2016-09-14 18:01:13 +00:00
|
|
|
/*
|
|
|
|
** gl_geometric.h
|
|
|
|
**
|
|
|
|
**---------------------------------------------------------------------------
|
|
|
|
** Copyright 2003 Timothy Stump
|
|
|
|
** All rights reserved.
|
|
|
|
**
|
|
|
|
** Redistribution and use in source and binary forms, with or without
|
|
|
|
** modification, are permitted provided that the following conditions
|
|
|
|
** are met:
|
|
|
|
**
|
|
|
|
** 1. Redistributions of source code must retain the above copyright
|
|
|
|
** notice, this list of conditions and the following disclaimer.
|
|
|
|
** 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
** notice, this list of conditions and the following disclaimer in the
|
|
|
|
** documentation and/or other materials provided with the distribution.
|
|
|
|
** 3. The name of the author may not be used to endorse or promote products
|
|
|
|
** derived from this software without specific prior written permission.
|
|
|
|
**
|
|
|
|
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
|
|
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
|
|
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
|
|
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
|
|
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
|
|
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
**---------------------------------------------------------------------------
|
|
|
|
**
|
|
|
|
*/
|
|
|
|
|
2013-06-23 07:49:34 +00:00
|
|
|
#ifndef __GL_GEOM
|
|
|
|
#define __GL_GEOM
|
|
|
|
|
|
|
|
#include "math.h"
|
|
|
|
#include "r_defs.h"
|
2017-03-12 18:49:53 +00:00
|
|
|
#include "gl/scene/gl_wall.h"
|
2013-06-23 07:49:34 +00:00
|
|
|
|
2017-03-12 18:44:00 +00:00
|
|
|
struct GLSeg;
|
2013-06-23 07:49:34 +00:00
|
|
|
|
|
|
|
class Plane
|
|
|
|
{
|
|
|
|
public:
|
2017-03-12 18:49:53 +00:00
|
|
|
void Set(GLSeg *seg)
|
|
|
|
{
|
|
|
|
m_normal = seg->Normal();
|
|
|
|
m_d = m_normal | FVector3(-seg->x1, 0, -seg->y1);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Set(secplane_t &plane)
|
|
|
|
{
|
|
|
|
m_normal = { (float)plane.Normal().X, (float)plane.Normal().Z, (float)plane.Normal().Y };
|
|
|
|
m_d = (float)plane.fD();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
float DistToPoint(float x, float y, float z)
|
|
|
|
{
|
|
|
|
FVector3 p(x, y, z);
|
|
|
|
|
|
|
|
return (m_normal | p) + m_d;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool PointOnSide(float x, float y, float z)
|
|
|
|
{
|
|
|
|
return DistToPoint(x, y, z) < 0.f;
|
|
|
|
}
|
|
|
|
|
2017-03-12 18:44:00 +00:00
|
|
|
bool PointOnSide(FVector3 &v) { return PointOnSide(v.X, v.Y, v.Z); }
|
|
|
|
bool ValidNormal() { return m_normal.LengthSquared() == 1.f; }
|
|
|
|
|
|
|
|
float A() { return m_normal.X; }
|
|
|
|
float B() { return m_normal.Y; }
|
|
|
|
float C() { return m_normal.Z; }
|
|
|
|
float D() { return m_d; }
|
|
|
|
|
|
|
|
const FVector3 &Normal() const { return m_normal; }
|
2013-06-23 07:49:34 +00:00
|
|
|
protected:
|
2017-03-12 18:44:00 +00:00
|
|
|
FVector3 m_normal;
|
|
|
|
float m_d;
|
2013-06-23 07:49:34 +00:00
|
|
|
};
|
|
|
|
|
2017-03-12 18:49:53 +00:00
|
|
|
|
2013-06-23 07:49:34 +00:00
|
|
|
class Matrix3x4 // used like a 4x4 matrix with the last row always being (0,0,0,1)
|
|
|
|
{
|
|
|
|
float m[3][4];
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
|
|
|
void MakeIdentity()
|
|
|
|
{
|
|
|
|
memset(m, 0, sizeof(m));
|
|
|
|
m[0][0] = m[1][1] = m[2][2] = 1.f;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Translate(float x, float y, float z)
|
|
|
|
{
|
|
|
|
m[0][3] = m[0][0]*x + m[0][1]*y + m[0][2]*z + m[0][3];
|
|
|
|
m[1][3] = m[1][0]*x + m[1][1]*y + m[1][2]*z + m[1][3];
|
|
|
|
m[2][3] = m[2][0]*x + m[2][1]*y + m[2][2]*z + m[2][3];
|
|
|
|
}
|
|
|
|
|
|
|
|
void Scale(float x, float y, float z)
|
|
|
|
{
|
|
|
|
m[0][0] *=x;
|
|
|
|
m[1][0] *=x;
|
|
|
|
m[2][0] *=x;
|
|
|
|
|
|
|
|
m[0][1] *=y;
|
|
|
|
m[1][1] *=y;
|
|
|
|
m[2][1] *=y;
|
|
|
|
|
|
|
|
m[0][2] *=z;
|
|
|
|
m[1][2] *=z;
|
|
|
|
m[2][2] *=z;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Rotate(float ax, float ay, float az, float angle)
|
|
|
|
{
|
|
|
|
Matrix3x4 m1;
|
|
|
|
|
2017-03-12 18:44:00 +00:00
|
|
|
FVector3 axis(ax, ay, az);
|
|
|
|
axis.MakeUnit();
|
2013-06-23 07:49:34 +00:00
|
|
|
double c = cos(angle * M_PI/180.), s = sin(angle * M_PI/180.), t = 1 - c;
|
2017-03-12 18:44:00 +00:00
|
|
|
double sx = s*axis.X, sy = s*axis.Y, sz = s*axis.Z;
|
2013-06-23 07:49:34 +00:00
|
|
|
double tx, ty, txx, tyy, u, v;
|
|
|
|
|
2017-03-12 18:44:00 +00:00
|
|
|
tx = t*axis.X;
|
|
|
|
m1.m[0][0] = float( (txx=tx*axis.X) + c );
|
|
|
|
m1.m[0][1] = float( (u=tx*axis.Y) - sz);
|
|
|
|
m1.m[0][2] = float( (v=tx*axis.Z) + sy);
|
2013-06-23 07:49:34 +00:00
|
|
|
|
2017-03-12 18:44:00 +00:00
|
|
|
ty = t*axis.Y;
|
2013-06-23 07:49:34 +00:00
|
|
|
m1.m[1][0] = float( u + sz);
|
2017-03-12 18:44:00 +00:00
|
|
|
m1.m[1][1] = float( (tyy=ty*axis.Y) + c );
|
|
|
|
m1.m[1][2] = float( (u=ty*axis.Z) - sx);
|
2013-06-23 07:49:34 +00:00
|
|
|
|
|
|
|
m1.m[2][0] = float( v - sy);
|
|
|
|
m1.m[2][1] = float( u + sx);
|
|
|
|
m1.m[2][2] = float( (t-txx-tyy) + c );
|
|
|
|
|
|
|
|
m1.m[0][3] = 0.f;
|
|
|
|
m1.m[1][3] = 0.f;
|
|
|
|
m1.m[2][3] = 0.f;
|
|
|
|
|
|
|
|
*this = (*this) * m1;
|
|
|
|
}
|
|
|
|
|
|
|
|
Matrix3x4 operator *(const Matrix3x4 &other)
|
|
|
|
{
|
|
|
|
Matrix3x4 result;
|
|
|
|
|
|
|
|
result.m[0][0] = m[0][0]*other.m[0][0] + m[0][1]*other.m[1][0] + m[0][2]*other.m[2][0];
|
|
|
|
result.m[0][1] = m[0][0]*other.m[0][1] + m[0][1]*other.m[1][1] + m[0][2]*other.m[2][1];
|
|
|
|
result.m[0][2] = m[0][0]*other.m[0][2] + m[0][1]*other.m[1][2] + m[0][2]*other.m[2][2];
|
|
|
|
result.m[0][3] = m[0][0]*other.m[0][3] + m[0][1]*other.m[1][3] + m[0][2]*other.m[2][3] + m[0][3];
|
|
|
|
|
|
|
|
result.m[1][0] = m[1][0]*other.m[0][0] + m[1][1]*other.m[1][0] + m[1][2]*other.m[2][0];
|
|
|
|
result.m[1][1] = m[1][0]*other.m[0][1] + m[1][1]*other.m[1][1] + m[1][2]*other.m[2][1];
|
|
|
|
result.m[1][2] = m[1][0]*other.m[0][2] + m[1][1]*other.m[1][2] + m[1][2]*other.m[2][2];
|
|
|
|
result.m[1][3] = m[1][0]*other.m[0][3] + m[1][1]*other.m[1][3] + m[1][2]*other.m[2][3] + m[1][3];
|
|
|
|
|
|
|
|
result.m[2][0] = m[2][0]*other.m[0][0] + m[2][1]*other.m[1][0] + m[2][2]*other.m[2][0];
|
|
|
|
result.m[2][1] = m[2][0]*other.m[0][1] + m[2][1]*other.m[1][1] + m[2][2]*other.m[2][1];
|
|
|
|
result.m[2][2] = m[2][0]*other.m[0][2] + m[2][1]*other.m[1][2] + m[2][2]*other.m[2][2];
|
|
|
|
result.m[2][3] = m[2][0]*other.m[0][3] + m[2][1]*other.m[1][3] + m[2][2]*other.m[2][3] + m[2][3];
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2016-05-01 10:39:08 +00:00
|
|
|
FVector3 operator *(const FVector3 &vec)
|
|
|
|
{
|
|
|
|
FVector3 result;
|
|
|
|
|
|
|
|
result.X = vec.X*m[0][0] + vec.Y*m[0][1] + vec.Z*m[0][2] + m[0][3];
|
|
|
|
result.Y = vec.X*m[1][0] + vec.Y*m[1][1] + vec.Z*m[1][2] + m[1][3];
|
|
|
|
result.Z = vec.X*m[2][0] + vec.Y*m[2][1] + vec.Z*m[2][2] + m[2][3];
|
|
|
|
return result;
|
|
|
|
}
|
2013-06-23 07:49:34 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
#endif
|