mirror of
https://github.com/ZDoom/gzdoom-gles.git
synced 2025-01-18 22:51:39 +00:00
- Implement VSMatrix::inverseMatrix
This commit is contained in:
parent
61ead4f470
commit
23e5d81746
1 changed files with 210 additions and 0 deletions
|
@ -484,3 +484,213 @@ VSMatrix::multMatrix(FLOATTYPE *resMat, const FLOATTYPE *aMatrix)
|
|||
}
|
||||
memcpy(resMat, res, 16 * sizeof(FLOATTYPE));
|
||||
}
|
||||
|
||||
static double mat3Determinant(const FLOATTYPE *mMat3x3)
|
||||
{
|
||||
return mMat3x3[0] * (mMat3x3[4] * mMat3x3[8] - mMat3x3[5] * mMat3x3[7]) +
|
||||
mMat3x3[1] * (mMat3x3[5] * mMat3x3[6] - mMat3x3[8] * mMat3x3[3]) +
|
||||
mMat3x3[2] * (mMat3x3[3] * mMat3x3[7] - mMat3x3[4] * mMat3x3[6]);
|
||||
}
|
||||
|
||||
static double mat4Determinant(const FLOATTYPE *matrix)
|
||||
{
|
||||
FLOATTYPE mMat3x3_a[9] =
|
||||
{
|
||||
matrix[1 * 4 + 1], matrix[2 * 4 + 1], matrix[3 * 4 + 1],
|
||||
matrix[1 * 4 + 2], matrix[2 * 4 + 2], matrix[3 * 4 + 2],
|
||||
matrix[1 * 4 + 3], matrix[2 * 4 + 3], matrix[3 * 4 + 3]
|
||||
};
|
||||
|
||||
FLOATTYPE mMat3x3_b[9] =
|
||||
{
|
||||
matrix[1 * 4 + 0], matrix[2 * 4 + 0], matrix[3 * 4 + 0],
|
||||
matrix[1 * 4 + 2], matrix[2 * 4 + 2], matrix[3 * 4 + 2],
|
||||
matrix[1 * 4 + 3], matrix[2 * 4 + 3], matrix[3 * 4 + 3]
|
||||
};
|
||||
|
||||
FLOATTYPE mMat3x3_c[9] =
|
||||
{
|
||||
matrix[1 * 4 + 0], matrix[2 * 4 + 0], matrix[3 * 4 + 0],
|
||||
matrix[1 * 4 + 1], matrix[2 * 4 + 1], matrix[3 * 4 + 1],
|
||||
matrix[1 * 4 + 3], matrix[2 * 4 + 3], matrix[3 * 4 + 3]
|
||||
};
|
||||
|
||||
FLOATTYPE mMat3x3_d[9] =
|
||||
{
|
||||
matrix[1 * 4 + 0], matrix[2 * 4 + 0], matrix[3 * 4 + 0],
|
||||
matrix[1 * 4 + 1], matrix[2 * 4 + 1], matrix[3 * 4 + 1],
|
||||
matrix[1 * 4 + 2], matrix[2 * 4 + 2], matrix[3 * 4 + 2]
|
||||
};
|
||||
|
||||
FLOATTYPE a, b, c, d;
|
||||
FLOATTYPE value;
|
||||
|
||||
a = mat3Determinant(mMat3x3_a);
|
||||
b = mat3Determinant(mMat3x3_b);
|
||||
c = mat3Determinant(mMat3x3_c);
|
||||
d = mat3Determinant(mMat3x3_d);
|
||||
|
||||
value = matrix[0 * 4 + 0] * a;
|
||||
value -= matrix[0 * 4 + 1] * b;
|
||||
value += matrix[0 * 4 + 2] * c;
|
||||
value -= matrix[0 * 4 + 3] * d;
|
||||
|
||||
return value;
|
||||
}
|
||||
|
||||
static void mat4Adjoint(const FLOATTYPE *matrix, FLOATTYPE *result)
|
||||
{
|
||||
FLOATTYPE mMat3x3_a[9] =
|
||||
{
|
||||
matrix[1 * 4 + 1], matrix[2 * 4 + 1], matrix[3 * 4 + 1],
|
||||
matrix[1 * 4 + 2], matrix[2 * 4 + 2], matrix[3 * 4 + 2],
|
||||
matrix[1 * 4 + 3], matrix[2 * 4 + 3], matrix[3 * 4 + 3]
|
||||
};
|
||||
|
||||
FLOATTYPE mMat3x3_b[9] =
|
||||
{
|
||||
matrix[1 * 4 + 0], matrix[2 * 4 + 0], matrix[3 * 4 + 0],
|
||||
matrix[1 * 4 + 2], matrix[2 * 4 + 2], matrix[3 * 4 + 2],
|
||||
matrix[1 * 4 + 3], matrix[2 * 4 + 3], matrix[3 * 4 + 3]
|
||||
};
|
||||
|
||||
FLOATTYPE mMat3x3_c[9] =
|
||||
{
|
||||
matrix[1 * 4 + 0], matrix[2 * 4 + 0], matrix[3 * 4 + 0],
|
||||
matrix[1 * 4 + 1], matrix[2 * 4 + 1], matrix[3 * 4 + 1],
|
||||
matrix[1 * 4 + 3], matrix[2 * 4 + 3], matrix[3 * 4 + 3]
|
||||
};
|
||||
|
||||
FLOATTYPE mMat3x3_d[9] =
|
||||
{
|
||||
matrix[1 * 4 + 0], matrix[2 * 4 + 0], matrix[3 * 4 + 0],
|
||||
matrix[1 * 4 + 1], matrix[2 * 4 + 1], matrix[3 * 4 + 1],
|
||||
matrix[1 * 4 + 2], matrix[2 * 4 + 2], matrix[3 * 4 + 2]
|
||||
};
|
||||
|
||||
FLOATTYPE mMat3x3_e[9] =
|
||||
{
|
||||
matrix[0 * 4 + 1], matrix[2 * 4 + 1], matrix[3 * 4 + 1],
|
||||
matrix[0 * 4 + 2], matrix[2 * 4 + 2], matrix[3 * 4 + 2],
|
||||
matrix[0 * 4 + 3], matrix[2 * 4 + 3], matrix[3 * 4 + 3]
|
||||
};
|
||||
|
||||
FLOATTYPE mMat3x3_f[9] =
|
||||
{
|
||||
matrix[0 * 4 + 0], matrix[2 * 4 + 0], matrix[3 * 4 + 0],
|
||||
matrix[0 * 4 + 2], matrix[2 * 4 + 2], matrix[3 * 4 + 2],
|
||||
matrix[0 * 4 + 3], matrix[2 * 4 + 3], matrix[3 * 4 + 3]
|
||||
};
|
||||
|
||||
FLOATTYPE mMat3x3_g[9] =
|
||||
{
|
||||
matrix[0 * 4 + 0], matrix[2 * 4 + 0], matrix[3 * 4 + 0],
|
||||
matrix[0 * 4 + 1], matrix[2 * 4 + 1], matrix[3 * 4 + 1],
|
||||
matrix[0 * 4 + 3], matrix[2 * 4 + 3], matrix[3 * 4 + 3]
|
||||
};
|
||||
|
||||
FLOATTYPE mMat3x3_h[9] =
|
||||
{
|
||||
matrix[0 * 4 + 0], matrix[2 * 4 + 0], matrix[3 * 4 + 0],
|
||||
matrix[0 * 4 + 1], matrix[2 * 4 + 1], matrix[3 * 4 + 1],
|
||||
matrix[0 * 4 + 2], matrix[2 * 4 + 2], matrix[3 * 4 + 2]
|
||||
};
|
||||
|
||||
FLOATTYPE mMat3x3_i[9] =
|
||||
{
|
||||
matrix[0 * 4 + 1], matrix[1 * 4 + 1], matrix[3 * 4 + 1],
|
||||
matrix[0 * 4 + 2], matrix[1 * 4 + 2], matrix[3 * 4 + 2],
|
||||
matrix[0 * 4 + 3], matrix[1 * 4 + 3], matrix[3 * 4 + 3]
|
||||
};
|
||||
|
||||
FLOATTYPE mMat3x3_j[9] =
|
||||
{
|
||||
matrix[0 * 4 + 0], matrix[1 * 4 + 0], matrix[3 * 4 + 0],
|
||||
matrix[0 * 4 + 2], matrix[1 * 4 + 2], matrix[3 * 4 + 2],
|
||||
matrix[0 * 4 + 3], matrix[1 * 4 + 3], matrix[3 * 4 + 3]
|
||||
};
|
||||
|
||||
FLOATTYPE mMat3x3_k[9] =
|
||||
{
|
||||
matrix[0 * 4 + 0], matrix[1 * 4 + 0], matrix[3 * 4 + 0],
|
||||
matrix[0 * 4 + 1], matrix[1 * 4 + 1], matrix[3 * 4 + 1],
|
||||
matrix[0 * 4 + 3], matrix[1 * 4 + 3], matrix[3 * 4 + 3]
|
||||
};
|
||||
|
||||
FLOATTYPE mMat3x3_l[9] =
|
||||
{
|
||||
matrix[0 * 4 + 0], matrix[1 * 4 + 0], matrix[3 * 4 + 0],
|
||||
matrix[0 * 4 + 1], matrix[1 * 4 + 1], matrix[3 * 4 + 1],
|
||||
matrix[0 * 4 + 2], matrix[1 * 4 + 2], matrix[3 * 4 + 2]
|
||||
};
|
||||
|
||||
FLOATTYPE mMat3x3_m[9] =
|
||||
{
|
||||
matrix[0 * 4 + 1], matrix[1 * 4 + 1], matrix[2 * 4 + 1],
|
||||
matrix[0 * 4 + 2], matrix[1 * 4 + 2], matrix[2 * 4 + 2],
|
||||
matrix[0 * 4 + 3], matrix[1 * 4 + 3], matrix[2 * 4 + 3]
|
||||
};
|
||||
|
||||
FLOATTYPE mMat3x3_n[9] =
|
||||
{
|
||||
matrix[0 * 4 + 0], matrix[1 * 4 + 0], matrix[2 * 4 + 0],
|
||||
matrix[0 * 4 + 2], matrix[1 * 4 + 2], matrix[2 * 4 + 2],
|
||||
matrix[0 * 4 + 3], matrix[1 * 4 + 3], matrix[2 * 4 + 3]
|
||||
};
|
||||
|
||||
FLOATTYPE mMat3x3_o[9] =
|
||||
{
|
||||
matrix[0 * 4 + 0], matrix[1 * 4 + 0], matrix[2 * 4 + 0],
|
||||
matrix[0 * 4 + 1], matrix[1 * 4 + 1], matrix[2 * 4 + 1],
|
||||
matrix[0 * 4 + 3], matrix[1 * 4 + 3], matrix[2 * 4 + 3]
|
||||
};
|
||||
|
||||
FLOATTYPE mMat3x3_p[9] =
|
||||
{
|
||||
matrix[0 * 4 + 0], matrix[1 * 4 + 0], matrix[2 * 4 + 0],
|
||||
matrix[0 * 4 + 1], matrix[1 * 4 + 1], matrix[2 * 4 + 1],
|
||||
matrix[0 * 4 + 2], matrix[1 * 4 + 2], matrix[2 * 4 + 2]
|
||||
};
|
||||
|
||||
result[0 * 4 + 0] = mat3Determinant(mMat3x3_a);
|
||||
result[1 * 4 + 0] = -mat3Determinant(mMat3x3_b);
|
||||
result[2 * 4 + 0] = mat3Determinant(mMat3x3_c);
|
||||
result[3 * 4 + 0] = -mat3Determinant(mMat3x3_d);
|
||||
result[0 * 4 + 1] = -mat3Determinant(mMat3x3_e);
|
||||
result[1 * 4 + 1] = mat3Determinant(mMat3x3_f);
|
||||
result[2 * 4 + 1] = -mat3Determinant(mMat3x3_g);
|
||||
result[3 * 4 + 1] = mat3Determinant(mMat3x3_h);
|
||||
result[0 * 4 + 2] = mat3Determinant(mMat3x3_i);
|
||||
result[1 * 4 + 2] = -mat3Determinant(mMat3x3_j);
|
||||
result[2 * 4 + 2] = mat3Determinant(mMat3x3_k);
|
||||
result[3 * 4 + 2] = -mat3Determinant(mMat3x3_l);
|
||||
result[0 * 4 + 3] = -mat3Determinant(mMat3x3_m);
|
||||
result[1 * 4 + 3] = mat3Determinant(mMat3x3_n);
|
||||
result[2 * 4 + 3] = -mat3Determinant(mMat3x3_o);
|
||||
result[3 * 4 + 3] = mat3Determinant(mMat3x3_p);
|
||||
}
|
||||
|
||||
bool VSMatrix::inverseMatrix(VSMatrix &result)
|
||||
{
|
||||
// Calculate mat4 determinant
|
||||
FLOATTYPE det = mat4Determinant(mMatrix);
|
||||
|
||||
// Inverse unknown when determinant is close to zero
|
||||
if (fabs(det) < 1e-15)
|
||||
{
|
||||
for (int i = 0; i < 16; i++)
|
||||
result.mMatrix[i] = FLOATTYPE(0.0);
|
||||
return false;
|
||||
}
|
||||
else
|
||||
{
|
||||
mat4Adjoint(mMatrix, result.mMatrix);
|
||||
|
||||
FLOATTYPE invDet = FLOATTYPE(1.0) / det;
|
||||
for (int i = 0; i < 16; i++)
|
||||
{
|
||||
result.mMatrix[i] = result.mMatrix[i] * invDet;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue