gzdoom-gles/game-music-emu/gme/Ym2612_Emu.cpp

1320 lines
35 KiB
C++
Raw Normal View History

// Game_Music_Emu 0.5.2. http://www.slack.net/~ant/
// Based on Gens 2.10 ym2612.c
#include "Ym2612_Emu.h"
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <stdio.h>
#include <math.h>
/* Copyright (C) 2002 St<53>phane Dallongeville (gens AT consolemul.com) */
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
// This is mostly the original source in its C style and all.
//
// Somewhat optimized and simplified. Uses a template to generate the many
// variants of Update_Chan. Rewrote header file. In need of full rewrite by
// someone more familiar with FM sound and the YM2612. Has some inaccuracies
// compared to the Sega Genesis sound, particularly being mixed at such a
// high sample accuracy (the Genesis sounds like it has only 8 bit samples).
// - Shay
#ifdef BLARGG_ENABLE_OPTIMIZER
#include BLARGG_ENABLE_OPTIMIZER
#endif
const int output_bits = 14;
struct slot_t
{
const int *DT; // parametre detune
int MUL; // parametre "multiple de frequence"
int TL; // Total Level = volume lorsque l'enveloppe est au plus haut
int TLL; // Total Level ajusted
int SLL; // Sustin Level (ajusted) = volume o<> l'enveloppe termine sa premiere phase de regression
int KSR_S; // Key Scale Rate Shift = facteur de prise en compte du KSL dans la variations de l'enveloppe
int KSR; // Key Scale Rate = cette valeur est calculee par rapport <20> la frequence actuelle, elle va influer
// sur les differents parametres de l'enveloppe comme l'attaque, le decay ... comme dans la realite !
int SEG; // Type enveloppe SSG
int env_xor;
int env_max;
const int *AR; // Attack Rate (table pointeur) = Taux d'attaque (AR[KSR])
const int *DR; // Decay Rate (table pointeur) = Taux pour la regression (DR[KSR])
const int *SR; // Sustin Rate (table pointeur) = Taux pour le maintien (SR[KSR])
const int *RR; // Release Rate (table pointeur) = Taux pour le rel'chement (RR[KSR])
int Fcnt; // Frequency Count = compteur-frequence pour determiner l'amplitude actuelle (SIN[Finc >> 16])
int Finc; // frequency step = pas d'incrementation du compteur-frequence
// plus le pas est grand, plus la frequence est a<>gu (ou haute)
int Ecurp; // Envelope current phase = cette variable permet de savoir dans quelle phase
// de l'enveloppe on se trouve, par exemple phase d'attaque ou phase de maintenue ...
// en fonction de la valeur de cette variable, on va appeler une fonction permettant
// de mettre <20> jour l'enveloppe courante.
int Ecnt; // Envelope counter = le compteur-enveloppe permet de savoir o<> l'on se trouve dans l'enveloppe
int Einc; // Envelope step courant
int Ecmp; // Envelope counter limite pour la prochaine phase
int EincA; // Envelope step for Attack = pas d'incrementation du compteur durant la phase d'attaque
// cette valeur est egal <20> AR[KSR]
int EincD; // Envelope step for Decay = pas d'incrementation du compteur durant la phase de regression
// cette valeur est egal <20> DR[KSR]
int EincS; // Envelope step for Sustain = pas d'incrementation du compteur durant la phase de maintenue
// cette valeur est egal <20> SR[KSR]
int EincR; // Envelope step for Release = pas d'incrementation du compteur durant la phase de rel'chement
// cette valeur est egal <20> RR[KSR]
int *OUTp; // pointeur of SLOT output = pointeur permettant de connecter la sortie de ce slot <20> l'entree
// d'un autre ou carrement <20> la sortie de la voie
int INd; // input data of the slot = donnees en entree du slot
int ChgEnM; // Change envelop mask.
int AMS; // AMS depth level of this SLOT = degre de modulation de l'amplitude par le LFO
int AMSon; // AMS enable flag = drapeau d'activation de l'AMS
};
struct channel_t
{
int S0_OUT[4]; // anciennes sorties slot 0 (pour le feed back)
int LEFT; // LEFT enable flag
int RIGHT; // RIGHT enable flag
int ALGO; // Algorythm = determine les connections entre les operateurs
int FB; // shift count of self feed back = degre de "Feed-Back" du SLOT 1 (il est son unique entree)
int FMS; // Frequency Modulation Sensitivity of channel = degre de modulation de la frequence sur la voie par le LFO
int AMS; // Amplitude Modulation Sensitivity of channel = degre de modulation de l'amplitude sur la voie par le LFO
int FNUM[4]; // hauteur frequence de la voie (+ 3 pour le mode special)
int FOCT[4]; // octave de la voie (+ 3 pour le mode special)
int KC[4]; // Key Code = valeur fonction de la frequence (voir KSR pour les slots, KSR = KC >> KSR_S)
slot_t SLOT[4]; // four slot.operators = les 4 slots de la voie
int FFlag; // Frequency step recalculation flag
};
struct state_t
{
int TimerBase; // TimerBase calculation
int Status; // YM2612 Status (timer overflow)
int TimerA; // timerA limit = valeur jusqu'<27> laquelle le timer A doit compter
int TimerAL;
int TimerAcnt; // timerA counter = valeur courante du Timer A
int TimerB; // timerB limit = valeur jusqu'<27> laquelle le timer B doit compter
int TimerBL;
int TimerBcnt; // timerB counter = valeur courante du Timer B
int Mode; // Mode actuel des voie 3 et 6 (normal / special)
int DAC; // DAC enabled flag
channel_t CHANNEL[Ym2612_Emu::channel_count]; // Les 6 voies du YM2612
int REG[2][0x100]; // Sauvegardes des valeurs de tout les registres, c'est facultatif
// cela nous rend le debuggage plus facile
};
#ifndef PI
#define PI 3.14159265358979323846
#endif
#define ATTACK 0
#define DECAY 1
#define SUBSTAIN 2
#define RELEASE 3
// SIN_LBITS <= 16
// LFO_HBITS <= 16
// (SIN_LBITS + SIN_HBITS) <= 26
// (ENV_LBITS + ENV_HBITS) <= 28
// (LFO_LBITS + LFO_HBITS) <= 28
#define SIN_HBITS 12 // Sinus phase counter int part
#define SIN_LBITS (26 - SIN_HBITS) // Sinus phase counter float part (best setting)
#if (SIN_LBITS > 16)
#define SIN_LBITS 16 // Can't be greater than 16 bits
#endif
#define ENV_HBITS 12 // Env phase counter int part
#define ENV_LBITS (28 - ENV_HBITS) // Env phase counter float part (best setting)
#define LFO_HBITS 10 // LFO phase counter int part
#define LFO_LBITS (28 - LFO_HBITS) // LFO phase counter float part (best setting)
#define SIN_LENGHT (1 << SIN_HBITS)
#define ENV_LENGHT (1 << ENV_HBITS)
#define LFO_LENGHT (1 << LFO_HBITS)
#define TL_LENGHT (ENV_LENGHT * 3) // Env + TL scaling + LFO
#define SIN_MASK (SIN_LENGHT - 1)
#define ENV_MASK (ENV_LENGHT - 1)
#define LFO_MASK (LFO_LENGHT - 1)
#define ENV_STEP (96.0 / ENV_LENGHT) // ENV_MAX = 96 dB
#define ENV_ATTACK ((ENV_LENGHT * 0) << ENV_LBITS)
#define ENV_DECAY ((ENV_LENGHT * 1) << ENV_LBITS)
#define ENV_END ((ENV_LENGHT * 2) << ENV_LBITS)
#define MAX_OUT_BITS (SIN_HBITS + SIN_LBITS + 2) // Modulation = -4 <--> +4
#define MAX_OUT ((1 << MAX_OUT_BITS) - 1)
#define PG_CUT_OFF ((int) (78.0 / ENV_STEP))
#define ENV_CUT_OFF ((int) (68.0 / ENV_STEP))
#define AR_RATE 399128
#define DR_RATE 5514396
//#define AR_RATE 426136
//#define DR_RATE (AR_RATE * 12)
#define LFO_FMS_LBITS 9 // FIXED (LFO_FMS_BASE gives somethink as 1)
#define LFO_FMS_BASE ((int) (0.05946309436 * 0.0338 * (double) (1 << LFO_FMS_LBITS)))
#define S0 0 // Stupid typo of the YM2612
#define S1 2
#define S2 1
#define S3 3
inline void set_seg( slot_t& s, int seg )
{
s.env_xor = 0;
s.env_max = INT_MAX;
s.SEG = seg;
if ( seg & 4 )
{
s.env_xor = ENV_MASK;
s.env_max = ENV_MASK;
}
}
struct tables_t
{
short SIN_TAB [SIN_LENGHT]; // SINUS TABLE (offset into TL TABLE)
int LFOcnt; // LFO counter = compteur-frequence pour le LFO
int LFOinc; // LFO step counter = pas d'incrementation du compteur-frequence du LFO
// plus le pas est grand, plus la frequence est grande
unsigned int AR_TAB [128]; // Attack rate table
unsigned int DR_TAB [96]; // Decay rate table
unsigned int DT_TAB [8] [32]; // Detune table
unsigned int SL_TAB [16]; // Substain level table
unsigned int NULL_RATE [32]; // Table for NULL rate
int LFO_INC_TAB [8]; // LFO step table
short ENV_TAB [2 * ENV_LENGHT + 8]; // ENV CURVE TABLE (attack & decay)
short LFO_ENV_TAB [LFO_LENGHT]; // LFO AMS TABLE (adjusted for 11.8 dB)
short LFO_FREQ_TAB [LFO_LENGHT]; // LFO FMS TABLE
int TL_TAB [TL_LENGHT * 2]; // TOTAL LEVEL TABLE (positif and minus)
unsigned int DECAY_TO_ATTACK [ENV_LENGHT]; // Conversion from decay to attack phase
unsigned int FINC_TAB [2048]; // Frequency step table
};
static const unsigned char DT_DEF_TAB [4 * 32] =
{
// FD = 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// FD = 1
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 8, 8, 8,
// FD = 2
1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5,
5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14, 16, 16, 16, 16,
// FD = 3
2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7,
8 , 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 20, 22, 22, 22, 22
};
static const unsigned char FKEY_TAB [16] =
{
0, 0, 0, 0,
0, 0, 0, 1,
2, 3, 3, 3,
3, 3, 3, 3
};
static const unsigned char LFO_AMS_TAB [4] =
{
31, 4, 1, 0
};
static const unsigned char LFO_FMS_TAB [8] =
{
LFO_FMS_BASE * 0, LFO_FMS_BASE * 1,
LFO_FMS_BASE * 2, LFO_FMS_BASE * 3,
LFO_FMS_BASE * 4, LFO_FMS_BASE * 6,
LFO_FMS_BASE * 12, LFO_FMS_BASE * 24
};
inline void YM2612_Special_Update() { }
struct Ym2612_Impl
{
enum { channel_count = Ym2612_Emu::channel_count };
state_t YM2612;
int mute_mask;
tables_t g;
void KEY_ON( channel_t&, int );
void KEY_OFF( channel_t&, int );
int SLOT_SET( int, int );
int CHANNEL_SET( int, int );
int YM_SET( int, int );
void set_rate( double sample_rate, double clock_factor );
void reset();
void write0( int addr, int data );
void write1( int addr, int data );
void run_timer( int );
void run( int pair_count, Ym2612_Emu::sample_t* );
};
void Ym2612_Impl::KEY_ON( channel_t& ch, int nsl)
{
slot_t *SL = &(ch.SLOT [nsl]); // on recupere le bon pointeur de slot
if (SL->Ecurp == RELEASE) // la touche est-elle rel'chee ?
{
SL->Fcnt = 0;
// Fix Ecco 2 splash sound
SL->Ecnt = (g.DECAY_TO_ATTACK [g.ENV_TAB [SL->Ecnt >> ENV_LBITS]] + ENV_ATTACK) & SL->ChgEnM;
SL->ChgEnM = ~0;
// SL->Ecnt = g.DECAY_TO_ATTACK [g.ENV_TAB [SL->Ecnt >> ENV_LBITS]] + ENV_ATTACK;
// SL->Ecnt = 0;
SL->Einc = SL->EincA;
SL->Ecmp = ENV_DECAY;
SL->Ecurp = ATTACK;
}
}
void Ym2612_Impl::KEY_OFF(channel_t& ch, int nsl)
{
slot_t *SL = &(ch.SLOT [nsl]); // on recupere le bon pointeur de slot
if (SL->Ecurp != RELEASE) // la touche est-elle appuyee ?
{
if (SL->Ecnt < ENV_DECAY) // attack phase ?
{
SL->Ecnt = (g.ENV_TAB [SL->Ecnt >> ENV_LBITS] << ENV_LBITS) + ENV_DECAY;
}
SL->Einc = SL->EincR;
SL->Ecmp = ENV_END;
SL->Ecurp = RELEASE;
}
}
int Ym2612_Impl::SLOT_SET( int Adr, int data )
{
int nch = Adr & 3;
if ( nch == 3 )
return 1;
channel_t& ch = YM2612.CHANNEL [nch + (Adr & 0x100 ? 3 : 0)];
slot_t& sl = ch.SLOT [(Adr >> 2) & 3];
switch ( Adr & 0xF0 )
{
case 0x30:
if ( (sl.MUL = (data & 0x0F)) != 0 ) sl.MUL <<= 1;
else sl.MUL = 1;
sl.DT = (int*) g.DT_TAB [(data >> 4) & 7];
ch.SLOT [0].Finc = -1;
break;
case 0x40:
sl.TL = data & 0x7F;
// SOR2 do a lot of TL adjustement and this fix R.Shinobi jump sound...
YM2612_Special_Update();
#if ((ENV_HBITS - 7) < 0)
sl.TLL = sl.TL >> (7 - ENV_HBITS);
#else
sl.TLL = sl.TL << (ENV_HBITS - 7);
#endif
break;
case 0x50:
sl.KSR_S = 3 - (data >> 6);
ch.SLOT [0].Finc = -1;
if (data &= 0x1F) sl.AR = (int*) &g.AR_TAB [data << 1];
else sl.AR = (int*) &g.NULL_RATE [0];
sl.EincA = sl.AR [sl.KSR];
if (sl.Ecurp == ATTACK) sl.Einc = sl.EincA;
break;
case 0x60:
if ( (sl.AMSon = (data & 0x80)) != 0 ) sl.AMS = ch.AMS;
else sl.AMS = 31;
if (data &= 0x1F) sl.DR = (int*) &g.DR_TAB [data << 1];
else sl.DR = (int*) &g.NULL_RATE [0];
sl.EincD = sl.DR [sl.KSR];
if (sl.Ecurp == DECAY) sl.Einc = sl.EincD;
break;
case 0x70:
if (data &= 0x1F) sl.SR = (int*) &g.DR_TAB [data << 1];
else sl.SR = (int*) &g.NULL_RATE [0];
sl.EincS = sl.SR [sl.KSR];
if ((sl.Ecurp == SUBSTAIN) && (sl.Ecnt < ENV_END)) sl.Einc = sl.EincS;
break;
case 0x80:
sl.SLL = g.SL_TAB [data >> 4];
sl.RR = (int*) &g.DR_TAB [((data & 0xF) << 2) + 2];
sl.EincR = sl.RR [sl.KSR];
if ((sl.Ecurp == RELEASE) && (sl.Ecnt < ENV_END)) sl.Einc = sl.EincR;
break;
case 0x90:
// SSG-EG envelope shapes :
/*
E At Al H
1 0 0 0 \\\\
1 0 0 1 \___
1 0 1 0 \/\/
1 0 1 1 \
1 1 0 0 ////
1 1 0 1 /
1 1 1 0 /\/\
1 1 1 1 /___
E = SSG-EG enable
At = Start negate
Al = Altern
H = Hold */
set_seg( sl, (data & 8) ? (data & 0x0F) : 0 );
break;
}
return 0;
}
int Ym2612_Impl::CHANNEL_SET( int Adr, int data )
{
int num = Adr & 3;
if ( num == 3 )
return 1;
channel_t& ch = YM2612.CHANNEL [num + (Adr & 0x100 ? 3 : 0)];
switch ( Adr & 0xFC )
{
case 0xA0:
YM2612_Special_Update();
ch.FNUM [0] = (ch.FNUM [0] & 0x700) + data;
ch.KC [0] = (ch.FOCT [0] << 2) | FKEY_TAB [ch.FNUM [0] >> 7];
ch.SLOT [0].Finc = -1;
break;
case 0xA4:
YM2612_Special_Update();
ch.FNUM [0] = (ch.FNUM [0] & 0x0FF) + ((data & 0x07) << 8);
ch.FOCT [0] = (data & 0x38) >> 3;
ch.KC [0] = (ch.FOCT [0] << 2) | FKEY_TAB [ch.FNUM [0] >> 7];
ch.SLOT [0].Finc = -1;
break;
case 0xA8:
if ( Adr < 0x100 )
{
num++;
YM2612_Special_Update();
YM2612.CHANNEL [2].FNUM [num] = (YM2612.CHANNEL [2].FNUM [num] & 0x700) + data;
YM2612.CHANNEL [2].KC [num] = (YM2612.CHANNEL [2].FOCT [num] << 2) |
FKEY_TAB [YM2612.CHANNEL [2].FNUM [num] >> 7];
YM2612.CHANNEL [2].SLOT [0].Finc = -1;
}
break;
case 0xAC:
if ( Adr < 0x100 )
{
num++;
YM2612_Special_Update();
YM2612.CHANNEL [2].FNUM [num] = (YM2612.CHANNEL [2].FNUM [num] & 0x0FF) + ((data & 0x07) << 8);
YM2612.CHANNEL [2].FOCT [num] = (data & 0x38) >> 3;
YM2612.CHANNEL [2].KC [num] = (YM2612.CHANNEL [2].FOCT [num] << 2) |
FKEY_TAB [YM2612.CHANNEL [2].FNUM [num] >> 7];
YM2612.CHANNEL [2].SLOT [0].Finc = -1;
}
break;
case 0xB0:
if ( ch.ALGO != (data & 7) )
{
// Fix VectorMan 2 heli sound (level 1)
YM2612_Special_Update();
ch.ALGO = data & 7;
ch.SLOT [0].ChgEnM = 0;
ch.SLOT [1].ChgEnM = 0;
ch.SLOT [2].ChgEnM = 0;
ch.SLOT [3].ChgEnM = 0;
}
ch.FB = 9 - ((data >> 3) & 7); // Real thing ?
// if (ch.FB = ((data >> 3) & 7)) ch.FB = 9 - ch.FB; // Thunder force 4 (music stage 8), Gynoug, Aladdin bug sound...
// else ch.FB = 31;
break;
case 0xB4: {
YM2612_Special_Update();
ch.LEFT = 0 - ((data >> 7) & 1);
ch.RIGHT = 0 - ((data >> 6) & 1);
ch.AMS = LFO_AMS_TAB [(data >> 4) & 3];
ch.FMS = LFO_FMS_TAB [data & 7];
for ( int i = 0; i < 4; i++ )
{
slot_t& sl = ch.SLOT [i];
sl.AMS = (sl.AMSon ? ch.AMS : 31);
}
break;
}
}
return 0;
}
int Ym2612_Impl::YM_SET(int Adr, int data)
{
switch ( Adr )
{
case 0x22:
if (data & 8) // LFO enable
{
// Cool Spot music 1, LFO modified severals time which
// distord the sound, have to check that on a real genesis...
g.LFOinc = g.LFO_INC_TAB [data & 7];
}
else
{
g.LFOinc = g.LFOcnt = 0;
}
break;
case 0x24:
YM2612.TimerA = (YM2612.TimerA & 0x003) | (((int) data) << 2);
if (YM2612.TimerAL != (1024 - YM2612.TimerA) << 12)
{
YM2612.TimerAcnt = YM2612.TimerAL = (1024 - YM2612.TimerA) << 12;
}
break;
case 0x25:
YM2612.TimerA = (YM2612.TimerA & 0x3FC) | (data & 3);
if (YM2612.TimerAL != (1024 - YM2612.TimerA) << 12)
{
YM2612.TimerAcnt = YM2612.TimerAL = (1024 - YM2612.TimerA) << 12;
}
break;
case 0x26:
YM2612.TimerB = data;
if (YM2612.TimerBL != (256 - YM2612.TimerB) << (4 + 12))
{
YM2612.TimerBcnt = YM2612.TimerBL = (256 - YM2612.TimerB) << (4 + 12);
}
break;
case 0x27:
// Parametre divers
// b7 = CSM MODE
// b6 = 3 slot mode
// b5 = reset b
// b4 = reset a
// b3 = timer enable b
// b2 = timer enable a
// b1 = load b
// b0 = load a
if ((data ^ YM2612.Mode) & 0x40)
{
// We changed the channel 2 mode, so recalculate phase step
// This fix the punch sound in Street of Rage 2
YM2612_Special_Update();
YM2612.CHANNEL [2].SLOT [0].Finc = -1; // recalculate phase step
}
// if ((data & 2) && (YM2612.Status & 2)) YM2612.TimerBcnt = YM2612.TimerBL;
// if ((data & 1) && (YM2612.Status & 1)) YM2612.TimerAcnt = YM2612.TimerAL;
// YM2612.Status &= (~data >> 4); // Reset du Status au cas ou c'est demande
YM2612.Status &= (~data >> 4) & (data >> 2); // Reset Status
YM2612.Mode = data;
break;
case 0x28: {
int nch = data & 3;
if ( nch == 3 )
return 1;
if ( data & 4 )
nch += 3;
channel_t& ch = YM2612.CHANNEL [nch];
YM2612_Special_Update();
if (data & 0x10) KEY_ON(ch, S0); // On appuie sur la touche pour le slot 1
else KEY_OFF(ch, S0); // On rel'che la touche pour le slot 1
if (data & 0x20) KEY_ON(ch, S1); // On appuie sur la touche pour le slot 3
else KEY_OFF(ch, S1); // On rel'che la touche pour le slot 3
if (data & 0x40) KEY_ON(ch, S2); // On appuie sur la touche pour le slot 2
else KEY_OFF(ch, S2); // On rel'che la touche pour le slot 2
if (data & 0x80) KEY_ON(ch, S3); // On appuie sur la touche pour le slot 4
else KEY_OFF(ch, S3); // On rel'che la touche pour le slot 4
break;
}
case 0x2B:
if (YM2612.DAC ^ (data & 0x80)) YM2612_Special_Update();
YM2612.DAC = data & 0x80; // activation/desactivation du DAC
break;
}
return 0;
}
void Ym2612_Impl::set_rate( double sample_rate, double clock_rate )
{
assert( sample_rate );
assert( clock_rate > sample_rate );
int i;
// 144 = 12 * (prescale * 2) = 12 * 6 * 2
// prescale set to 6 by default
double Frequence = clock_rate / sample_rate / 144.0;
if ( fabs( Frequence - 1.0 ) < 0.0000001 )
Frequence = 1.0;
YM2612.TimerBase = int (Frequence * 4096.0);
// Tableau TL :
// [0 - 4095] = +output [4095 - ...] = +output overflow (fill with 0)
// [12288 - 16383] = -output [16384 - ...] = -output overflow (fill with 0)
for(i = 0; i < TL_LENGHT; i++)
{
if (i >= PG_CUT_OFF) // YM2612 cut off sound after 78 dB (14 bits output ?)
{
g.TL_TAB [TL_LENGHT + i] = g.TL_TAB [i] = 0;
}
else
{
double x = MAX_OUT; // Max output
x /= pow( 10.0, (ENV_STEP * i) / 20.0 ); // Decibel -> Voltage
g.TL_TAB [i] = (int) x;
g.TL_TAB [TL_LENGHT + i] = -g.TL_TAB [i];
}
}
// Tableau SIN :
// g.SIN_TAB [x] [y] = sin(x) * y;
// x = phase and y = volume
g.SIN_TAB [0] = g.SIN_TAB [SIN_LENGHT / 2] = PG_CUT_OFF;
for(i = 1; i <= SIN_LENGHT / 4; i++)
{
double x = sin(2.0 * PI * (double) (i) / (double) (SIN_LENGHT)); // Sinus
x = 20 * log10(1 / x); // convert to dB
int j = (int) (x / ENV_STEP); // Get TL range
if (j > PG_CUT_OFF) j = (int) PG_CUT_OFF;
g.SIN_TAB [i] = g.SIN_TAB [(SIN_LENGHT / 2) - i] = j;
g.SIN_TAB [(SIN_LENGHT / 2) + i] = g.SIN_TAB [SIN_LENGHT - i] = TL_LENGHT + j;
}
// Tableau LFO (LFO wav) :
for(i = 0; i < LFO_LENGHT; i++)
{
double x = sin(2.0 * PI * (double) (i) / (double) (LFO_LENGHT)); // Sinus
x += 1.0;
x /= 2.0; // positive only
x *= 11.8 / ENV_STEP; // ajusted to MAX enveloppe modulation
g.LFO_ENV_TAB [i] = (int) x;
x = sin(2.0 * PI * (double) (i) / (double) (LFO_LENGHT)); // Sinus
x *= (double) ((1 << (LFO_HBITS - 1)) - 1);
g.LFO_FREQ_TAB [i] = (int) x;
}
// Tableau Enveloppe :
// g.ENV_TAB [0] -> g.ENV_TAB [ENV_LENGHT - 1] = attack curve
// g.ENV_TAB [ENV_LENGHT] -> g.ENV_TAB [2 * ENV_LENGHT - 1] = decay curve
for(i = 0; i < ENV_LENGHT; i++)
{
// Attack curve (x^8 - music level 2 Vectorman 2)
double x = pow(((double) ((ENV_LENGHT - 1) - i) / (double) (ENV_LENGHT)), 8);
x *= ENV_LENGHT;
g.ENV_TAB [i] = (int) x;
// Decay curve (just linear)
x = pow(((double) (i) / (double) (ENV_LENGHT)), 1);
x *= ENV_LENGHT;
g.ENV_TAB [ENV_LENGHT + i] = (int) x;
}
for ( i = 0; i < 8; i++ )
g.ENV_TAB [i + ENV_LENGHT * 2] = 0;
g.ENV_TAB [ENV_END >> ENV_LBITS] = ENV_LENGHT - 1; // for the stopped state
// Tableau pour la conversion Attack -> Decay and Decay -> Attack
int j = ENV_LENGHT - 1;
for ( i = 0; i < ENV_LENGHT; i++ )
{
while ( j && g.ENV_TAB [j] < i )
j--;
g.DECAY_TO_ATTACK [i] = j << ENV_LBITS;
}
// Tableau pour le Substain Level
for(i = 0; i < 15; i++)
{
double x = i * 3; // 3 and not 6 (Mickey Mania first music for test)
x /= ENV_STEP;
g.SL_TAB [i] = ((int) x << ENV_LBITS) + ENV_DECAY;
}
g.SL_TAB [15] = ((ENV_LENGHT - 1) << ENV_LBITS) + ENV_DECAY; // special case : volume off
// Tableau Frequency Step
for(i = 0; i < 2048; i++)
{
double x = (double) (i) * Frequence;
#if ((SIN_LBITS + SIN_HBITS - (21 - 7)) < 0)
x /= (double) (1 << ((21 - 7) - SIN_LBITS - SIN_HBITS));
#else
x *= (double) (1 << (SIN_LBITS + SIN_HBITS - (21 - 7)));
#endif
x /= 2.0; // because MUL = value * 2
g.FINC_TAB [i] = (unsigned int) x;
}
// Tableaux Attack & Decay Rate
for(i = 0; i < 4; i++)
{
g.AR_TAB [i] = 0;
g.DR_TAB [i] = 0;
}
for(i = 0; i < 60; i++)
{
double x = Frequence;
x *= 1.0 + ((i & 3) * 0.25); // bits 0-1 : x1.00, x1.25, x1.50, x1.75
x *= (double) (1 << ((i >> 2))); // bits 2-5 : shift bits (x2^0 - x2^15)
x *= (double) (ENV_LENGHT << ENV_LBITS); // on ajuste pour le tableau g.ENV_TAB
g.AR_TAB [i + 4] = (unsigned int) (x / AR_RATE);
g.DR_TAB [i + 4] = (unsigned int) (x / DR_RATE);
}
for(i = 64; i < 96; i++)
{
g.AR_TAB [i] = g.AR_TAB [63];
g.DR_TAB [i] = g.DR_TAB [63];
g.NULL_RATE [i - 64] = 0;
}
for ( i = 96; i < 128; i++ )
g.AR_TAB [i] = 0;
// Tableau Detune
for(i = 0; i < 4; i++)
{
for (int j = 0; j < 32; j++)
{
#if ((SIN_LBITS + SIN_HBITS - 21) < 0)
double y = (double) DT_DEF_TAB [(i << 5) + j] * Frequence / (double) (1 << (21 - SIN_LBITS - SIN_HBITS));
#else
double y = (double) DT_DEF_TAB [(i << 5) + j] * Frequence * (double) (1 << (SIN_LBITS + SIN_HBITS - 21));
#endif
g.DT_TAB [i + 0] [j] = (int) y;
g.DT_TAB [i + 4] [j] = (int) -y;
}
}
// Tableau LFO
g.LFO_INC_TAB [0] = (unsigned int) (3.98 * (double) (1 << (LFO_HBITS + LFO_LBITS)) / sample_rate);
g.LFO_INC_TAB [1] = (unsigned int) (5.56 * (double) (1 << (LFO_HBITS + LFO_LBITS)) / sample_rate);
g.LFO_INC_TAB [2] = (unsigned int) (6.02 * (double) (1 << (LFO_HBITS + LFO_LBITS)) / sample_rate);
g.LFO_INC_TAB [3] = (unsigned int) (6.37 * (double) (1 << (LFO_HBITS + LFO_LBITS)) / sample_rate);
g.LFO_INC_TAB [4] = (unsigned int) (6.88 * (double) (1 << (LFO_HBITS + LFO_LBITS)) / sample_rate);
g.LFO_INC_TAB [5] = (unsigned int) (9.63 * (double) (1 << (LFO_HBITS + LFO_LBITS)) / sample_rate);
g.LFO_INC_TAB [6] = (unsigned int) (48.1 * (double) (1 << (LFO_HBITS + LFO_LBITS)) / sample_rate);
g.LFO_INC_TAB [7] = (unsigned int) (72.2 * (double) (1 << (LFO_HBITS + LFO_LBITS)) / sample_rate);
reset();
}
const char* Ym2612_Emu::set_rate( double sample_rate, double clock_rate )
{
if ( !impl )
{
impl = (Ym2612_Impl*) malloc( sizeof *impl );
if ( !impl )
return "Out of memory";
impl->mute_mask = 0;
}
memset( &impl->YM2612, 0, sizeof impl->YM2612 );
impl->set_rate( sample_rate, clock_rate );
return 0;
}
Ym2612_Emu::~Ym2612_Emu()
{
free( impl );
}
inline void Ym2612_Impl::write0( int opn_addr, int data )
{
assert( (unsigned) data <= 0xFF );
if ( opn_addr < 0x30 )
{
YM2612.REG [0] [opn_addr] = data;
YM_SET( opn_addr, data );
}
else if ( YM2612.REG [0] [opn_addr] != data )
{
YM2612.REG [0] [opn_addr] = data;
if ( opn_addr < 0xA0 )
SLOT_SET( opn_addr, data );
else
CHANNEL_SET( opn_addr, data );
}
}
inline void Ym2612_Impl::write1( int opn_addr, int data )
{
assert( (unsigned) data <= 0xFF );
if ( opn_addr >= 0x30 && YM2612.REG [1] [opn_addr] != data )
{
YM2612.REG [1] [opn_addr] = data;
if ( opn_addr < 0xA0 )
SLOT_SET( opn_addr + 0x100, data );
else
CHANNEL_SET( opn_addr + 0x100, data );
}
}
void Ym2612_Emu::reset()
{
impl->reset();
}
void Ym2612_Impl::reset()
{
g.LFOcnt = 0;
YM2612.TimerA = 0;
YM2612.TimerAL = 0;
YM2612.TimerAcnt = 0;
YM2612.TimerB = 0;
YM2612.TimerBL = 0;
YM2612.TimerBcnt = 0;
YM2612.DAC = 0;
YM2612.Status = 0;
int i;
for ( i = 0; i < channel_count; i++ )
{
channel_t& ch = YM2612.CHANNEL [i];
ch.LEFT = ~0;
ch.RIGHT = ~0;
ch.ALGO = 0;
ch.FB = 31;
ch.FMS = 0;
ch.AMS = 0;
for ( int j = 0 ;j < 4 ; j++ )
{
ch.S0_OUT [j] = 0;
ch.FNUM [j] = 0;
ch.FOCT [j] = 0;
ch.KC [j] = 0;
ch.SLOT [j].Fcnt = 0;
ch.SLOT [j].Finc = 0;
ch.SLOT [j].Ecnt = ENV_END; // Put it at the end of Decay phase...
ch.SLOT [j].Einc = 0;
ch.SLOT [j].Ecmp = 0;
ch.SLOT [j].Ecurp = RELEASE;
ch.SLOT [j].ChgEnM = 0;
}
}
for ( i = 0; i < 0x100; i++ )
{
YM2612.REG [0] [i] = -1;
YM2612.REG [1] [i] = -1;
}
for ( i = 0xB6; i >= 0xB4; i-- )
{
write0( i, 0xC0 );
write1( i, 0xC0 );
}
for ( i = 0xB2; i >= 0x22; i-- )
{
write0( i, 0 );
write1( i, 0 );
}
write0( 0x2A, 0x80 );
}
void Ym2612_Emu::write0( int addr, int data )
{
impl->write0( addr, data );
}
void Ym2612_Emu::write1( int addr, int data )
{
impl->write1( addr, data );
}
void Ym2612_Emu::mute_voices( int mask ) { impl->mute_mask = mask; }
static void update_envelope_( slot_t* sl )
{
switch ( sl->Ecurp )
{
case 0:
// Env_Attack_Next
// Verified with Gynoug even in HQ (explode SFX)
sl->Ecnt = ENV_DECAY;
sl->Einc = sl->EincD;
sl->Ecmp = sl->SLL;
sl->Ecurp = DECAY;
break;
case 1:
// Env_Decay_Next
// Verified with Gynoug even in HQ (explode SFX)
sl->Ecnt = sl->SLL;
sl->Einc = sl->EincS;
sl->Ecmp = ENV_END;
sl->Ecurp = SUBSTAIN;
break;
case 2:
// Env_Substain_Next(slot_t *SL)
if (sl->SEG & 8) // SSG envelope type
{
int release = sl->SEG & 1;
if ( !release )
{
// re KEY ON
// sl->Fcnt = 0;
// sl->ChgEnM = ~0;
sl->Ecnt = 0;
sl->Einc = sl->EincA;
sl->Ecmp = ENV_DECAY;
sl->Ecurp = ATTACK;
}
set_seg( *sl, (sl->SEG << 1) & 4 );
if ( !release )
break;
}
// fall through
case 3:
// Env_Release_Next
sl->Ecnt = ENV_END;
sl->Einc = 0;
sl->Ecmp = ENV_END + 1;
break;
// default: no op
}
}
inline void update_envelope( slot_t& sl )
{
int ecmp = sl.Ecmp;
if ( (sl.Ecnt += sl.Einc) >= ecmp )
update_envelope_( &sl );
}
template<int algo>
struct ym2612_update_chan {
static void func( tables_t&, channel_t&, Ym2612_Emu::sample_t*, int );
};
typedef void (*ym2612_update_chan_t)( tables_t&, channel_t&, Ym2612_Emu::sample_t*, int );
template<int algo>
void ym2612_update_chan<algo>::func( tables_t& g, channel_t& ch,
Ym2612_Emu::sample_t* buf, int length )
{
int not_end = ch.SLOT [S3].Ecnt - ENV_END;
// algo is a compile-time constant, so all conditions based on it are resolved
// during compilation
// special cases
if ( algo == 7 )
not_end |= ch.SLOT [S0].Ecnt - ENV_END;
if ( algo >= 5 )
not_end |= ch.SLOT [S2].Ecnt - ENV_END;
if ( algo >= 4 )
not_end |= ch.SLOT [S1].Ecnt - ENV_END;
int CH_S0_OUT_1 = ch.S0_OUT [1];
int in0 = ch.SLOT [S0].Fcnt;
int in1 = ch.SLOT [S1].Fcnt;
int in2 = ch.SLOT [S2].Fcnt;
int in3 = ch.SLOT [S3].Fcnt;
int YM2612_LFOinc = g.LFOinc;
int YM2612_LFOcnt = g.LFOcnt + YM2612_LFOinc;
if ( !not_end )
return;
do
{
// envelope
int const env_LFO = g.LFO_ENV_TAB [YM2612_LFOcnt >> LFO_LBITS & LFO_MASK];
short const* const ENV_TAB = g.ENV_TAB;
#define CALC_EN( x ) \
int temp##x = ENV_TAB [ch.SLOT [S##x].Ecnt >> ENV_LBITS] + ch.SLOT [S##x].TLL; \
int en##x = ((temp##x ^ ch.SLOT [S##x].env_xor) + (env_LFO >> ch.SLOT [S##x].AMS)) & \
((temp##x - ch.SLOT [S##x].env_max) >> 31);
CALC_EN( 0 )
CALC_EN( 1 )
CALC_EN( 2 )
CALC_EN( 3 )
int const* const TL_TAB = g.TL_TAB;
#define SINT( i, o ) (TL_TAB [g.SIN_TAB [(i)] + (o)])
// feedback
int CH_S0_OUT_0 = ch.S0_OUT [0];
{
int temp = in0 + ((CH_S0_OUT_0 + CH_S0_OUT_1) >> ch.FB);
CH_S0_OUT_1 = CH_S0_OUT_0;
CH_S0_OUT_0 = SINT( (temp >> SIN_LBITS) & SIN_MASK, en0 );
}
int CH_OUTd;
if ( algo == 0 )
{
int temp = in1 + CH_S0_OUT_1;
temp = in2 + SINT( (temp >> SIN_LBITS) & SIN_MASK, en1 );
temp = in3 + SINT( (temp >> SIN_LBITS) & SIN_MASK, en2 );
CH_OUTd = SINT( (temp >> SIN_LBITS) & SIN_MASK, en3 );
}
else if ( algo == 1 )
{
int temp = in2 + CH_S0_OUT_1 + SINT( (in1 >> SIN_LBITS) & SIN_MASK, en1 );
temp = in3 + SINT( (temp >> SIN_LBITS) & SIN_MASK, en2 );
CH_OUTd = SINT( (temp >> SIN_LBITS) & SIN_MASK, en3 );
}
else if ( algo == 2 )
{
int temp = in2 + SINT( (in1 >> SIN_LBITS) & SIN_MASK, en1 );
temp = in3 + CH_S0_OUT_1 + SINT( (temp >> SIN_LBITS) & SIN_MASK, en2 );
CH_OUTd = SINT( (temp >> SIN_LBITS) & SIN_MASK, en3 );
}
else if ( algo == 3 )
{
int temp = in1 + CH_S0_OUT_1;
temp = in3 + SINT( (temp >> SIN_LBITS) & SIN_MASK, en1 ) +
SINT( (in2 >> SIN_LBITS) & SIN_MASK, en2 );
CH_OUTd = SINT( (temp >> SIN_LBITS) & SIN_MASK, en3 );
}
else if ( algo == 4 )
{
int temp = in3 + SINT( (in2 >> SIN_LBITS) & SIN_MASK, en2 );
CH_OUTd = SINT( (temp >> SIN_LBITS) & SIN_MASK, en3 ) +
SINT( ((in1 + CH_S0_OUT_1) >> SIN_LBITS) & SIN_MASK, en1 );
//DO_LIMIT
}
else if ( algo == 5 )
{
int temp = CH_S0_OUT_1;
CH_OUTd = SINT( ((in3 + temp) >> SIN_LBITS) & SIN_MASK, en3 ) +
SINT( ((in1 + temp) >> SIN_LBITS) & SIN_MASK, en1 ) +
SINT( ((in2 + temp) >> SIN_LBITS) & SIN_MASK, en2 );
//DO_LIMIT
}
else if ( algo == 6 )
{
CH_OUTd = SINT( (in3 >> SIN_LBITS) & SIN_MASK, en3 ) +
SINT( ((in1 + CH_S0_OUT_1) >> SIN_LBITS) & SIN_MASK, en1 ) +
SINT( (in2 >> SIN_LBITS) & SIN_MASK, en2 );
//DO_LIMIT
}
else if ( algo == 7 )
{
CH_OUTd = SINT( (in3 >> SIN_LBITS) & SIN_MASK, en3 ) +
SINT( (in1 >> SIN_LBITS) & SIN_MASK, en1 ) +
SINT( (in2 >> SIN_LBITS) & SIN_MASK, en2 ) + CH_S0_OUT_1;
//DO_LIMIT
}
CH_OUTd >>= MAX_OUT_BITS - output_bits + 2;
// update phase
unsigned freq_LFO = ((g.LFO_FREQ_TAB [YM2612_LFOcnt >> LFO_LBITS & LFO_MASK] *
ch.FMS) >> (LFO_HBITS - 1 + 1)) + (1L << (LFO_FMS_LBITS - 1));
YM2612_LFOcnt += YM2612_LFOinc;
in0 += (ch.SLOT [S0].Finc * freq_LFO) >> (LFO_FMS_LBITS - 1);
in1 += (ch.SLOT [S1].Finc * freq_LFO) >> (LFO_FMS_LBITS - 1);
in2 += (ch.SLOT [S2].Finc * freq_LFO) >> (LFO_FMS_LBITS - 1);
in3 += (ch.SLOT [S3].Finc * freq_LFO) >> (LFO_FMS_LBITS - 1);
int t0 = buf [0] + (CH_OUTd & ch.LEFT);
int t1 = buf [1] + (CH_OUTd & ch.RIGHT);
update_envelope( ch.SLOT [0] );
update_envelope( ch.SLOT [1] );
update_envelope( ch.SLOT [2] );
update_envelope( ch.SLOT [3] );
ch.S0_OUT [0] = CH_S0_OUT_0;
buf [0] = t0;
buf [1] = t1;
buf += 2;
}
while ( --length );
ch.S0_OUT [1] = CH_S0_OUT_1;
ch.SLOT [S0].Fcnt = in0;
ch.SLOT [S1].Fcnt = in1;
ch.SLOT [S2].Fcnt = in2;
ch.SLOT [S3].Fcnt = in3;
}
static const ym2612_update_chan_t UPDATE_CHAN [8] = {
&ym2612_update_chan<0>::func,
&ym2612_update_chan<1>::func,
&ym2612_update_chan<2>::func,
&ym2612_update_chan<3>::func,
&ym2612_update_chan<4>::func,
&ym2612_update_chan<5>::func,
&ym2612_update_chan<6>::func,
&ym2612_update_chan<7>::func
};
void Ym2612_Impl::run_timer( int length )
{
int const step = 6;
int remain = length;
do
{
int n = step;
if ( n > remain )
n = remain;
remain -= n;
long i = n * YM2612.TimerBase;
if (YM2612.Mode & 1) // Timer A ON ?
{
// if ((YM2612.TimerAcnt -= 14073) <= 0) // 13879=NTSC (old: 14475=NTSC 14586=PAL)
if ((YM2612.TimerAcnt -= i) <= 0)
{
// timer a overflow
YM2612.Status |= (YM2612.Mode & 0x04) >> 2;
YM2612.TimerAcnt += YM2612.TimerAL;
if (YM2612.Mode & 0x80)
{
KEY_ON( YM2612.CHANNEL [2], 0 );
KEY_ON( YM2612.CHANNEL [2], 1 );
KEY_ON( YM2612.CHANNEL [2], 2 );
KEY_ON( YM2612.CHANNEL [2], 3 );
}
}
}
if (YM2612.Mode & 2) // Timer B ON ?
{
// if ((YM2612.TimerBcnt -= 14073) <= 0) // 13879=NTSC (old: 14475=NTSC 14586=PAL)
if ((YM2612.TimerBcnt -= i) <= 0)
{
// timer b overflow
YM2612.Status |= (YM2612.Mode & 0x08) >> 2;
YM2612.TimerBcnt += YM2612.TimerBL;
}
}
}
while ( remain > 0 );
}
void Ym2612_Impl::run( int pair_count, Ym2612_Emu::sample_t* out )
{
if ( pair_count <= 0 )
return;
if ( YM2612.Mode & 3 )
run_timer( pair_count );
// Mise <20> jour des pas des compteurs-frequences s'ils ont ete modifies
for ( int chi = 0; chi < channel_count; chi++ )
{
channel_t& ch = YM2612.CHANNEL [chi];
if ( ch.SLOT [0].Finc != -1 )
continue;
int i2 = 0;
if ( chi == 2 && (YM2612.Mode & 0x40) )
i2 = 2;
for ( int i = 0; i < 4; i++ )
{
// static int seq [4] = { 2, 1, 3, 0 };
// if ( i2 ) i2 = seq [i];
slot_t& sl = ch.SLOT [i];
int finc = g.FINC_TAB [ch.FNUM [i2]] >> (7 - ch.FOCT [i2]);
int ksr = ch.KC [i2] >> sl.KSR_S; // keycode attenuation
sl.Finc = (finc + sl.DT [ch.KC [i2]]) * sl.MUL;
if (sl.KSR != ksr) // si le KSR a change alors
{ // les differents taux pour l'enveloppe sont mis <20> jour
sl.KSR = ksr;
sl.EincA = sl.AR [ksr];
sl.EincD = sl.DR [ksr];
sl.EincS = sl.SR [ksr];
sl.EincR = sl.RR [ksr];
if (sl.Ecurp == ATTACK)
{
sl.Einc = sl.EincA;
}
else if (sl.Ecurp == DECAY)
{
sl.Einc = sl.EincD;
}
else if (sl.Ecnt < ENV_END)
{
if (sl.Ecurp == SUBSTAIN)
sl.Einc = sl.EincS;
else if (sl.Ecurp == RELEASE)
sl.Einc = sl.EincR;
}
}
if ( i2 )
i2 = (i2 ^ 2) ^ (i2 >> 1);
}
}
for ( int i = 0; i < channel_count; i++ )
{
if ( !(mute_mask & (1 << i)) && (i != 5 || !YM2612.DAC) )
UPDATE_CHAN [YM2612.CHANNEL [i].ALGO]( g, YM2612.CHANNEL [i], out, pair_count );
}
g.LFOcnt += g.LFOinc * pair_count;
}
void Ym2612_Emu::run( int pair_count, sample_t* out ) { impl->run( pair_count, out ); }