mirror of
https://github.com/ZDoom/gzdoom-gles.git
synced 2024-12-11 21:10:50 +00:00
145 lines
2.8 KiB
C++
145 lines
2.8 KiB
C++
|
#include "doomtype.h"
|
||
|
#include "nodebuild.h"
|
||
|
|
||
|
#define FAR_ENOUGH 17179869184.f // 4<<32
|
||
|
|
||
|
// This function is identical to the ClassifyLine2 version. So how does it use SSE2?
|
||
|
// Easy! By explicitly enabling SSE2 in the configuration properties for this one
|
||
|
// file, we can build it with SSE2 enabled without forcing SSE2 on the rest of the
|
||
|
// project.
|
||
|
|
||
|
int FNodeBuilder::ClassifyLineSSE2 (node_t &node, const FPrivSeg *seg, int &sidev1, int &sidev2)
|
||
|
{
|
||
|
const FPrivVert *v1 = &Vertices[seg->v1];
|
||
|
const FPrivVert *v2 = &Vertices[seg->v2];
|
||
|
|
||
|
double d_x1 = double(node.x);
|
||
|
double d_y1 = double(node.y);
|
||
|
double d_dx = double(node.dx);
|
||
|
double d_dy = double(node.dy);
|
||
|
double d_xv1 = double(v1->x);
|
||
|
double d_xv2 = double(v2->x);
|
||
|
double d_yv1 = double(v1->y);
|
||
|
double d_yv2 = double(v2->y);
|
||
|
|
||
|
double s_num1 = (d_y1 - d_yv1) * d_dx - (d_x1 - d_xv1) * d_dy;
|
||
|
double s_num2 = (d_y1 - d_yv2) * d_dx - (d_x1 - d_xv2) * d_dy;
|
||
|
|
||
|
int nears = 0;
|
||
|
|
||
|
if (s_num1 <= -FAR_ENOUGH)
|
||
|
{
|
||
|
if (s_num2 <= -FAR_ENOUGH)
|
||
|
{
|
||
|
sidev1 = sidev2 = 1;
|
||
|
return 1;
|
||
|
}
|
||
|
if (s_num2 >= FAR_ENOUGH)
|
||
|
{
|
||
|
sidev1 = 1;
|
||
|
sidev2 = -1;
|
||
|
return -1;
|
||
|
}
|
||
|
nears = 1;
|
||
|
}
|
||
|
else if (s_num1 >= FAR_ENOUGH)
|
||
|
{
|
||
|
if (s_num2 >= FAR_ENOUGH)
|
||
|
{
|
||
|
sidev1 = sidev2 = -1;
|
||
|
return 0;
|
||
|
}
|
||
|
if (s_num2 <= -FAR_ENOUGH)
|
||
|
{
|
||
|
sidev1 = -1;
|
||
|
sidev2 = 1;
|
||
|
return -1;
|
||
|
}
|
||
|
nears = 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
nears = 2 | int(fabs(s_num2) < FAR_ENOUGH);
|
||
|
}
|
||
|
|
||
|
if (nears)
|
||
|
{
|
||
|
double l = 1.f / (d_dx*d_dx + d_dy*d_dy);
|
||
|
if (nears & 2)
|
||
|
{
|
||
|
double dist = s_num1 * s_num1 * l;
|
||
|
if (dist < SIDE_EPSILON*SIDE_EPSILON)
|
||
|
{
|
||
|
sidev1 = 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
sidev1 = s_num1 > 0.0 ? -1 : 1;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
sidev1 = s_num1 > 0.0 ? -1 : 1;
|
||
|
}
|
||
|
if (nears & 1)
|
||
|
{
|
||
|
double dist = s_num2 * s_num2 * l;
|
||
|
if (dist < SIDE_EPSILON*SIDE_EPSILON)
|
||
|
{
|
||
|
sidev2 = 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
sidev2 = s_num2 > 0.0 ? -1 : 1;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
sidev2 = s_num2 > 0.0 ? -1 : 1;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
sidev1 = s_num1 > 0.0 ? -1 : 1;
|
||
|
sidev2 = s_num2 > 0.0 ? -1 : 1;
|
||
|
}
|
||
|
|
||
|
if ((sidev1 | sidev2) == 0)
|
||
|
{ // seg is coplanar with the splitter, so use its orientation to determine
|
||
|
// which child it ends up in. If it faces the same direction as the splitter,
|
||
|
// it goes in front. Otherwise, it goes in back.
|
||
|
|
||
|
if (node.dx != 0)
|
||
|
{
|
||
|
if ((node.dx > 0 && v2->x > v1->x) || (node.dx < 0 && v2->x < v1->x))
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if ((node.dy > 0 && v2->y > v1->y) || (node.dy < 0 && v2->y < v1->y))
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else if (sidev1 <= 0 && sidev2 <= 0)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
else if (sidev1 >= 0 && sidev2 >= 0)
|
||
|
{
|
||
|
return 1;
|
||
|
}
|
||
|
return -1;
|
||
|
}
|