gzdoom-gles/src/zstrformat.cpp

607 lines
14 KiB
C++
Raw Normal View History

#include <limits.h>
#include <string.h>
#include <stddef.h>
#include <stdlib.h>
#include <math.h>
#include <malloc.h>
#include "zstring.h"
#ifndef _MSC_VER
#include <stdint.h>
#else
typedef unsigned __int64 uint64_t;
typedef signed __int64 int64_t;
#endif
// Even though the standard C library has a function to do printf-style formatting in a
// generic way, there is no standard interface to this function. So if you want to do
// some printf formatting that doesn't fit in the context of the provided functions,
// you need to roll your own. Why is that?
//
// Maybe Microsoft wants you to write a better one yourself? When used as part of a
// sprintf replacement, this function is significantly faster than Microsoft's
// offering. When used as part of a fprintf replacement, this function turns out to
// be slower, but that's probably because the CRT's fprintf can interact with the
// FILE object on a low level for better perfomance. If you sprintf into a buffer
// and then fwrite that buffer, this routine wins again, though the difference isn't
// great.
namespace StringFormat
{
int Worker (OutputFunc output, void *outputData, const char *fmt, ...)
{
va_list arglist;
int len;
va_start (arglist, fmt);
len = VWorker (output, outputData, fmt, arglist);
va_end (arglist);
return len;
}
static inline int writepad (OutputFunc output, void *outputData, const char *pad, int padsize, int spaceToFill)
{
int outlen = 0;
while (spaceToFill > 0)
{
int count = spaceToFill > padsize ? padsize : spaceToFill;
outlen += output (outputData, pad, count);
spaceToFill -= count;
}
return outlen;
}
// Gasp! This is supposed to be a replacement for sprintf formatting, but
// I used sprintf for doubles anyway! Oh no!
static int fmt_fp (OutputFunc output, void *outputData, int flags, int precision, int width, double number, char type)
{
char *buff;
char format[16];
int i;
format[0] = '%';
i = 1;
if (flags & F_MINUS) format[i++] = '-';
if (flags & F_PLUS) format[i++] = '+';
if (flags & F_ZERO) format[i++] = '0';
if (flags & F_BLANK) format[i++] = ' ';
if (flags & F_HASH) format[i++] = '#';
format[i++] = '*';
format[i++] = '.';
format[i++] = '*';
format[i++] = type;
format[i++] = '\0';
buff = (char *)alloca (1000 + precision);
i = sprintf (buff, format, width, precision, number);
return output (outputData, buff, i);
}
int VWorker (OutputFunc output, void *outputData, const char *fmt, va_list arglist)
{
const char *c;
const char *base;
int len = 0;
int width;
int precision;
int flags;
base = c = fmt;
for (;;)
{
while (*c && *c != '%')
{
++c;
}
if (*c == '\0')
{
return len + output (outputData, base, int(c - base));
}
if (c - base > 0)
{
len += output (outputData, base, int(c - base));
}
c++;
// Gather the flags, if any
for (flags = 0;; ++c)
{
if (*c == '-')
{
flags |= F_MINUS; // bit 0
}
else if (*c == '+')
{
flags |= F_PLUS; // bit 1
}
else if (*c == '0')
{
flags |= F_ZERO; // bit 2
}
else if (*c == ' ')
{
flags |= F_BLANK; // bit 3
}
else if (*c == '#')
{
flags |= F_HASH; // bit 4
}
else
{
break;
}
}
width = precision = -1;
// Read the width, if any
if (*c == '*')
{
++c;
width = va_arg (arglist, int);
if (width < 0)
{ // Negative width means minus flag and positive width
flags |= F_MINUS;
width = -width;
}
}
else if (*c >= '0' && *c <= '9')
{
width = *c++ - '0';
while (*c >= '0' && *c <= '9')
{
width = width * 10 + *c++ - '0';
}
}
// If 0 and - both appear, 0 is ignored.
// If the blank and + both appear, the blank is ignored.
flags &= ~((flags & 3) << 2);
// Read the precision, if any
if (*c == '.')
{
precision = 0;
if (*++c == '*')
{
++c;
precision = va_arg (arglist, int);
}
else if (*c >= '0' && *c <= '9')
{
precision = *c++ - '0';
while (*c >= '0' && *c <= '9')
{
precision = precision * 10 + *c++ - '0';
}
}
}
// Read the size prefix, if any
if (*c == 'h')
{
if (*++c == 'h')
{
flags |= F_HALFHALF;
++c;
}
else
{
flags |= F_HALF;
}
}
else if (*c == 'l')
{
if (*++c == 'l')
{
flags |= F_LONGLONG;
++c;
}
else
{
flags |= F_LONG;
}
}
else if (*c == 'I')
{
if (*++c == '6')
{
if (*++c == '4')
{
flags |= F_LONGLONG;
++c;
}
}
else
{
flags |= F_BIGI;
}
}
base = c+1;
// Now that that's all out of the way, we should be pointing at the type specifier
{
static const char hexits[18] = {'0','1','2','3','4','5','6','7','8','9','a','b','c','d','e','f','0','x'};
static const char HEXits[18] = {'0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F','0','X'};
static const char spaces[16] = {' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' '};
static const char zeroes[17] = {'0','0','0','0','0','0','0','0','0','0','0','0','0','0','0','0','.'};
static const char plusprefix = '+';
static const char minusprefix = '-';
static const char dotchar = '.';
const char *prefix = NULL;
int prefixlen = 0;
int postprefixzeros = 0;
int size = flags & 0xF000;
char buffer[32], *ibuff;
const char *obuff = 0;
char type = *c++;
int bufflen = 0;
int outlen = 0;
unsigned int intarg = 0;
uint64_t int64arg = 0;
const void *voidparg;
const char *charparg;
const char *xits = hexits;
int inlen = len;
// Using a bunch of if/else if statements is faster than a switch, because a switch generates
// a jump table. A jump table means a possible data cache miss and a hefty penalty while the
// cache line is loaded.
if (type == 'x' || type == 'X' ||
type == 'p' ||
type == 'd' || type == 'u' || type == 'i' ||
type == 'o')
{
if (type == 'X' || type == 'p')
{
xits = HEXits;
}
if (type == 'p')
{
type = 'X';
voidparg = va_arg (arglist, void *);
if (sizeof(void*) == sizeof(int))
{
intarg = (unsigned int)(size_t)voidparg;
precision = 8;
size = 0;
}
else
{
int64arg = (uint64_t)(size_t)voidparg;
precision = 16;
size = F_LONGLONG;
}
}
else
{
if (size == F_HALFHALF)
{
intarg = va_arg (arglist, int);
intarg = (signed char)intarg;
}
else if (size == F_HALF)
{
intarg = va_arg (arglist, int);
intarg = (short)intarg;
}
else if (size == F_LONG)
{
if (sizeof(long) == sizeof(int)) intarg = va_arg (arglist, int);
else { int64arg = va_arg (arglist, int64_t); size = F_LONGLONG; }
}
else if (size == F_BIGI)
{
if (sizeof(void*) == sizeof(int)) intarg = va_arg (arglist, int);
else { int64arg = va_arg (arglist, int64_t); size = F_LONGLONG; }
}
else if (size == F_LONGLONG)
{
int64arg = va_arg (arglist, int64_t);
}
else
{
intarg = va_arg (arglist, int);
}
}
if (precision < 0) precision = 1;
ibuff = &buffer[sizeof(buffer)];
if (size == F_LONGLONG)
{
if (int64arg == 0)
{
flags |= F_ZEROVALUE;
}
else
{
if (type == 'o')
{ // Octal: Dump digits until it fits in an unsigned int
while (int64arg > UINT_MAX)
{
*--ibuff = char(int64arg & 7) + '0'; int64arg >>= 3;
}
intarg = int(int64arg);
}
else if (type == 'x' || type == 'X')
{ // Hexadecimal: Dump digits until it fits in an unsigned int
while (int64arg > UINT_MAX)
{
*--ibuff = xits[int64arg & 15]; int64arg >>= 4;
}
intarg = int(int64arg);
}
else
{
if (type != 'u')
{
// If a signed number is negative, set the negative flag and make it positive.
int64_t sint64arg = (int64_t)int64arg;
if (sint64arg < 0)
{
flags |= F_NEGATIVE;
sint64arg = -sint64arg;
int64arg = sint64arg;
}
flags |= F_SIGNED;
type = 'u';
}
// If an unsigned int64 is too big to fit in an unsigned int, dump out
// digits until it is sufficiently small.
while (int64arg > INT_MAX)
{
*--ibuff = char(int64arg % 10) + '0'; int64arg /= 10;
}
intarg = (unsigned int)(int64arg);
}
}
}
else
{
if (intarg == 0)
{
flags |= F_ZEROVALUE;
}
else if (type == 'i' || type == 'd')
{ // If a signed int is negative, set the negative flag and make it positive.
signed int sintarg = (signed int)intarg;
if (sintarg < 0)
{
flags |= F_NEGATIVE;
sintarg = -sintarg;
intarg = sintarg;
}
flags |= F_SIGNED;
type = 'u';
}
}
if (flags & F_ZEROVALUE)
{
if (precision != 0)
{
*--ibuff = '0';
}
}
else if (type == 'u')
{ // Decimal
while (intarg != 0)
{
*--ibuff = (intarg % 10) + '0'; intarg /= 10;
}
}
else if (type == 'o')
{ // Octal
while (intarg != 0)
{
*--ibuff = (intarg & 7) + '0'; intarg >>= 3;
}
}
else
{ // Hexadecimal
while (intarg != 0)
{
*--ibuff = xits[intarg & 15]; intarg >>= 4;
}
}
// Check for prefix (only for non-decimal, which are always unsigned)
if ((flags & (F_HASH|F_ZEROVALUE)) == F_HASH)
{
if (type == 'o')
{
if (bufflen >= precision)
{
prefix = zeroes;
prefixlen = 1;
}
}
else if (type == 'x' || type == 'X')
{
prefix = xits + 16;
prefixlen = 2;
}
}
bufflen = (int)(ptrdiff_t)(&buffer[sizeof(buffer)] - ibuff);
obuff = ibuff;
if (precision >= 0)
{
postprefixzeros = precision - bufflen;
if (postprefixzeros < 0) postprefixzeros = 0;
// flags &= ~F_ZERO;
}
}
else if (type == 'c')
{
intarg = va_arg (arglist, int);
buffer[0] = intarg;
bufflen = 1;
obuff = buffer;
}
else if (type == 's')
{
charparg = va_arg (arglist, const char *);
if (charparg == NULL)
{
obuff = "(null)";
bufflen = 6;
}
else
{
obuff = charparg;
if (precision < 0)
{
bufflen = (int)strlen (charparg);
}
else
{
for (bufflen = 0; bufflen < precision && charparg[bufflen] != '\0'; ++bufflen)
{ /* empty */ }
}
}
}
else if (type == '%')
{ // Just print a '%': Output it with the next stage.
base--;
continue;
}
else if (type == 'n')
{
if (size == F_HALFHALF)
{
*va_arg (arglist, char *) = inlen;
}
else if (size == F_HALF)
{
*va_arg (arglist, short *) = inlen;
}
else if (size == F_LONG)
{
*va_arg (arglist, long *) = inlen;
}
else if (size == F_LONGLONG)
{
*va_arg (arglist, int64_t *) = inlen;
}
else if (size == F_BIGI)
{
*va_arg (arglist, ptrdiff_t *) = inlen;
}
else
{
*va_arg (arglist, int *) = inlen;
}
}
else if (type == 'e' || type == 'E' ||
type == 'f' || type == 'F' ||
type == 'g' || type == 'G')
{
// IEEE 754 floating point numbers
#ifdef _MSC_VER
#define FP_SIGN_MASK (1ui64<<63)
#define FP_EXPONENT_MASK (2047ui64<<52)
#define FP_FRACTION_MASK ((1ui64<<52)-1)
#else
#define FP_SIGN_MASK (1llu<<63)
#define FP_EXPONENT_MASK (2047llu<<52)
#define FP_FRACTION_MASK ((1llu<<52)-1)
#endif
double number = va_arg (arglist, double);
if (precision < 0) precision = 6;
flags |= F_SIGNED;
int64arg = *(uint64_t*)&number;
if ((int64arg & FP_EXPONENT_MASK) == FP_EXPONENT_MASK)
{
if (int64arg & FP_SIGN_MASK)
{
flags |= F_NEGATIVE;
}
if ((int64arg & FP_FRACTION_MASK) == 0)
{
obuff = "Infinity";
bufflen = 8;
}
else if ((int64arg & ((FP_FRACTION_MASK+1)>>1)) == 0)
{
obuff = "NaN";
bufflen = 3;
}
else
{
obuff = "Ind";
}
}
else
{
// Converting a binary floating point number to an ASCII decimal
// representation is non-trivial, so I'm not going to do it myself.
// (At least for now.)
len += fmt_fp (output, outputData, flags, precision, width, number, type);
continue;
}
}
// Check for sign prefix (only for signed numbers)
if (flags & F_SIGNED)
{
if (flags & F_NEGATIVE)
{
prefix = &minusprefix;
prefixlen = 1;
}
else if (flags & F_PLUS)
{
prefix = &plusprefix;
prefixlen = 1;
}
else if (flags & F_BLANK)
{
prefix = spaces;
prefixlen = 1;
}
}
// Pad the output to the field width, if needed
int fieldlen = prefixlen + postprefixzeros + bufflen;
const char *pad = (flags & F_ZERO) ? zeroes : spaces;
// If the output is right aligned and zero-padded, then the prefix must come before the padding.
if ((flags & (F_ZERO|F_MINUS)) == F_ZERO && prefixlen > 0)
{
outlen += output (outputData, prefix, prefixlen);
prefixlen = 0;
}
if (!(flags & F_MINUS) && fieldlen < width)
{ // Field is right-justified, so padding comes first
outlen += writepad (output, outputData, pad, sizeof(spaces), width - fieldlen);
width = -1;
}
// Output field: Prefix, post-prefix zeros, buffer text
if (prefixlen > 0)
{
outlen += output (outputData, prefix, prefixlen);
}
outlen += writepad (output, outputData, zeroes, sizeof(spaces), postprefixzeros);
if (bufflen > 0)
{
outlen += output (outputData, obuff, bufflen);
}
if ((flags & F_MINUS) && fieldlen < width)
{ // Field is left-justified, so padding comes last
outlen += writepad (output, outputData, pad, sizeof(spaces), width - fieldlen);
}
len += outlen;
}
}
return len;
}
};