gzdoom-gles/libraries/timidityplus/quantity.cpp

318 lines
9 KiB
C++
Raw Normal View History

/*
TiMidity++ -- MIDI to WAVE converter and player
Copyright (C) 1999-2002 Masanao Izumo <mo@goice.co.jp>
Copyright (C) 1995 Tuukka Toivonen <tt@cgs.fi>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
quantity.c
string -> quantity -> native value convertion
by Kentaro Sato <kentaro@ranvis.com>
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "timidity.h"
#include "common.h"
#include "instrum.h"
#include "tables.h"
#include "quantity.h"
namespace TimidityPlus
{
typedef int32_t(*QuantityToIntProc)(int32_t value, int32_t param);
typedef double(*QuantityToFloatProc)(double value, int32_t param);
typedef union {
QuantityToIntProc i;
QuantityToFloatProc f;
} QuantityConvertProc;
typedef struct {
const char *suffix;
uint16_t type, id;
int float_type; /* is floating-point type */
QuantityConvertProc convert;
} QuantityHint;
/*
Guide To Add New Unit Types/Units
append QUANTITY_UNIT_TYPE(<TYPE>)
QUANTITY_UNIT_NAME(<UNIT>)
... to enum quantity_units (in quantity.h)
append QUANTITY_TYPE_INT/FLOAT(<TYPE>)
REGISTER_TYPE_INT/FLOAT("<SUFFIX>", <UNIT>);
...
END_QUANTITY_TYPE; to GetQuantityHints()
write convert_<TYPE>_NUM(int32_t/double value, int32_t param)
convert_<UNIT>(int32_t/double value, int32_t param)
... functions.
*/
/*************** conversion functions ***************/
static int32_t convert_DIRECT_INT_NUM(int32_t value, int32_t param)
{
return value;
}
static double convert_DIRECT_FLOAT_NUM(double value, int32_t param)
{
return value;
}
/* from instrum.c, convert_tremolo_sweep() */
static int32_t convert_TREMOLO_SWEEP_NUM(int32_t value, int32_t param)
{
uint8_t sweep = value;
if (!sweep)
return 0;
return
((control_ratio * SWEEP_TUNING) << SWEEP_SHIFT) /
(playback_rate * sweep);
}
static int32_t convert_TREMOLO_SWEEP_MS(int32_t value, int32_t param)
{
if (value <= 0)
return 0;
#if SWEEP_SHIFT <= 16
return ((uint32_t)(control_ratio * (1000 >> 2)) << SWEEP_SHIFT) / ((playback_rate * value) >> 2);
#else
#error "overflow"
#endif
}
/* from instrum.c, convert_tremolo_rate() */
static int32_t convert_TREMOLO_RATE_NUM(int32_t value, int32_t param)
{
uint8_t rate = value;
return
((SINE_CYCLE_LENGTH * control_ratio * rate) << RATE_SHIFT) /
(TREMOLO_RATE_TUNING * playback_rate);
}
static int32_t convert_TREMOLO_RATE_MS(int32_t value, int32_t param)
{
#if RATE_SHIFT <= 5
return ((SINE_CYCLE_LENGTH * control_ratio * (1000 >> 1)) << RATE_SHIFT) /
((playback_rate * (uint32_t)value) >> 1);
#else
#error "overflow"
#endif
}
static double convert_TREMOLO_RATE_HZ(double value, int32_t param)
{
if (value <= 0)
return 0;
return ((SINE_CYCLE_LENGTH * control_ratio) << RATE_SHIFT) * value / playback_rate;
}
/* from instrum.c, convert_vibrato_sweep() */
static int32_t convert_VIBRATO_SWEEP_NUM(int32_t value, int32_t vib_control_ratio)
{
uint8_t sweep = value;
if (!sweep)
return 0;
return (int32_t)(TIM_FSCALE((double) (vib_control_ratio)
* SWEEP_TUNING, SWEEP_SHIFT)
/ (double)(playback_rate * sweep));
/* this was overflowing with seashore.pat
((vib_control_ratio * SWEEP_TUNING) << SWEEP_SHIFT) /
(playback_rate * sweep); */
}
static int32_t convert_VIBRATO_SWEEP_MS(int32_t value, int32_t vib_control_ratio)
{
if (value <= 0)
return 0;
return (TIM_FSCALE((double)vib_control_ratio * 1000, SWEEP_SHIFT)
/ (double)(playback_rate * value));
}
/* from instrum.c, to_control() */
static int32_t convert_VIBRATO_RATE_NUM(int32_t control, int32_t param)
{
return (int32_t) (0x2000 / pow(2.0, control / 31.0));
}
static int32_t convert_VIBRATO_RATE_MS(int32_t value, int32_t param)
{
return 1000 * playback_rate / ((2 * VIBRATO_SAMPLE_INCREMENTS) * value);
}
static double convert_VIBRATO_RATE_HZ(double value, int32_t param)
{
return playback_rate / ((2 * VIBRATO_SAMPLE_INCREMENTS) * value);
}
/*************** core functions ***************/
#define MAX_QUANTITY_UNITS_PER_UNIT_TYPES 8
static int GetQuantityHints(uint16_t type, QuantityHint *units)
{
QuantityHint *unit;
unit = units;
#define QUANTITY_TYPE_INT(type) \
case QUANTITY_UNIT_TYPE(type): REGISTER_TYPE_INT("", type##_NUM)
#define QUANTITY_TYPE_FLOAT(type) \
case QUANTITY_UNIT_TYPE(type): REGISTER_TYPE_FLOAT("", type##_NUM)
#define REGISTER_TYPE_INT(ustr, utype) REGISTER_TYPE_ENTITY_INT(ustr, utype, convert_##utype)
#define REGISTER_TYPE_FLOAT(ustr, utype) REGISTER_TYPE_ENTITY_FLOAT(ustr, utype, convert_##utype)
#define REGISTER_TYPE_ALIAS_INT(ustr, utype, atype) REGISTER_TYPE_ENTITY_INT(ustr, utype, convert_##atype)
#define REGISTER_TYPE_ALIAS_FLOAT(ustr, utype, atype) REGISTER_TYPE_ENTITY_FLOAT(ustr, utype, convert_##atype)
#define REGISTER_TYPE_ENTITY_INT(ustr, utype, ucvt) \
unit->suffix = ustr, unit->type = type, unit->id = QUANTITY_UNIT_NAME(utype), unit->float_type = 0, unit->convert.i = ucvt, unit++
#define REGISTER_TYPE_ENTITY_FLOAT(ustr, utype, ucvt) \
unit->suffix = ustr, unit->type = type, unit->id = QUANTITY_UNIT_NAME(utype), unit->float_type = 1, unit->convert.f = ucvt, unit++
#define END_QUANTITY_TYPE unit->suffix = NULL; break
switch (type)
{
QUANTITY_TYPE_INT(DIRECT_INT);
END_QUANTITY_TYPE;
QUANTITY_TYPE_FLOAT(DIRECT_FLOAT);
END_QUANTITY_TYPE;
QUANTITY_TYPE_INT(TREMOLO_SWEEP);
REGISTER_TYPE_INT("ms", TREMOLO_SWEEP_MS);
END_QUANTITY_TYPE;
QUANTITY_TYPE_INT(TREMOLO_RATE);
REGISTER_TYPE_INT("ms", TREMOLO_RATE_MS);
REGISTER_TYPE_FLOAT("Hz", TREMOLO_RATE_HZ);
END_QUANTITY_TYPE;
QUANTITY_TYPE_INT(VIBRATO_RATE);
REGISTER_TYPE_INT("ms", VIBRATO_RATE_MS);
REGISTER_TYPE_FLOAT("Hz", VIBRATO_RATE_HZ);
END_QUANTITY_TYPE;
QUANTITY_TYPE_INT(VIBRATO_SWEEP);
REGISTER_TYPE_INT("ms", VIBRATO_SWEEP_MS);
END_QUANTITY_TYPE;
default:
printMessage(CMSG_ERROR, VERB_NORMAL, "Internal parameter error (%d)", type);
return 0;
}
return 1;
}
/* quantity is unchanged if an error occurred */
static const char *number_to_quantity(int32_t number_i, const char *suffix_i, double number_f, const char *suffix_f, Quantity *quantity, uint16_t type)
{
QuantityHint units[MAX_QUANTITY_UNITS_PER_UNIT_TYPES], *unit;
if (!GetQuantityHints(type, units))
return "Parameter error";
unit = units;
while(unit->suffix != NULL)
{
if (suffix_i != NULL && strcmp(suffix_i, unit->suffix) == 0) /* number_i, suffix_i was valid */
{
quantity->type = unit->type;
quantity->unit = unit->id;
if (unit->float_type)
quantity->value.f = number_i;
else
quantity->value.i = number_i;
return NULL;
}
else if (suffix_f != NULL && strcmp(suffix_f, unit->suffix) == 0) /* number_f, suffix_f was valid */
{
if (unit->float_type)
{
quantity->type = unit->type;
quantity->unit = unit->id;
quantity->value.f = number_f;
return NULL;
}
else
return "integer expected";
}
unit++;
}
return "invalid parameter";
}
const char *string_to_quantity(const char *string, Quantity *quantity, uint16_t type)
{
int32_t number_i;
double number_f;
char *suffix_i, *suffix_f;
number_i = strtol(string, &suffix_i, 10); /* base == 10 for compatibility with atoi() */
if (string == suffix_i) /* doesn't start with valid character */
return "Number expected";
number_f = strtod(string, &suffix_f);
return number_to_quantity(number_i, suffix_i, number_f, suffix_f, quantity, type);
}
static int GetQuantityConvertProc(const Quantity *quantity, QuantityConvertProc *proc)
{
QuantityHint units[MAX_QUANTITY_UNITS_PER_UNIT_TYPES], *unit;
if (!GetQuantityHints(quantity->type, units))
return -1; /* already warned */
unit = units;
while(unit->suffix != NULL)
{
if (quantity->unit == unit->id)
{
*proc = unit->convert;
return unit->float_type;
}
unit++;
}
printMessage(CMSG_ERROR, VERB_NORMAL, "Internal parameter error");
return -1;
}
int32_t quantity_to_int(const Quantity *quantity, int32_t param)
{
QuantityConvertProc proc;
switch (GetQuantityConvertProc(quantity, &proc))
{
case 0:
return (*proc.i)(quantity->value.i, param);
case 1:
return (*proc.f)(quantity->value.f, param);
}
return 0;
}
double quantity_to_float(const Quantity *quantity, int32_t param)
{
QuantityConvertProc proc;
switch (GetQuantityConvertProc(quantity, &proc))
{
case 0:
return (*proc.i)(quantity->value.i, param);
case 1:
return (*proc.f)(quantity->value.f, param);
}
return 0;
}
}