gzdoom-gles/src/sound/adlmidi/nukedopl3.c

1392 lines
40 KiB
C
Raw Normal View History

/*
* Copyright (C) 2013-2016 Alexey Khokholov (Nuke.YKT)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Nuked OPL3 emulator.
* Thanks:
* MAME Development Team(Jarek Burczynski, Tatsuyuki Satoh):
* Feedback and Rhythm part calculation information.
* forums.submarine.org.uk(carbon14, opl3):
* Tremolo and phase generator calculation information.
* OPLx decapsulated(Matthew Gambrell, Olli Niemitalo):
* OPL2 ROMs.
*
* version: 1.7.4
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "nukedopl3.h"
#define RSM_FRAC 10
/* Channel types */
enum {
ch_2op = 0,
ch_4op = 1,
ch_4op2 = 2,
ch_drum = 3
};
/* Envelope key types */
enum {
egk_norm = 0x01,
egk_drum = 0x02
};
/*
* logsin table
*/
static const Bit16u logsinrom[512] = {
0x859, 0x6c3, 0x607, 0x58b, 0x52e, 0x4e4, 0x4a6, 0x471,
0x443, 0x41a, 0x3f5, 0x3d3, 0x3b5, 0x398, 0x37e, 0x365,
0x34e, 0x339, 0x324, 0x311, 0x2ff, 0x2ed, 0x2dc, 0x2cd,
0x2bd, 0x2af, 0x2a0, 0x293, 0x286, 0x279, 0x26d, 0x261,
0x256, 0x24b, 0x240, 0x236, 0x22c, 0x222, 0x218, 0x20f,
0x206, 0x1fd, 0x1f5, 0x1ec, 0x1e4, 0x1dc, 0x1d4, 0x1cd,
0x1c5, 0x1be, 0x1b7, 0x1b0, 0x1a9, 0x1a2, 0x19b, 0x195,
0x18f, 0x188, 0x182, 0x17c, 0x177, 0x171, 0x16b, 0x166,
0x160, 0x15b, 0x155, 0x150, 0x14b, 0x146, 0x141, 0x13c,
0x137, 0x133, 0x12e, 0x129, 0x125, 0x121, 0x11c, 0x118,
0x114, 0x10f, 0x10b, 0x107, 0x103, 0x0ff, 0x0fb, 0x0f8,
0x0f4, 0x0f0, 0x0ec, 0x0e9, 0x0e5, 0x0e2, 0x0de, 0x0db,
0x0d7, 0x0d4, 0x0d1, 0x0cd, 0x0ca, 0x0c7, 0x0c4, 0x0c1,
0x0be, 0x0bb, 0x0b8, 0x0b5, 0x0b2, 0x0af, 0x0ac, 0x0a9,
0x0a7, 0x0a4, 0x0a1, 0x09f, 0x09c, 0x099, 0x097, 0x094,
0x092, 0x08f, 0x08d, 0x08a, 0x088, 0x086, 0x083, 0x081,
0x07f, 0x07d, 0x07a, 0x078, 0x076, 0x074, 0x072, 0x070,
0x06e, 0x06c, 0x06a, 0x068, 0x066, 0x064, 0x062, 0x060,
0x05e, 0x05c, 0x05b, 0x059, 0x057, 0x055, 0x053, 0x052,
0x050, 0x04e, 0x04d, 0x04b, 0x04a, 0x048, 0x046, 0x045,
0x043, 0x042, 0x040, 0x03f, 0x03e, 0x03c, 0x03b, 0x039,
0x038, 0x037, 0x035, 0x034, 0x033, 0x031, 0x030, 0x02f,
0x02e, 0x02d, 0x02b, 0x02a, 0x029, 0x028, 0x027, 0x026,
0x025, 0x024, 0x023, 0x022, 0x021, 0x020, 0x01f, 0x01e,
0x01d, 0x01c, 0x01b, 0x01a, 0x019, 0x018, 0x017, 0x017,
0x016, 0x015, 0x014, 0x014, 0x013, 0x012, 0x011, 0x011,
0x010, 0x00f, 0x00f, 0x00e, 0x00d, 0x00d, 0x00c, 0x00c,
0x00b, 0x00a, 0x00a, 0x009, 0x009, 0x008, 0x008, 0x007,
0x007, 0x007, 0x006, 0x006, 0x005, 0x005, 0x005, 0x004,
0x004, 0x004, 0x003, 0x003, 0x003, 0x002, 0x002, 0x002,
0x002, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001,
0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,
0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,
0x001, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001, 0x002,
0x002, 0x002, 0x002, 0x003, 0x003, 0x003, 0x004, 0x004,
0x004, 0x005, 0x005, 0x005, 0x006, 0x006, 0x007, 0x007,
0x007, 0x008, 0x008, 0x009, 0x009, 0x00a, 0x00a, 0x00b,
0x00c, 0x00c, 0x00d, 0x00d, 0x00e, 0x00f, 0x00f, 0x010,
0x011, 0x011, 0x012, 0x013, 0x014, 0x014, 0x015, 0x016,
0x017, 0x017, 0x018, 0x019, 0x01a, 0x01b, 0x01c, 0x01d,
0x01e, 0x01f, 0x020, 0x021, 0x022, 0x023, 0x024, 0x025,
0x026, 0x027, 0x028, 0x029, 0x02a, 0x02b, 0x02d, 0x02e,
0x02f, 0x030, 0x031, 0x033, 0x034, 0x035, 0x037, 0x038,
0x039, 0x03b, 0x03c, 0x03e, 0x03f, 0x040, 0x042, 0x043,
0x045, 0x046, 0x048, 0x04a, 0x04b, 0x04d, 0x04e, 0x050,
0x052, 0x053, 0x055, 0x057, 0x059, 0x05b, 0x05c, 0x05e,
0x060, 0x062, 0x064, 0x066, 0x068, 0x06a, 0x06c, 0x06e,
0x070, 0x072, 0x074, 0x076, 0x078, 0x07a, 0x07d, 0x07f,
0x081, 0x083, 0x086, 0x088, 0x08a, 0x08d, 0x08f, 0x092,
0x094, 0x097, 0x099, 0x09c, 0x09f, 0x0a1, 0x0a4, 0x0a7,
0x0a9, 0x0ac, 0x0af, 0x0b2, 0x0b5, 0x0b8, 0x0bb, 0x0be,
0x0c1, 0x0c4, 0x0c7, 0x0ca, 0x0cd, 0x0d1, 0x0d4, 0x0d7,
0x0db, 0x0de, 0x0e2, 0x0e5, 0x0e9, 0x0ec, 0x0f0, 0x0f4,
0x0f8, 0x0fb, 0x0ff, 0x103, 0x107, 0x10b, 0x10f, 0x114,
0x118, 0x11c, 0x121, 0x125, 0x129, 0x12e, 0x133, 0x137,
0x13c, 0x141, 0x146, 0x14b, 0x150, 0x155, 0x15b, 0x160,
0x166, 0x16b, 0x171, 0x177, 0x17c, 0x182, 0x188, 0x18f,
0x195, 0x19b, 0x1a2, 0x1a9, 0x1b0, 0x1b7, 0x1be, 0x1c5,
0x1cd, 0x1d4, 0x1dc, 0x1e4, 0x1ec, 0x1f5, 0x1fd, 0x206,
0x20f, 0x218, 0x222, 0x22c, 0x236, 0x240, 0x24b, 0x256,
0x261, 0x26d, 0x279, 0x286, 0x293, 0x2a0, 0x2af, 0x2bd,
0x2cd, 0x2dc, 0x2ed, 0x2ff, 0x311, 0x324, 0x339, 0x34e,
0x365, 0x37e, 0x398, 0x3b5, 0x3d3, 0x3f5, 0x41a, 0x443,
0x471, 0x4a6, 0x4e4, 0x52e, 0x58b, 0x607, 0x6c3, 0x859
};
/*
* exp table
*/
static const Bit16u exprom[256] = {
0xff4, 0xfea, 0xfde, 0xfd4, 0xfc8, 0xfbe, 0xfb4, 0xfa8,
0xf9e, 0xf92, 0xf88, 0xf7e, 0xf72, 0xf68, 0xf5c, 0xf52,
0xf48, 0xf3e, 0xf32, 0xf28, 0xf1e, 0xf14, 0xf08, 0xefe,
0xef4, 0xeea, 0xee0, 0xed4, 0xeca, 0xec0, 0xeb6, 0xeac,
0xea2, 0xe98, 0xe8e, 0xe84, 0xe7a, 0xe70, 0xe66, 0xe5c,
0xe52, 0xe48, 0xe3e, 0xe34, 0xe2a, 0xe20, 0xe16, 0xe0c,
0xe04, 0xdfa, 0xdf0, 0xde6, 0xddc, 0xdd2, 0xdca, 0xdc0,
0xdb6, 0xdac, 0xda4, 0xd9a, 0xd90, 0xd88, 0xd7e, 0xd74,
0xd6a, 0xd62, 0xd58, 0xd50, 0xd46, 0xd3c, 0xd34, 0xd2a,
0xd22, 0xd18, 0xd10, 0xd06, 0xcfe, 0xcf4, 0xcec, 0xce2,
0xcda, 0xcd0, 0xcc8, 0xcbe, 0xcb6, 0xcae, 0xca4, 0xc9c,
0xc92, 0xc8a, 0xc82, 0xc78, 0xc70, 0xc68, 0xc60, 0xc56,
0xc4e, 0xc46, 0xc3c, 0xc34, 0xc2c, 0xc24, 0xc1c, 0xc12,
0xc0a, 0xc02, 0xbfa, 0xbf2, 0xbea, 0xbe0, 0xbd8, 0xbd0,
0xbc8, 0xbc0, 0xbb8, 0xbb0, 0xba8, 0xba0, 0xb98, 0xb90,
0xb88, 0xb80, 0xb78, 0xb70, 0xb68, 0xb60, 0xb58, 0xb50,
0xb48, 0xb40, 0xb38, 0xb32, 0xb2a, 0xb22, 0xb1a, 0xb12,
0xb0a, 0xb02, 0xafc, 0xaf4, 0xaec, 0xae4, 0xade, 0xad6,
0xace, 0xac6, 0xac0, 0xab8, 0xab0, 0xaa8, 0xaa2, 0xa9a,
0xa92, 0xa8c, 0xa84, 0xa7c, 0xa76, 0xa6e, 0xa68, 0xa60,
0xa58, 0xa52, 0xa4a, 0xa44, 0xa3c, 0xa36, 0xa2e, 0xa28,
0xa20, 0xa18, 0xa12, 0xa0c, 0xa04, 0x9fe, 0x9f6, 0x9f0,
0x9e8, 0x9e2, 0x9da, 0x9d4, 0x9ce, 0x9c6, 0x9c0, 0x9b8,
0x9b2, 0x9ac, 0x9a4, 0x99e, 0x998, 0x990, 0x98a, 0x984,
0x97c, 0x976, 0x970, 0x96a, 0x962, 0x95c, 0x956, 0x950,
0x948, 0x942, 0x93c, 0x936, 0x930, 0x928, 0x922, 0x91c,
0x916, 0x910, 0x90a, 0x904, 0x8fc, 0x8f6, 0x8f0, 0x8ea,
0x8e4, 0x8de, 0x8d8, 0x8d2, 0x8cc, 0x8c6, 0x8c0, 0x8ba,
0x8b4, 0x8ae, 0x8a8, 0x8a2, 0x89c, 0x896, 0x890, 0x88a,
0x884, 0x87e, 0x878, 0x872, 0x86c, 0x866, 0x860, 0x85a,
0x854, 0x850, 0x84a, 0x844, 0x83e, 0x838, 0x832, 0x82c,
0x828, 0x822, 0x81c, 0x816, 0x810, 0x80c, 0x806, 0x800
};
/*
* freq mult table multiplied by 2
*
* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 12, 12, 15, 15
*/
static const Bit8u mt[16] = {
1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 20, 24, 24, 30, 30
};
/*
* ksl table
*/
static const Bit8u kslrom[16] = {
0, 32, 40, 45, 48, 51, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64
};
static const Bit8u kslshift[4] = {
8, 1, 2, 0
};
/*
* envelope generator constants
*/
static const Bit8u eg_incstep[3][4][8] = {
{
{ 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0 }
},
{
{ 0, 1, 0, 1, 0, 1, 0, 1 },
{ 0, 1, 0, 1, 1, 1, 0, 1 },
{ 0, 1, 1, 1, 0, 1, 1, 1 },
{ 0, 1, 1, 1, 1, 1, 1, 1 }
},
{
{ 1, 1, 1, 1, 1, 1, 1, 1 },
{ 2, 2, 1, 1, 1, 1, 1, 1 },
{ 2, 2, 1, 1, 2, 2, 1, 1 },
{ 2, 2, 2, 2, 2, 2, 1, 1 }
}
};
static const Bit8u eg_incdesc[16] = {
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2
};
static const Bit8s eg_incsh[16] = {
0, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, -1, -2
};
/*
* address decoding
*/
static const Bit8s ad_slot[0x20] = {
0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, -1, -1,
12, 13, 14, 15, 16, 17, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
};
static const Bit8u ch_slot[18] = {
0, 1, 2, 6, 7, 8, 12, 13, 14, 18, 19, 20, 24, 25, 26, 30, 31, 32
};
/*
* Envelope generator
*/
static void OPL3_EnvelopeGenOff(opl3_slot *slot);
static void OPL3_EnvelopeGenAttack(opl3_slot *slot);
static void OPL3_EnvelopeGenDecay(opl3_slot *slot);
static void OPL3_EnvelopeGenSustain(opl3_slot *slot);
static void OPL3_EnvelopeGenRelease(opl3_slot *slot);
typedef void(*envelope_genfunc)(opl3_slot *slot);
envelope_genfunc envelope_gen[5] = {
OPL3_EnvelopeGenOff,
OPL3_EnvelopeGenAttack,
OPL3_EnvelopeGenDecay,
OPL3_EnvelopeGenSustain,
OPL3_EnvelopeGenRelease
};
enum envelope_gen_num
{
envelope_gen_num_off = 0,
envelope_gen_num_attack = 1,
envelope_gen_num_decay = 2,
envelope_gen_num_sustain = 3,
envelope_gen_num_release = 4
};
static Bit8u OPL3_EnvelopeCalcRate(opl3_slot *slot, Bit8u reg_rate)
{
Bit8u rate;
if (reg_rate == 0x00)
{
return 0x00;
}
rate = (reg_rate << 2)
+ (slot->reg_ksr ? slot->channel->ksv : (slot->channel->ksv >> 2));
if (rate > 0x3c)
{
rate = 0x3c;
}
return rate;
}
static void OPL3_EnvelopeUpdateKSL(opl3_slot *slot)
{
Bit16s ksl = (kslrom[slot->channel->f_num >> 6] << 2)
- ((0x08 - slot->channel->block) << 5);
if (ksl < 0)
{
ksl = 0;
}
slot->eg_ksl = (Bit8u)ksl;
}
static void OPL3_EnvelopeUpdateRate(opl3_slot *slot)
{
switch (slot->eg_gen)
{
case envelope_gen_num_off:
case envelope_gen_num_attack:
slot->eg_rate = OPL3_EnvelopeCalcRate(slot, slot->reg_ar);
break;
case envelope_gen_num_decay:
slot->eg_rate = OPL3_EnvelopeCalcRate(slot, slot->reg_dr);
break;
case envelope_gen_num_sustain:
case envelope_gen_num_release:
slot->eg_rate = OPL3_EnvelopeCalcRate(slot, slot->reg_rr);
break;
}
}
static void OPL3_EnvelopeGenOff(opl3_slot *slot)
{
slot->eg_rout = 0x1ff;
}
static void OPL3_EnvelopeGenAttack(opl3_slot *slot)
{
if (slot->eg_rout == 0x00)
{
slot->eg_gen = envelope_gen_num_decay;
OPL3_EnvelopeUpdateRate(slot);
return;
}
slot->eg_rout += ((~slot->eg_rout) * slot->eg_inc) >> 3;
if (slot->eg_rout < 0x00)
{
slot->eg_rout = 0x00;
}
}
static void OPL3_EnvelopeGenDecay(opl3_slot *slot)
{
if (slot->eg_rout >= slot->reg_sl << 4)
{
slot->eg_gen = envelope_gen_num_sustain;
OPL3_EnvelopeUpdateRate(slot);
return;
}
slot->eg_rout += slot->eg_inc;
}
static void OPL3_EnvelopeGenSustain(opl3_slot *slot)
{
if (!slot->reg_type)
{
OPL3_EnvelopeGenRelease(slot);
}
}
static void OPL3_EnvelopeGenRelease(opl3_slot *slot)
{
if (slot->eg_rout >= 0x1ff)
{
slot->eg_gen = envelope_gen_num_off;
slot->eg_rout = 0x1ff;
OPL3_EnvelopeUpdateRate(slot);
return;
}
slot->eg_rout += slot->eg_inc;
}
static void OPL3_EnvelopeCalc(opl3_slot *slot)
{
Bit8u rate_h, rate_l;
Bit8u inc = 0;
rate_h = slot->eg_rate >> 2;
rate_l = slot->eg_rate & 3;
if (eg_incsh[rate_h] > 0)
{
if ((slot->chip->timer & ((1 << eg_incsh[rate_h]) - 1)) == 0)
{
inc = eg_incstep[eg_incdesc[rate_h]][rate_l]
[((slot->chip->timer)>> eg_incsh[rate_h]) & 0x07];
}
}
else
{
inc = eg_incstep[eg_incdesc[rate_h]][rate_l]
[slot->chip->timer & 0x07] << (-eg_incsh[rate_h]);
}
slot->eg_inc = inc;
slot->eg_out = slot->eg_rout + (slot->reg_tl << 2)
+ (slot->eg_ksl >> kslshift[slot->reg_ksl]) + *slot->trem;
if (slot->eg_out > 0x1ff) /* TODO: Remove this if possible */
{
slot->eg_out = 0x1ff;
}
slot->eg_out <<= 3;
envelope_gen[slot->eg_gen](slot);
}
static void OPL3_EnvelopeKeyOn(opl3_slot *slot, Bit8u type)
{
if (!slot->key)
{
slot->eg_gen = envelope_gen_num_attack;
OPL3_EnvelopeUpdateRate(slot);
if ((slot->eg_rate >> 2) == 0x0f)
{
slot->eg_gen = envelope_gen_num_decay;
OPL3_EnvelopeUpdateRate(slot);
slot->eg_rout = 0x00;
}
slot->pg_phase = 0x00;
}
slot->key |= type;
}
static void OPL3_EnvelopeKeyOff(opl3_slot *slot, Bit8u type)
{
if (slot->key)
{
slot->key &= (~type);
if (!slot->key)
{
slot->eg_gen = envelope_gen_num_release;
OPL3_EnvelopeUpdateRate(slot);
}
}
}
/*
* Phase Generator
*/
static void OPL3_PhaseGenerate(opl3_slot *slot)
{
Bit16u f_num;
Bit32u basefreq;
f_num = slot->channel->f_num;
if (slot->reg_vib)
{
Bit8s range;
Bit8u vibpos;
range = (f_num >> 7) & 7;
vibpos = slot->chip->vibpos;
if (!(vibpos & 3))
{
range = 0;
}
else if (vibpos & 1)
{
range >>= 1;
}
range >>= slot->chip->vibshift;
if (vibpos & 4)
{
range = -range;
}
f_num += range;
}
basefreq = (f_num << slot->channel->block) >> 1;
slot->pg_phase += (basefreq * mt[slot->reg_mult]) >> 1;
}
/*
* Noise Generator
*/
static void OPL3_NoiseGenerate(opl3_chip *chip)
{
if (chip->noise & 0x01)
{
chip->noise ^= 0x800302;
}
chip->noise >>= 1;
}
/*
* Slot
*/
static void OPL3_SlotWrite20(opl3_slot *slot, Bit8u data)
{
if ((data >> 7) & 0x01)
{
slot->trem = &slot->chip->tremolo;
}
else
{
slot->trem = (Bit8u*)&slot->chip->zeromod;
}
slot->reg_vib = (data >> 6) & 0x01;
slot->reg_type = (data >> 5) & 0x01;
slot->reg_ksr = (data >> 4) & 0x01;
slot->reg_mult = data & 0x0f;
OPL3_EnvelopeUpdateRate(slot);
}
static void OPL3_SlotWrite40(opl3_slot *slot, Bit8u data)
{
slot->reg_ksl = (data >> 6) & 0x03;
slot->reg_tl = data & 0x3f;
OPL3_EnvelopeUpdateKSL(slot);
}
static void OPL3_SlotWrite60(opl3_slot *slot, Bit8u data)
{
slot->reg_ar = (data >> 4) & 0x0f;
slot->reg_dr = data & 0x0f;
OPL3_EnvelopeUpdateRate(slot);
}
static void OPL3_SlotWrite80(opl3_slot *slot, Bit8u data)
{
slot->reg_sl = (data >> 4) & 0x0f;
if (slot->reg_sl == 0x0f)
{
slot->reg_sl = 0x1f;
}
slot->reg_rr = data & 0x0f;
OPL3_EnvelopeUpdateRate(slot);
}
static void OPL3_SlotWriteE0(opl3_slot *slot, Bit8u data)
{
slot->reg_wf = data & 0x07;
if (slot->chip->newm == 0x00)
{
slot->reg_wf &= 0x03;
}
switch (slot->reg_wf)
{
case 1:
case 4:
case 5:
slot->maskzero = 0x200;
break;
case 3:
slot->maskzero = 0x100;
break;
default:
slot->maskzero = 0;
break;
}
switch (slot->reg_wf)
{
case 4:
slot->signpos = (31-8); /* sigext of (phase & 0x100) */
break;
case 0:
case 6:
case 7:
slot->signpos = (31-9); /* sigext of (phase & 0x200) */
break;
default:
slot->signpos = (31-16); /* set "neg" to zero */
break;
}
switch (slot->reg_wf)
{
case 4:
case 5:
slot->phaseshift = 1;
break;
case 6:
slot->phaseshift = 16; /* set phase to zero and flag for non-sin wave */
break;
case 7:
slot->phaseshift = 32; /* no shift (work by mod 32), but flag for non-sin wave */
break;
default:
slot->phaseshift = 0;
break;
}
}
static void OPL3_SlotGeneratePhase(opl3_slot *slot, Bit16u phase)
{
Bit32u neg, level;
Bit8u phaseshift;
/* Fast paths for mute segments */
if (phase & slot->maskzero)
{
slot->out = 0;
return;
}
neg = (Bit32s)((Bit32u)phase << slot->signpos) >> 31;
phaseshift = slot->phaseshift;
level = slot->eg_out;
phase <<= phaseshift;
if (phaseshift <= 1)
{
level += logsinrom[phase & 0x1ff];
}
else
{
level += ((phase ^ neg) & 0x3ff) << 3;
}
slot->out = exprom[level & 0xff] >> (level >> 8) ^ neg;
}
static void OPL3_SlotGenerate(opl3_slot *slot)
{
OPL3_SlotGeneratePhase(slot, (Bit16u)(slot->pg_phase >> 9) + *slot->mod);
}
static void OPL3_SlotGenerateZM(opl3_slot *slot)
{
OPL3_SlotGeneratePhase(slot, (Bit16u)(slot->pg_phase >> 9));
}
static void OPL3_SlotCalcFB(opl3_slot *slot)
{
if (slot->channel->fb != 0x00)
{
slot->fbmod = (slot->prout + slot->out) >> (0x09 - slot->channel->fb);
}
else
{
slot->fbmod = 0;
}
slot->prout = slot->out;
}
/*
* Channel
*/
static void OPL3_ChannelSetupAlg(opl3_channel *channel);
static void OPL3_ChannelUpdateRhythm(opl3_chip *chip, Bit8u data)
{
opl3_channel *channel6;
opl3_channel *channel7;
opl3_channel *channel8;
Bit8u chnum;
chip->rhy = data & 0x3f;
if (chip->rhy & 0x20)
{
channel6 = &chip->channel[6];
channel7 = &chip->channel[7];
channel8 = &chip->channel[8];
channel6->out[0] = &channel6->slots[1]->out;
channel6->out[1] = &channel6->slots[1]->out;
channel6->out[2] = &chip->zeromod;
channel6->out[3] = &chip->zeromod;
channel7->out[0] = &channel7->slots[0]->out;
channel7->out[1] = &channel7->slots[0]->out;
channel7->out[2] = &channel7->slots[1]->out;
channel7->out[3] = &channel7->slots[1]->out;
channel8->out[0] = &channel8->slots[0]->out;
channel8->out[1] = &channel8->slots[0]->out;
channel8->out[2] = &channel8->slots[1]->out;
channel8->out[3] = &channel8->slots[1]->out;
for (chnum = 6; chnum < 9; chnum++)
{
chip->channel[chnum].chtype = ch_drum;
}
OPL3_ChannelSetupAlg(channel6);
/*hh*/
if (chip->rhy & 0x01)
{
OPL3_EnvelopeKeyOn(channel7->slots[0], egk_drum);
}
else
{
OPL3_EnvelopeKeyOff(channel7->slots[0], egk_drum);
}
/*tc*/
if (chip->rhy & 0x02)
{
OPL3_EnvelopeKeyOn(channel8->slots[1], egk_drum);
}
else
{
OPL3_EnvelopeKeyOff(channel8->slots[1], egk_drum);
}
/*tom*/
if (chip->rhy & 0x04)
{
OPL3_EnvelopeKeyOn(channel8->slots[0], egk_drum);
}
else
{
OPL3_EnvelopeKeyOff(channel8->slots[0], egk_drum);
}
/*sd*/
if (chip->rhy & 0x08)
{
OPL3_EnvelopeKeyOn(channel7->slots[1], egk_drum);
}
else
{
OPL3_EnvelopeKeyOff(channel7->slots[1], egk_drum);
}
/*bd*/
if (chip->rhy & 0x10)
{
OPL3_EnvelopeKeyOn(channel6->slots[0], egk_drum);
OPL3_EnvelopeKeyOn(channel6->slots[1], egk_drum);
}
else
{
OPL3_EnvelopeKeyOff(channel6->slots[0], egk_drum);
OPL3_EnvelopeKeyOff(channel6->slots[1], egk_drum);
}
}
else
{
for (chnum = 6; chnum < 9; chnum++)
{
chip->channel[chnum].chtype = ch_2op;
OPL3_ChannelSetupAlg(&chip->channel[chnum]);
OPL3_EnvelopeKeyOff(chip->channel[chnum].slots[0], egk_drum);
OPL3_EnvelopeKeyOff(chip->channel[chnum].slots[1], egk_drum);
}
}
}
static void OPL3_ChannelWriteA0(opl3_channel *channel, Bit8u data)
{
if (channel->chip->newm && channel->chtype == ch_4op2)
{
return;
}
channel->f_num = (channel->f_num & 0x300) | data;
channel->ksv = (channel->block << 1)
| ((channel->f_num >> (0x09 - channel->chip->nts)) & 0x01);
OPL3_EnvelopeUpdateKSL(channel->slots[0]);
OPL3_EnvelopeUpdateKSL(channel->slots[1]);
OPL3_EnvelopeUpdateRate(channel->slots[0]);
OPL3_EnvelopeUpdateRate(channel->slots[1]);
if (channel->chip->newm && channel->chtype == ch_4op)
{
channel->pair->f_num = channel->f_num;
channel->pair->ksv = channel->ksv;
OPL3_EnvelopeUpdateKSL(channel->pair->slots[0]);
OPL3_EnvelopeUpdateKSL(channel->pair->slots[1]);
OPL3_EnvelopeUpdateRate(channel->pair->slots[0]);
OPL3_EnvelopeUpdateRate(channel->pair->slots[1]);
}
}
static void OPL3_ChannelWriteB0(opl3_channel *channel, Bit8u data)
{
if (channel->chip->newm && channel->chtype == ch_4op2)
{
return;
}
channel->f_num = (channel->f_num & 0xff) | ((data & 0x03) << 8);
channel->block = (data >> 2) & 0x07;
channel->ksv = (channel->block << 1)
| ((channel->f_num >> (0x09 - channel->chip->nts)) & 0x01);
OPL3_EnvelopeUpdateKSL(channel->slots[0]);
OPL3_EnvelopeUpdateKSL(channel->slots[1]);
OPL3_EnvelopeUpdateRate(channel->slots[0]);
OPL3_EnvelopeUpdateRate(channel->slots[1]);
if (channel->chip->newm && channel->chtype == ch_4op)
{
channel->pair->f_num = channel->f_num;
channel->pair->block = channel->block;
channel->pair->ksv = channel->ksv;
OPL3_EnvelopeUpdateKSL(channel->pair->slots[0]);
OPL3_EnvelopeUpdateKSL(channel->pair->slots[1]);
OPL3_EnvelopeUpdateRate(channel->pair->slots[0]);
OPL3_EnvelopeUpdateRate(channel->pair->slots[1]);
}
}
static void OPL3_ChannelSetupAlg(opl3_channel *channel)
{
if (channel->chtype == ch_drum)
{
switch (channel->alg & 0x01)
{
case 0x00:
channel->slots[0]->mod = &channel->slots[0]->fbmod;
channel->slots[1]->mod = &channel->slots[0]->out;
break;
case 0x01:
channel->slots[0]->mod = &channel->slots[0]->fbmod;
channel->slots[1]->mod = &channel->chip->zeromod;
break;
}
return;
}
if (channel->alg & 0x08)
{
return;
}
if (channel->alg & 0x04)
{
channel->pair->out[0] = &channel->chip->zeromod;
channel->pair->out[1] = &channel->chip->zeromod;
channel->pair->out[2] = &channel->chip->zeromod;
channel->pair->out[3] = &channel->chip->zeromod;
switch (channel->alg & 0x03)
{
case 0x00:
channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod;
channel->pair->slots[1]->mod = &channel->pair->slots[0]->out;
channel->slots[0]->mod = &channel->pair->slots[1]->out;
channel->slots[1]->mod = &channel->slots[0]->out;
channel->out[0] = &channel->slots[1]->out;
channel->out[1] = &channel->chip->zeromod;
channel->out[2] = &channel->chip->zeromod;
channel->out[3] = &channel->chip->zeromod;
break;
case 0x01:
channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod;
channel->pair->slots[1]->mod = &channel->pair->slots[0]->out;
channel->slots[0]->mod = &channel->chip->zeromod;
channel->slots[1]->mod = &channel->slots[0]->out;
channel->out[0] = &channel->pair->slots[1]->out;
channel->out[1] = &channel->slots[1]->out;
channel->out[2] = &channel->chip->zeromod;
channel->out[3] = &channel->chip->zeromod;
break;
case 0x02:
channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod;
channel->pair->slots[1]->mod = &channel->chip->zeromod;
channel->slots[0]->mod = &channel->pair->slots[1]->out;
channel->slots[1]->mod = &channel->slots[0]->out;
channel->out[0] = &channel->pair->slots[0]->out;
channel->out[1] = &channel->slots[1]->out;
channel->out[2] = &channel->chip->zeromod;
channel->out[3] = &channel->chip->zeromod;
break;
case 0x03:
channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod;
channel->pair->slots[1]->mod = &channel->chip->zeromod;
channel->slots[0]->mod = &channel->pair->slots[1]->out;
channel->slots[1]->mod = &channel->chip->zeromod;
channel->out[0] = &channel->pair->slots[0]->out;
channel->out[1] = &channel->slots[0]->out;
channel->out[2] = &channel->slots[1]->out;
channel->out[3] = &channel->chip->zeromod;
break;
}
}
else
{
switch (channel->alg & 0x01)
{
case 0x00:
channel->slots[0]->mod = &channel->slots[0]->fbmod;
channel->slots[1]->mod = &channel->slots[0]->out;
channel->out[0] = &channel->slots[1]->out;
channel->out[1] = &channel->chip->zeromod;
channel->out[2] = &channel->chip->zeromod;
channel->out[3] = &channel->chip->zeromod;
break;
case 0x01:
channel->slots[0]->mod = &channel->slots[0]->fbmod;
channel->slots[1]->mod = &channel->chip->zeromod;
channel->out[0] = &channel->slots[0]->out;
channel->out[1] = &channel->slots[1]->out;
channel->out[2] = &channel->chip->zeromod;
channel->out[3] = &channel->chip->zeromod;
break;
}
}
}
static void OPL3_ChannelWriteC0(opl3_channel *channel, Bit8u data)
{
channel->fb = (data & 0x0e) >> 1;
channel->con = data & 0x01;
channel->alg = channel->con;
if (channel->chip->newm)
{
if (channel->chtype == ch_4op)
{
channel->pair->alg = 0x04 | (channel->con << 1) | (channel->pair->con);
channel->alg = 0x08;
OPL3_ChannelSetupAlg(channel->pair);
}
else if (channel->chtype == ch_4op2)
{
channel->alg = 0x04 | (channel->pair->con << 1) | (channel->con);
channel->pair->alg = 0x08;
OPL3_ChannelSetupAlg(channel);
}
else
{
OPL3_ChannelSetupAlg(channel);
}
}
else
{
OPL3_ChannelSetupAlg(channel);
}
if (channel->chip->newm)
{
channel->cha = ((data >> 4) & 0x01) ? ~0 : 0;
channel->chb = ((data >> 5) & 0x01) ? ~0 : 0;
}
else
{
channel->cha = channel->chb = ~0;
}
}
static void OPL3_ChannelKeyOn(opl3_channel *channel)
{
if (channel->chip->newm)
{
if (channel->chtype == ch_4op)
{
OPL3_EnvelopeKeyOn(channel->slots[0], egk_norm);
OPL3_EnvelopeKeyOn(channel->slots[1], egk_norm);
OPL3_EnvelopeKeyOn(channel->pair->slots[0], egk_norm);
OPL3_EnvelopeKeyOn(channel->pair->slots[1], egk_norm);
}
else if (channel->chtype == ch_2op || channel->chtype == ch_drum)
{
OPL3_EnvelopeKeyOn(channel->slots[0], egk_norm);
OPL3_EnvelopeKeyOn(channel->slots[1], egk_norm);
}
}
else
{
OPL3_EnvelopeKeyOn(channel->slots[0], egk_norm);
OPL3_EnvelopeKeyOn(channel->slots[1], egk_norm);
}
}
static void OPL3_ChannelKeyOff(opl3_channel *channel)
{
if (channel->chip->newm)
{
if (channel->chtype == ch_4op)
{
OPL3_EnvelopeKeyOff(channel->slots[0], egk_norm);
OPL3_EnvelopeKeyOff(channel->slots[1], egk_norm);
OPL3_EnvelopeKeyOff(channel->pair->slots[0], egk_norm);
OPL3_EnvelopeKeyOff(channel->pair->slots[1], egk_norm);
}
else if (channel->chtype == ch_2op || channel->chtype == ch_drum)
{
OPL3_EnvelopeKeyOff(channel->slots[0], egk_norm);
OPL3_EnvelopeKeyOff(channel->slots[1], egk_norm);
}
}
else
{
OPL3_EnvelopeKeyOff(channel->slots[0], egk_norm);
OPL3_EnvelopeKeyOff(channel->slots[1], egk_norm);
}
}
static void OPL3_ChannelSet4Op(opl3_chip *chip, Bit8u data)
{
Bit8u bit;
Bit8u chnum;
for (bit = 0; bit < 6; bit++)
{
chnum = bit;
if (bit >= 3)
{
chnum += 9 - 3;
}
if ((data >> bit) & 0x01)
{
chip->channel[chnum].chtype = ch_4op;
chip->channel[chnum + 3].chtype = ch_4op2;
}
else
{
chip->channel[chnum].chtype = ch_2op;
chip->channel[chnum + 3].chtype = ch_2op;
}
}
}
static Bit16s OPL3_ClipSample(Bit32s sample)
{
if (sample > 32767)
{
sample = 32767;
}
else if (sample < -32768)
{
sample = -32768;
}
return (Bit16s)sample;
}
static void OPL3_GenerateRhythm1(opl3_chip *chip)
{
opl3_channel *channel6;
opl3_channel *channel7;
opl3_channel *channel8;
Bit16u phase14;
Bit16u phase17;
Bit16u phase;
Bit16u phasebit;
channel6 = &chip->channel[6];
channel7 = &chip->channel[7];
channel8 = &chip->channel[8];
OPL3_SlotGenerate(channel6->slots[0]);
phase14 = (channel7->slots[0]->pg_phase >> 9) & 0x3ff;
phase17 = (channel8->slots[1]->pg_phase >> 9) & 0x3ff;
phase = 0x00;
/*hh tc phase bit*/
phasebit = ((phase14 & 0x08) | (((phase14 >> 5) ^ phase14) & 0x04)
| (((phase17 >> 2) ^ phase17) & 0x08)) ? 0x01 : 0x00;
/*hh*/
phase = (phasebit << 9)
| (0x34 << ((phasebit ^ (chip->noise & 0x01)) << 1));
OPL3_SlotGeneratePhase(channel7->slots[0], phase);
/*tt*/
OPL3_SlotGenerateZM(channel8->slots[0]);
}
static void OPL3_GenerateRhythm2(opl3_chip *chip)
{
opl3_channel *channel6;
opl3_channel *channel7;
opl3_channel *channel8;
Bit16u phase14;
Bit16u phase17;
Bit16u phase;
Bit16u phasebit;
channel6 = &chip->channel[6];
channel7 = &chip->channel[7];
channel8 = &chip->channel[8];
OPL3_SlotGenerate(channel6->slots[1]);
phase14 = (channel7->slots[0]->pg_phase >> 9) & 0x3ff;
phase17 = (channel8->slots[1]->pg_phase >> 9) & 0x3ff;
phase = 0x00;
/*hh tc phase bit*/
phasebit = ((phase14 & 0x08) | (((phase14 >> 5) ^ phase14) & 0x04)
| (((phase17 >> 2) ^ phase17) & 0x08)) ? 0x01 : 0x00;
/*sd*/
phase = (0x100 << ((phase14 >> 8) & 0x01)) ^ ((chip->noise & 0x01) << 8);
OPL3_SlotGeneratePhase(channel7->slots[1], phase);
/*tc*/
phase = 0x100 | (phasebit << 9);
OPL3_SlotGeneratePhase(channel8->slots[1], phase);
}
void OPL3_Generate(opl3_chip *chip, Bit16s *buf)
{
Bit8u ii;
Bit8u jj;
Bit16s accm;
buf[1] = OPL3_ClipSample(chip->mixbuff[1]);
for (ii = 0; ii < 12; ii++)
{
OPL3_SlotCalcFB(&chip->chipslot[ii]);
OPL3_PhaseGenerate(&chip->chipslot[ii]);
OPL3_EnvelopeCalc(&chip->chipslot[ii]);
OPL3_SlotGenerate(&chip->chipslot[ii]);
}
for (ii = 12; ii < 15; ii++)
{
OPL3_SlotCalcFB(&chip->chipslot[ii]);
OPL3_PhaseGenerate(&chip->chipslot[ii]);
OPL3_EnvelopeCalc(&chip->chipslot[ii]);
}
if (chip->rhy & 0x20)
{
OPL3_GenerateRhythm1(chip);
}
else
{
OPL3_SlotGenerate(&chip->chipslot[12]);
OPL3_SlotGenerate(&chip->chipslot[13]);
OPL3_SlotGenerate(&chip->chipslot[14]);
}
chip->mixbuff[0] = 0;
for (ii = 0; ii < 18; ii++)
{
accm = 0;
for (jj = 0; jj < 4; jj++)
{
accm += *chip->channel[ii].out[jj];
}
chip->mixbuff[0] += (Bit16s)(accm & chip->channel[ii].cha);
}
for (ii = 15; ii < 18; ii++)
{
OPL3_SlotCalcFB(&chip->chipslot[ii]);
OPL3_PhaseGenerate(&chip->chipslot[ii]);
OPL3_EnvelopeCalc(&chip->chipslot[ii]);
}
if (chip->rhy & 0x20)
{
OPL3_GenerateRhythm2(chip);
}
else
{
OPL3_SlotGenerate(&chip->chipslot[15]);
OPL3_SlotGenerate(&chip->chipslot[16]);
OPL3_SlotGenerate(&chip->chipslot[17]);
}
buf[0] = OPL3_ClipSample(chip->mixbuff[0]);
for (ii = 18; ii < 33; ii++)
{
OPL3_SlotCalcFB(&chip->chipslot[ii]);
OPL3_PhaseGenerate(&chip->chipslot[ii]);
OPL3_EnvelopeCalc(&chip->chipslot[ii]);
OPL3_SlotGenerate(&chip->chipslot[ii]);
}
chip->mixbuff[1] = 0;
for (ii = 0; ii < 18; ii++)
{
accm = 0;
for (jj = 0; jj < 4; jj++)
{
accm += *chip->channel[ii].out[jj];
}
chip->mixbuff[1] += (Bit16s)(accm & chip->channel[ii].chb);
}
for (ii = 33; ii < 36; ii++)
{
OPL3_SlotCalcFB(&chip->chipslot[ii]);
OPL3_PhaseGenerate(&chip->chipslot[ii]);
OPL3_EnvelopeCalc(&chip->chipslot[ii]);
OPL3_SlotGenerate(&chip->chipslot[ii]);
}
OPL3_NoiseGenerate(chip);
if ((chip->timer & 0x3f) == 0x3f)
{
chip->tremolopos = (chip->tremolopos + 1) % 210;
}
if (chip->tremolopos < 105)
{
chip->tremolo = chip->tremolopos >> chip->tremoloshift;
}
else
{
chip->tremolo = (210 - chip->tremolopos) >> chip->tremoloshift;
}
if ((chip->timer & 0x3ff) == 0x3ff)
{
chip->vibpos = (chip->vibpos + 1) & 7;
}
chip->timer++;
while (chip->writebuf[chip->writebuf_cur].time <= chip->writebuf_samplecnt)
{
if (!(chip->writebuf[chip->writebuf_cur].reg & 0x200))
{
break;
}
chip->writebuf[chip->writebuf_cur].reg &= 0x1ff;
OPL3_WriteReg(chip, chip->writebuf[chip->writebuf_cur].reg,
chip->writebuf[chip->writebuf_cur].data);
chip->writebuf_cur = (chip->writebuf_cur + 1) % OPL_WRITEBUF_SIZE;
}
chip->writebuf_samplecnt++;
}
void OPL3_GenerateResampled(opl3_chip *chip, Bit16s *buf)
{
while (chip->samplecnt >= chip->rateratio)
{
chip->oldsamples[0] = chip->samples[0];
chip->oldsamples[1] = chip->samples[1];
OPL3_Generate(chip, chip->samples);
chip->samplecnt -= chip->rateratio;
}
buf[0] = (Bit16s)((chip->oldsamples[0] * (chip->rateratio - chip->samplecnt)
+ chip->samples[0] * chip->samplecnt) / chip->rateratio);
buf[1] = (Bit16s)((chip->oldsamples[1] * (chip->rateratio - chip->samplecnt)
+ chip->samples[1] * chip->samplecnt) / chip->rateratio);
chip->samplecnt += 1 << RSM_FRAC;
}
void OPL3_Reset(opl3_chip *chip, Bit32u samplerate)
{
Bit8u slotnum;
Bit8u channum;
memset(chip, 0, sizeof(opl3_chip));
for (slotnum = 0; slotnum < 36; slotnum++)
{
chip->chipslot[slotnum].chip = chip;
chip->chipslot[slotnum].mod = &chip->zeromod;
chip->chipslot[slotnum].eg_rout = 0x1ff;
chip->chipslot[slotnum].eg_out = 0x1ff << 3;
chip->chipslot[slotnum].eg_gen = envelope_gen_num_off;
chip->chipslot[slotnum].trem = (Bit8u*)&chip->zeromod;
chip->chipslot[slotnum].signpos = (31-9); /* for wf=0 need use sigext of (phase & 0x200) */
}
for (channum = 0; channum < 18; channum++)
{
chip->channel[channum].slots[0] = &chip->chipslot[ch_slot[channum]];
chip->channel[channum].slots[1] = &chip->chipslot[ch_slot[channum] + 3];
chip->chipslot[ch_slot[channum]].channel = &chip->channel[channum];
chip->chipslot[ch_slot[channum] + 3].channel = &chip->channel[channum];
if ((channum % 9) < 3)
{
chip->channel[channum].pair = &chip->channel[channum + 3];
}
else if ((channum % 9) < 6)
{
chip->channel[channum].pair = &chip->channel[channum - 3];
}
chip->channel[channum].chip = chip;
chip->channel[channum].out[0] = &chip->zeromod;
chip->channel[channum].out[1] = &chip->zeromod;
chip->channel[channum].out[2] = &chip->zeromod;
chip->channel[channum].out[3] = &chip->zeromod;
chip->channel[channum].chtype = ch_2op;
chip->channel[channum].cha = ~0;
chip->channel[channum].chb = ~0;
OPL3_ChannelSetupAlg(&chip->channel[channum]);
}
chip->noise = 0x306600;
chip->rateratio = (samplerate << RSM_FRAC) / 49716;
chip->tremoloshift = 4;
chip->vibshift = 1;
}
void OPL3_WriteReg(opl3_chip *chip, Bit16u reg, Bit8u v)
{
Bit8u high = (reg >> 8) & 0x01;
Bit8u regm = reg & 0xff;
switch (regm & 0xf0)
{
case 0x00:
if (high)
{
switch (regm & 0x0f)
{
case 0x04:
OPL3_ChannelSet4Op(chip, v);
break;
case 0x05:
chip->newm = v & 0x01;
break;
}
}
else
{
switch (regm & 0x0f)
{
case 0x08:
chip->nts = (v >> 6) & 0x01;
break;
}
}
break;
case 0x20:
case 0x30:
if (ad_slot[regm & 0x1f] >= 0)
{
OPL3_SlotWrite20(&chip->chipslot[18 * high + ad_slot[regm & 0x1f]], v);
}
break;
case 0x40:
case 0x50:
if (ad_slot[regm & 0x1f] >= 0)
{
OPL3_SlotWrite40(&chip->chipslot[18 * high + ad_slot[regm & 0x1f]], v);
}
break;
case 0x60:
case 0x70:
if (ad_slot[regm & 0x1f] >= 0)
{
OPL3_SlotWrite60(&chip->chipslot[18 * high + ad_slot[regm & 0x1f]], v);
}
break;
case 0x80:
case 0x90:
if (ad_slot[regm & 0x1f] >= 0)
{
OPL3_SlotWrite80(&chip->chipslot[18 * high + ad_slot[regm & 0x1f]], v);
}
break;
case 0xe0:
case 0xf0:
if (ad_slot[regm & 0x1f] >= 0)
{
OPL3_SlotWriteE0(&chip->chipslot[18 * high + ad_slot[regm & 0x1f]], v);
}
break;
case 0xa0:
if ((regm & 0x0f) < 9)
{
OPL3_ChannelWriteA0(&chip->channel[9 * high + (regm & 0x0f)], v);
}
break;
case 0xb0:
if (regm == 0xbd && !high)
{
chip->tremoloshift = (((v >> 7) ^ 1) << 1) + 2;
chip->vibshift = ((v >> 6) & 0x01) ^ 1;
OPL3_ChannelUpdateRhythm(chip, v);
}
else if ((regm & 0x0f) < 9)
{
OPL3_ChannelWriteB0(&chip->channel[9 * high + (regm & 0x0f)], v);
if (v & 0x20)
{
OPL3_ChannelKeyOn(&chip->channel[9 * high + (regm & 0x0f)]);
}
else
{
OPL3_ChannelKeyOff(&chip->channel[9 * high + (regm & 0x0f)]);
}
}
break;
case 0xc0:
if ((regm & 0x0f) < 9)
{
OPL3_ChannelWriteC0(&chip->channel[9 * high + (regm & 0x0f)], v);
}
break;
}
}
void OPL3_WriteRegBuffered(opl3_chip *chip, Bit16u reg, Bit8u v)
{
Bit64u time1, time2;
if (chip->writebuf[chip->writebuf_last].reg & 0x200)
{
OPL3_WriteReg(chip, chip->writebuf[chip->writebuf_last].reg & 0x1ff,
chip->writebuf[chip->writebuf_last].data);
chip->writebuf_cur = (chip->writebuf_last + 1) % OPL_WRITEBUF_SIZE;
chip->writebuf_samplecnt = chip->writebuf[chip->writebuf_last].time;
}
chip->writebuf[chip->writebuf_last].reg = reg | 0x200;
chip->writebuf[chip->writebuf_last].data = v;
time1 = chip->writebuf_lasttime + OPL_WRITEBUF_DELAY;
time2 = chip->writebuf_samplecnt;
if (time1 < time2)
{
time1 = time2;
}
chip->writebuf[chip->writebuf_last].time = time1;
chip->writebuf_lasttime = time1;
chip->writebuf_last = (chip->writebuf_last + 1) % OPL_WRITEBUF_SIZE;
}
void OPL3_GenerateStream(opl3_chip *chip, Bit16s *sndptr, Bit32u numsamples)
{
Bit32u i;
for(i = 0; i < numsamples; i++)
{
OPL3_GenerateResampled(chip, sndptr);
sndptr += 2;
}
}
#define OPL3_MIN(A, B) (((A) > (B)) ? (B) : (A))
#define OPL3_MAX(A, B) (((A) < (B)) ? (B) : (A))
#define OPL3_CLAMP(V, MIN, MAX) OPL3_MAX(OPL3_MIN(V, MAX), MIN)
void OPL3_GenerateStreamMix(opl3_chip *chip, Bit16s *sndptr, Bit32u numsamples)
{
Bit32u i;
Bit16s sample[2];
Bit32s mix[2];
for(i = 0; i < numsamples; i++)
{
OPL3_GenerateResampled(chip, sample);
mix[0] = sndptr[0] + sample[0];
mix[1] = sndptr[1] + sample[1];
sndptr[0] = OPL3_CLAMP(mix[0], INT16_MIN, INT16_MAX);
sndptr[1] = OPL3_CLAMP(mix[1], INT16_MIN, INT16_MAX);
sndptr += 2;
}
}