gzdoom-gles/FLAC/ia32/fixed_asm.nasm

307 lines
12 KiB
NASM
Raw Normal View History

; libFLAC - Free Lossless Audio Codec library
; Copyright (C) 2001,2002,2003,2004,2005 Josh Coalson
;
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions
; are met:
;
; - Redistributions of source code must retain the above copyright
; notice, this list of conditions and the following disclaimer.
;
; - Redistributions in binary form must reproduce the above copyright
; notice, this list of conditions and the following disclaimer in the
; documentation and/or other materials provided with the distribution.
;
; - Neither the name of the Xiph.org Foundation nor the names of its
; contributors may be used to endorse or promote products derived from
; this software without specific prior written permission.
;
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
; ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
; CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
%include "ia32/nasm.h"
data_section
cglobal FLAC__fixed_compute_best_predictor_asm_ia32_mmx_cmov
code_section
; **********************************************************************
;
; unsigned FLAC__fixed_compute_best_predictor(const FLAC__int32 *data, unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
; {
; FLAC__int32 last_error_0 = data[-1];
; FLAC__int32 last_error_1 = data[-1] - data[-2];
; FLAC__int32 last_error_2 = last_error_1 - (data[-2] - data[-3]);
; FLAC__int32 last_error_3 = last_error_2 - (data[-2] - 2*data[-3] + data[-4]);
; FLAC__int32 error, save;
; FLAC__uint32 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0;
; unsigned i, order;
;
; for(i = 0; i < data_len; i++) {
; error = data[i] ; total_error_0 += local_abs(error); save = error;
; error -= last_error_0; total_error_1 += local_abs(error); last_error_0 = save; save = error;
; error -= last_error_1; total_error_2 += local_abs(error); last_error_1 = save; save = error;
; error -= last_error_2; total_error_3 += local_abs(error); last_error_2 = save; save = error;
; error -= last_error_3; total_error_4 += local_abs(error); last_error_3 = save;
; }
;
; if(total_error_0 < min(min(min(total_error_1, total_error_2), total_error_3), total_error_4))
; order = 0;
; else if(total_error_1 < min(min(total_error_2, total_error_3), total_error_4))
; order = 1;
; else if(total_error_2 < min(total_error_3, total_error_4))
; order = 2;
; else if(total_error_3 < total_error_4)
; order = 3;
; else
; order = 4;
;
; residual_bits_per_sample[0] = (FLAC__float)((data_len > 0 && total_error_0 > 0) ? log(M_LN2 * (FLAC__double)total_error_0 / (FLAC__double)data_len) / M_LN2 : 0.0);
; residual_bits_per_sample[1] = (FLAC__float)((data_len > 0 && total_error_1 > 0) ? log(M_LN2 * (FLAC__double)total_error_1 / (FLAC__double)data_len) / M_LN2 : 0.0);
; residual_bits_per_sample[2] = (FLAC__float)((data_len > 0 && total_error_2 > 0) ? log(M_LN2 * (FLAC__double)total_error_2 / (FLAC__double)data_len) / M_LN2 : 0.0);
; residual_bits_per_sample[3] = (FLAC__float)((data_len > 0 && total_error_3 > 0) ? log(M_LN2 * (FLAC__double)total_error_3 / (FLAC__double)data_len) / M_LN2 : 0.0);
; residual_bits_per_sample[4] = (FLAC__float)((data_len > 0 && total_error_4 > 0) ? log(M_LN2 * (FLAC__double)total_error_4 / (FLAC__double)data_len) / M_LN2 : 0.0);
;
; return order;
; }
ALIGN 16
cident FLAC__fixed_compute_best_predictor_asm_ia32_mmx_cmov
; esp + 36 == data[]
; esp + 40 == data_len
; esp + 44 == residual_bits_per_sample[]
push ebp
push ebx
push esi
push edi
sub esp, byte 16
; qword [esp] == temp space for loading FLAC__uint64s to FPU regs
; ebx == &data[i]
; ecx == loop counter (i)
; ebp == order
; mm0 == total_error_1:total_error_0
; mm1 == total_error_2:total_error_3
; mm2 == :total_error_4
; mm3 == last_error_1:last_error_0
; mm4 == last_error_2:last_error_3
mov ecx, [esp + 40] ; ecx = data_len
test ecx, ecx
jz near .data_len_is_0
mov ebx, [esp + 36] ; ebx = data[]
movd mm3, [ebx - 4] ; mm3 = 0:last_error_0
movd mm2, [ebx - 8] ; mm2 = 0:data[-2]
movd mm1, [ebx - 12] ; mm1 = 0:data[-3]
movd mm0, [ebx - 16] ; mm0 = 0:data[-4]
movq mm5, mm3 ; mm5 = 0:last_error_0
psubd mm5, mm2 ; mm5 = 0:last_error_1
punpckldq mm3, mm5 ; mm3 = last_error_1:last_error_0
psubd mm2, mm1 ; mm2 = 0:data[-2] - data[-3]
psubd mm5, mm2 ; mm5 = 0:last_error_2
movq mm4, mm5 ; mm4 = 0:last_error_2
psubd mm4, mm2 ; mm4 = 0:last_error_2 - (data[-2] - data[-3])
paddd mm4, mm1 ; mm4 = 0:last_error_2 - (data[-2] - 2 * data[-3])
psubd mm4, mm0 ; mm4 = 0:last_error_3
punpckldq mm4, mm5 ; mm4 = last_error_2:last_error_3
pxor mm0, mm0 ; mm0 = total_error_1:total_error_0
pxor mm1, mm1 ; mm1 = total_error_2:total_error_3
pxor mm2, mm2 ; mm2 = 0:total_error_4
ALIGN 16
.loop:
movd mm7, [ebx] ; mm7 = 0:error_0
add ebx, byte 4
movq mm6, mm7 ; mm6 = 0:error_0
psubd mm7, mm3 ; mm7 = :error_1
punpckldq mm6, mm7 ; mm6 = error_1:error_0
movq mm5, mm6 ; mm5 = error_1:error_0
movq mm7, mm6 ; mm7 = error_1:error_0
psubd mm5, mm3 ; mm5 = error_2:
movq mm3, mm6 ; mm3 = error_1:error_0
psrad mm6, 31
pxor mm7, mm6
psubd mm7, mm6 ; mm7 = abs(error_1):abs(error_0)
paddd mm0, mm7 ; mm0 = total_error_1:total_error_0
movq mm6, mm5 ; mm6 = error_2:
psubd mm5, mm4 ; mm5 = error_3:
punpckhdq mm5, mm6 ; mm5 = error_2:error_3
movq mm7, mm5 ; mm7 = error_2:error_3
movq mm6, mm5 ; mm6 = error_2:error_3
psubd mm5, mm4 ; mm5 = :error_4
movq mm4, mm6 ; mm4 = error_2:error_3
psrad mm6, 31
pxor mm7, mm6
psubd mm7, mm6 ; mm7 = abs(error_2):abs(error_3)
paddd mm1, mm7 ; mm1 = total_error_2:total_error_3
movq mm6, mm5 ; mm6 = :error_4
psrad mm5, 31
pxor mm6, mm5
psubd mm6, mm5 ; mm6 = :abs(error_4)
paddd mm2, mm6 ; mm2 = :total_error_4
dec ecx
jnz short .loop
; if(total_error_0 < min(min(min(total_error_1, total_error_2), total_error_3), total_error_4))
; order = 0;
; else if(total_error_1 < min(min(total_error_2, total_error_3), total_error_4))
; order = 1;
; else if(total_error_2 < min(total_error_3, total_error_4))
; order = 2;
; else if(total_error_3 < total_error_4)
; order = 3;
; else
; order = 4;
movq mm3, mm0 ; mm3 = total_error_1:total_error_0
movd edi, mm2 ; edi = total_error_4
movd esi, mm1 ; esi = total_error_3
movd eax, mm0 ; eax = total_error_0
punpckhdq mm1, mm1 ; mm1 = total_error_2:total_error_2
punpckhdq mm3, mm3 ; mm3 = total_error_1:total_error_1
movd edx, mm1 ; edx = total_error_2
movd ecx, mm3 ; ecx = total_error_1
xor ebx, ebx
xor ebp, ebp
inc ebx
cmp ecx, eax
cmovb eax, ecx ; eax = min(total_error_0, total_error_1)
cmovbe ebp, ebx
inc ebx
cmp edx, eax
cmovb eax, edx ; eax = min(total_error_0, total_error_1, total_error_2)
cmovbe ebp, ebx
inc ebx
cmp esi, eax
cmovb eax, esi ; eax = min(total_error_0, total_error_1, total_error_2, total_error_3)
cmovbe ebp, ebx
inc ebx
cmp edi, eax
cmovb eax, edi ; eax = min(total_error_0, total_error_1, total_error_2, total_error_3, total_error_4)
cmovbe ebp, ebx
movd ebx, mm0 ; ebx = total_error_0
emms
; residual_bits_per_sample[0] = (FLAC__float)((data_len > 0 && total_error_0 > 0) ? log(M_LN2 * (FLAC__double)total_error_0 / (FLAC__double)data_len) / M_LN2 : 0.0);
; residual_bits_per_sample[1] = (FLAC__float)((data_len > 0 && total_error_1 > 0) ? log(M_LN2 * (FLAC__double)total_error_1 / (FLAC__double)data_len) / M_LN2 : 0.0);
; residual_bits_per_sample[2] = (FLAC__float)((data_len > 0 && total_error_2 > 0) ? log(M_LN2 * (FLAC__double)total_error_2 / (FLAC__double)data_len) / M_LN2 : 0.0);
; residual_bits_per_sample[3] = (FLAC__float)((data_len > 0 && total_error_3 > 0) ? log(M_LN2 * (FLAC__double)total_error_3 / (FLAC__double)data_len) / M_LN2 : 0.0);
; residual_bits_per_sample[4] = (FLAC__float)((data_len > 0 && total_error_4 > 0) ? log(M_LN2 * (FLAC__double)total_error_4 / (FLAC__double)data_len) / M_LN2 : 0.0);
xor eax, eax
fild dword [esp + 40] ; ST = data_len (NOTE: assumes data_len is <2gigs)
.rbps_0:
test ebx, ebx
jz .total_error_0_is_0
fld1 ; ST = 1.0 data_len
mov [esp], ebx
mov [esp + 4], eax ; [esp] = (FLAC__uint64)total_error_0
mov ebx, [esp + 44]
fild qword [esp] ; ST = total_error_0 1.0 data_len
fdiv st2 ; ST = total_error_0/data_len 1.0 data_len
fldln2 ; ST = ln2 total_error_0/data_len 1.0 data_len
fmulp st1 ; ST = ln2*total_error_0/data_len 1.0 data_len
fyl2x ; ST = log2(ln2*total_error_0/data_len) data_len
fstp dword [ebx] ; residual_bits_per_sample[0] = log2(ln2*total_error_0/data_len) ST = data_len
jmp short .rbps_1
.total_error_0_is_0:
mov ebx, [esp + 44]
mov [ebx], eax ; residual_bits_per_sample[0] = 0.0
.rbps_1:
test ecx, ecx
jz .total_error_1_is_0
fld1 ; ST = 1.0 data_len
mov [esp], ecx
mov [esp + 4], eax ; [esp] = (FLAC__uint64)total_error_1
fild qword [esp] ; ST = total_error_1 1.0 data_len
fdiv st2 ; ST = total_error_1/data_len 1.0 data_len
fldln2 ; ST = ln2 total_error_1/data_len 1.0 data_len
fmulp st1 ; ST = ln2*total_error_1/data_len 1.0 data_len
fyl2x ; ST = log2(ln2*total_error_1/data_len) data_len
fstp dword [ebx + 4] ; residual_bits_per_sample[1] = log2(ln2*total_error_1/data_len) ST = data_len
jmp short .rbps_2
.total_error_1_is_0:
mov [ebx + 4], eax ; residual_bits_per_sample[1] = 0.0
.rbps_2:
test edx, edx
jz .total_error_2_is_0
fld1 ; ST = 1.0 data_len
mov [esp], edx
mov [esp + 4], eax ; [esp] = (FLAC__uint64)total_error_2
fild qword [esp] ; ST = total_error_2 1.0 data_len
fdiv st2 ; ST = total_error_2/data_len 1.0 data_len
fldln2 ; ST = ln2 total_error_2/data_len 1.0 data_len
fmulp st1 ; ST = ln2*total_error_2/data_len 1.0 data_len
fyl2x ; ST = log2(ln2*total_error_2/data_len) data_len
fstp dword [ebx + 8] ; residual_bits_per_sample[2] = log2(ln2*total_error_2/data_len) ST = data_len
jmp short .rbps_3
.total_error_2_is_0:
mov [ebx + 8], eax ; residual_bits_per_sample[2] = 0.0
.rbps_3:
test esi, esi
jz .total_error_3_is_0
fld1 ; ST = 1.0 data_len
mov [esp], esi
mov [esp + 4], eax ; [esp] = (FLAC__uint64)total_error_3
fild qword [esp] ; ST = total_error_3 1.0 data_len
fdiv st2 ; ST = total_error_3/data_len 1.0 data_len
fldln2 ; ST = ln2 total_error_3/data_len 1.0 data_len
fmulp st1 ; ST = ln2*total_error_3/data_len 1.0 data_len
fyl2x ; ST = log2(ln2*total_error_3/data_len) data_len
fstp dword [ebx + 12] ; residual_bits_per_sample[3] = log2(ln2*total_error_3/data_len) ST = data_len
jmp short .rbps_4
.total_error_3_is_0:
mov [ebx + 12], eax ; residual_bits_per_sample[3] = 0.0
.rbps_4:
test edi, edi
jz .total_error_4_is_0
fld1 ; ST = 1.0 data_len
mov [esp], edi
mov [esp + 4], eax ; [esp] = (FLAC__uint64)total_error_4
fild qword [esp] ; ST = total_error_4 1.0 data_len
fdiv st2 ; ST = total_error_4/data_len 1.0 data_len
fldln2 ; ST = ln2 total_error_4/data_len 1.0 data_len
fmulp st1 ; ST = ln2*total_error_4/data_len 1.0 data_len
fyl2x ; ST = log2(ln2*total_error_4/data_len) data_len
fstp dword [ebx + 16] ; residual_bits_per_sample[4] = log2(ln2*total_error_4/data_len) ST = data_len
jmp short .rbps_end
.total_error_4_is_0:
mov [ebx + 16], eax ; residual_bits_per_sample[4] = 0.0
.rbps_end:
fstp st0 ; ST = [empty]
jmp short .end
.data_len_is_0:
; data_len == 0, so residual_bits_per_sample[*] = 0.0
xor ebp, ebp
mov edi, [esp + 44]
mov [edi], ebp
mov [edi + 4], ebp
mov [edi + 8], ebp
mov [edi + 12], ebp
mov [edi + 16], ebp
add ebp, byte 4 ; order = 4
.end:
mov eax, ebp ; return order
add esp, byte 16
pop edi
pop esi
pop ebx
pop ebp
ret
end