = 1.0 / (distance * distance); float attenuation = quadraticDistanceAttenuation(lightpos) * shadowAttenuation(lightpos, lightcolor.a);
float attenuation = pointLightAttenuationQuadratic(lightpos, lightcolor.a);
if (lightspot1.w == 1.0) if (lightspot1.w == 1.0)
attenuation *= spotLightAttenuation(lightpos, lightspot1.xyz, lightspot2.x, lightspot2.y); attenuation *= spotLightAttenuation(lightpos, lightspot1.xyz, lightspot2.x, lightspot2.y);
if (lightcolor.a < 0.0)
attenuation *= clamp(dot(N, L), 0.0, 1.0); // Sign bit is the attenuated light flag
vec3 radiance = lightcolor.rgb * attenuation; if (attenuation > 0.0)
{
attenuation *= shadowAttenuation(lightpos, lightcolor.a);
// cook-torrance brdf vec3 radiance = lightcolor.rgb * attenuation;
float NDF = DistributionGGX(N, H, roughness);
float G = GeometrySmith(N, V, L, roughness);
vec3 F = fresnelSchlick(max(dot(H, V), 0.0), F0);
vec3 kS = F; // cook-torrance brdf
vec3 kD = (vec3(1.0) - kS) * (1.0 - metallic); float NDF = DistributionGGX(N, H, roughness);
float G = GeometrySmith(N, V, L, roughness);
vec3 F = fresnelSchlick(clamp(dot(H, V), 0.0, 1.0), F0);
vec3 nominator = NDF * G * F; vec3 kS = F;
float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0); vec3 kD = (vec3(1.0) - kS) * (1.0 - metallic);
vec3 specular = nominator / max(denominator, 0.001);
float NdotL = max(dot(N, L), 0.0); vec3 nominator = NDF * G * F;
Lo += (kD * albedo / PI + specular) * radiance * NdotL; float denominator = 4.0 * clamp(dot(N, V), 0.0, 1.0) * clamp(dot(N, L), 0.0, 1.0);
vec3 specular = nominator / max(denominator, 0.001);
Lo += (kD * albedo / PI + specular) * radiance;
}
} }
// //
// subtractive lights // subtractive lights
@ -529,28 +529,33 @@ vec3 applyLight(vec3 albedo, vec3 ambientLight)
vec3 L = normalize(lightpos.xyz - worldpos); vec3 L = normalize(lightpos.xyz - worldpos);
vec3 H = normalize(V + L); vec3 H = normalize(V + L);
//float distance = length(lightpos.xyz - worldpos);
//float attenuation = 1.0 / (distance * distance); float attenuation = quadraticDistanceAttenuation(lightpos) * shadowAttenuation(lightpos, lightcolor.a);
float attenuation = pointLightAttenuationQuadratic(lightpos, lightcolor.a);
if (lightspot1.w == 1.0) if (lightspot1.w == 1.0)
attenuation *= spotLightAttenuation(lightpos, lightspot1.xyz, lightspot2.x, lightspot2.y); attenuation *= spotLightAttenuation(lightpos, lightspot1.xyz, lightspot2.x, lightspot2.y);
if (lightcolor.a < 0.0)
attenuation *= clamp(dot(N, L), 0.0, 1.0); // Sign bit is the attenuated light flag
vec3 radiance = lightcolor.rgb * attenuation; if (attenuation > 0.0)
{
attenuation *= shadowAttenuation(lightpos, lightcolor.a);
// cook-torrance brdf vec3 radiance = lightcolor.rgb * attenuation;
float NDF = DistributionGGX(N, H, roughness);
float G = GeometrySmith(N, V, L, roughness);
vec3 F = fresnelSchlick(max(dot(H, V), 0.0), F0);
vec3 kS = F; // cook-torrance brdf
vec3 kD = (vec3(1.0) - kS) * (1.0 - metallic); float NDF = DistributionGGX(N, H, roughness);
float G = GeometrySmith(N, V, L, roughness);
vec3 F = fresnelSchlick(clamp(dot(H, V), 0.0, 1.0), F0);
vec3 nominator = NDF * G * F; vec3 kS = F;
float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0); vec3 kD = (vec3(1.0) - kS) * (1.0 - metallic);
vec3 specular = nominator / max(denominator, 0.001);
float NdotL = max(dot(N, L), 0.0); vec3 nominator = NDF * G * F;
Lo -= (kD * albedo / PI + specular) * radiance * NdotL; float denominator = 4.0 * clamp(dot(N, V), 0.0, 1.0) * clamp(dot(N, L), 0.0, 1.0);
vec3 specular = nominator / max(denominator, 0.001);
Lo -= (kD * albedo / PI + specular) * radiance;
}
} }
} }
} }
@ -558,7 +563,7 @@ vec3 applyLight(vec3 albedo, vec3 ambientLight)
// Pretend we sampled the sector light level from an irradiance map // Pretend we sampled the sector light level from an irradiance map
vec3 F = fresnelSchlickRoughness(max(dot(N, V), 0.0), F0, roughness); vec3 F = fresnelSchlickRoughness(clamp(dot(N, V), 0.0, 1.0), F0, roughness);
vec3 kS = F; vec3 kS = F;
vec3 kD = 1.0 - kS; vec3 kD = 1.0 - kS;
@ -569,7 +574,7 @@ vec3 applyLight(vec3 albedo, vec3 ambientLight)
//kD *= 1.0 - metallic; //kD *= 1.0 - metallic;
//const float MAX_REFLECTION_LOD = 4.0; //const float MAX_REFLECTION_LOD = 4.0;
//vec3 prefilteredColor = textureLod(prefilterMap, R, roughness * MAX_REFLECTION_LOD).rgb; //vec3 prefilteredColor = textureLod(prefilterMap, R, roughness * MAX_REFLECTION_LOD).rgb;
//vec2 envBRDF = texture(brdfLUT, vec2(max(dot(N, V), 0.0), roughness)).rg; //vec2 envBRDF = texture(brdfLUT, vec2(clamp(dot(N, V), 0.0, 1.0), roughness)).rg;
//vec3 specular = prefilteredColor * (F * envBRDF.x + envBRDF.y); //vec3 specular = prefilteredColor * (F * envBRDF.x + envBRDF.y);
//vec3 ambient = (kD * diffuse + specular) * ao; //vec3 ambient = (kD * diffuse + specular) * ao;