yquake2remaster/src/refresh/r_light.c
2012-07-21 14:09:45 +02:00

680 lines
12 KiB
C

/*
* Copyright (C) 1997-2001 Id Software, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*
* =======================================================================
*
* Lightmaps and dynamic lighting
*
* =======================================================================
*/
#include "header/local.h"
#define DLIGHT_CUTOFF 64
int r_dlightframecount;
vec3_t pointcolor;
cplane_t *lightplane; /* used as shadow plane */
vec3_t lightspot;
static float s_blocklights[34 * 34 * 3];
void
R_RenderDlight(dlight_t *light)
{
int i, j;
float a;
vec3_t v;
float rad;
rad = light->intensity * 0.35;
VectorSubtract(light->origin, r_origin, v);
qglBegin(GL_TRIANGLE_FAN);
qglColor3f(light->color[0] * 0.2, light->color[1] * 0.2,
light->color[2] * 0.2);
for (i = 0; i < 3; i++)
{
v[i] = light->origin[i] - vpn[i] * rad;
}
qglVertex3fv(v);
qglColor3f(0, 0, 0);
for (i = 16; i >= 0; i--)
{
a = i / 16.0 * M_PI * 2;
for (j = 0; j < 3; j++)
{
v[j] = light->origin[j] + vright[j] * cos(a) * rad
+ vup[j] * sin(a) * rad;
}
qglVertex3fv(v);
}
qglEnd();
}
void
R_RenderDlights(void)
{
int i;
dlight_t *l;
if (!gl_flashblend->value)
{
return;
}
/* because the count hasn't advanced yet for this frame */
r_dlightframecount = r_framecount + 1;
qglDepthMask(0);
qglDisable(GL_TEXTURE_2D);
qglShadeModel(GL_SMOOTH);
qglEnable(GL_BLEND);
qglBlendFunc(GL_ONE, GL_ONE);
l = r_newrefdef.dlights;
for (i = 0; i < r_newrefdef.num_dlights; i++, l++)
{
R_RenderDlight(l);
}
qglColor3f(1, 1, 1);
qglDisable(GL_BLEND);
qglEnable(GL_TEXTURE_2D);
qglBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
qglDepthMask(1);
}
void
R_MarkLights(dlight_t *light, int bit, mnode_t *node)
{
cplane_t *splitplane;
float dist;
msurface_t *surf;
int i;
int sidebit;
if (node->contents != -1)
{
return;
}
splitplane = node->plane;
dist = DotProduct(light->origin, splitplane->normal) - splitplane->dist;
if (dist > light->intensity - DLIGHT_CUTOFF)
{
R_MarkLights(light, bit, node->children[0]);
return;
}
if (dist < -light->intensity + DLIGHT_CUTOFF)
{
R_MarkLights(light, bit, node->children[1]);
return;
}
/* mark the polygons */
surf = r_worldmodel->surfaces + node->firstsurface;
for (i = 0; i < node->numsurfaces; i++, surf++)
{
dist = DotProduct(light->origin, surf->plane->normal) - surf->plane->dist;
if (dist >= 0)
{
sidebit = 0;
}
else
{
sidebit = SURF_PLANEBACK;
}
if ((surf->flags & SURF_PLANEBACK) != sidebit)
{
continue;
}
if (surf->dlightframe != r_dlightframecount)
{
surf->dlightbits = 0;
surf->dlightframe = r_dlightframecount;
}
surf->dlightbits |= bit;
}
R_MarkLights(light, bit, node->children[0]);
R_MarkLights(light, bit, node->children[1]);
}
void
R_PushDlights(void)
{
int i;
dlight_t *l;
if (gl_flashblend->value)
{
return;
}
/* because the count hasn't advanced yet for this frame */
r_dlightframecount = r_framecount + 1;
l = r_newrefdef.dlights;
for (i = 0; i < r_newrefdef.num_dlights; i++, l++)
{
R_MarkLights(l, 1 << i, r_worldmodel->nodes);
}
}
int
R_RecursiveLightPoint(mnode_t *node, vec3_t start, vec3_t end)
{
float front, back, frac;
int side;
cplane_t *plane;
vec3_t mid;
msurface_t *surf;
int s, t, ds, dt;
int i;
mtexinfo_t *tex;
byte *lightmap;
int maps;
int r;
if (node->contents != -1)
{
return -1; /* didn't hit anything */
}
/* calculate mid point */
plane = node->plane;
front = DotProduct(start, plane->normal) - plane->dist;
back = DotProduct(end, plane->normal) - plane->dist;
side = front < 0;
if ((back < 0) == side)
{
return R_RecursiveLightPoint(node->children[side], start, end);
}
frac = front / (front - back);
mid[0] = start[0] + (end[0] - start[0]) * frac;
mid[1] = start[1] + (end[1] - start[1]) * frac;
mid[2] = start[2] + (end[2] - start[2]) * frac;
/* go down front side */
r = R_RecursiveLightPoint(node->children[side], start, mid);
if (r >= 0)
{
return r; /* hit something */
}
if ((back < 0) == side)
{
return -1; /* didn't hit anuthing */
}
/* check for impact on this node */
VectorCopy(mid, lightspot);
lightplane = plane;
surf = r_worldmodel->surfaces + node->firstsurface;
for (i = 0; i < node->numsurfaces; i++, surf++)
{
if (surf->flags & (SURF_DRAWTURB | SURF_DRAWSKY))
{
continue; /* no lightmaps */
}
tex = surf->texinfo;
s = DotProduct(mid, tex->vecs[0]) + tex->vecs[0][3];
t = DotProduct(mid, tex->vecs[1]) + tex->vecs[1][3];
if ((s < surf->texturemins[0]) ||
(t < surf->texturemins[1]))
{
continue;
}
ds = s - surf->texturemins[0];
dt = t - surf->texturemins[1];
if ((ds > surf->extents[0]) || (dt > surf->extents[1]))
{
continue;
}
if (!surf->samples)
{
return 0;
}
ds >>= 4;
dt >>= 4;
lightmap = surf->samples;
VectorCopy(vec3_origin, pointcolor);
if (lightmap)
{
vec3_t scale;
lightmap += 3 * (dt * ((surf->extents[0] >> 4) + 1) + ds);
for (maps = 0; maps < MAXLIGHTMAPS && surf->styles[maps] != 255;
maps++)
{
for (i = 0; i < 3; i++)
{
scale[i] = gl_modulate->value *
r_newrefdef.lightstyles[surf->styles[maps]].rgb[i];
}
pointcolor[0] += lightmap[0] * scale[0] * (1.0 / 255);
pointcolor[1] += lightmap[1] * scale[1] * (1.0 / 255);
pointcolor[2] += lightmap[2] * scale[2] * (1.0 / 255);
lightmap += 3 * ((surf->extents[0] >> 4) + 1) *
((surf->extents[1] >> 4) + 1);
}
}
return 1;
}
/* go down back side */
return R_RecursiveLightPoint(node->children[!side], mid, end);
}
void
R_LightPoint(vec3_t p, vec3_t color)
{
vec3_t end;
float r;
int lnum;
dlight_t *dl;
vec3_t dist;
float add;
if (!r_worldmodel->lightdata)
{
color[0] = color[1] = color[2] = 1.0;
return;
}
end[0] = p[0];
end[1] = p[1];
end[2] = p[2] - 2048;
r = R_RecursiveLightPoint(r_worldmodel->nodes, p, end);
if (r == -1)
{
VectorCopy(vec3_origin, color);
}
else
{
VectorCopy(pointcolor, color);
}
/* add dynamic lights */
dl = r_newrefdef.dlights;
for (lnum = 0; lnum < r_newrefdef.num_dlights; lnum++, dl++)
{
VectorSubtract(currententity->origin,
dl->origin, dist);
add = dl->intensity - VectorLength(dist);
add *= (1.0 / 256);
if (add > 0)
{
VectorMA(color, add, dl->color, color);
}
}
VectorScale(color, gl_modulate->value, color);
}
void
R_AddDynamicLights(msurface_t *surf)
{
int lnum;
int sd, td;
float fdist, frad, fminlight;
vec3_t impact, local;
int s, t;
int i;
int smax, tmax;
mtexinfo_t *tex;
dlight_t *dl;
float *pfBL;
float fsacc, ftacc;
smax = (surf->extents[0] >> 4) + 1;
tmax = (surf->extents[1] >> 4) + 1;
tex = surf->texinfo;
for (lnum = 0; lnum < r_newrefdef.num_dlights; lnum++)
{
if (!(surf->dlightbits & (1 << lnum)))
{
continue; /* not lit by this light */
}
dl = &r_newrefdef.dlights[lnum];
frad = dl->intensity;
fdist = DotProduct(dl->origin, surf->plane->normal) -
surf->plane->dist;
frad -= fabs(fdist);
/* rad is now the highest intensity on the plane */
fminlight = DLIGHT_CUTOFF;
if (frad < fminlight)
{
continue;
}
fminlight = frad - fminlight;
for (i = 0; i < 3; i++)
{
impact[i] = dl->origin[i] -
surf->plane->normal[i] * fdist;
}
local[0] = DotProduct(impact,
tex->vecs[0]) + tex->vecs[0][3] - surf->texturemins[0];
local[1] = DotProduct(impact,
tex->vecs[1]) + tex->vecs[1][3] - surf->texturemins[1];
pfBL = s_blocklights;
for (t = 0, ftacc = 0; t < tmax; t++, ftacc += 16)
{
td = local[1] - ftacc;
if (td < 0)
{
td = -td;
}
for (s = 0, fsacc = 0; s < smax; s++, fsacc += 16, pfBL += 3)
{
sd = Q_ftol(local[0] - fsacc);
if (sd < 0)
{
sd = -sd;
}
if (sd > td)
{
fdist = sd + (td >> 1);
}
else
{
fdist = td + (sd >> 1);
}
if (fdist < fminlight)
{
pfBL[0] += (frad - fdist) * dl->color[0];
pfBL[1] += (frad - fdist) * dl->color[1];
pfBL[2] += (frad - fdist) * dl->color[2];
}
}
}
}
}
void
R_SetCacheState(msurface_t *surf)
{
int maps;
for (maps = 0; maps < MAXLIGHTMAPS && surf->styles[maps] != 255;
maps++)
{
surf->cached_light[maps] =
r_newrefdef.lightstyles[surf->styles[maps]].white;
}
}
/*
* Combine and scale multiple lightmaps into the floating format in blocklights
*/
void
R_BuildLightMap(msurface_t *surf, byte *dest, int stride)
{
int smax, tmax;
int r, g, b, a, max;
int i, j, size;
byte *lightmap;
float scale[4];
int nummaps;
float *bl;
if (surf->texinfo->flags &
(SURF_SKY | SURF_TRANS33 | SURF_TRANS66 | SURF_WARP))
{
ri.Sys_Error(ERR_DROP, "R_BuildLightMap called for non-lit surface");
}
smax = (surf->extents[0] >> 4) + 1;
tmax = (surf->extents[1] >> 4) + 1;
size = smax * tmax;
if (size > (sizeof(s_blocklights) >> 4))
{
ri.Sys_Error(ERR_DROP, "Bad s_blocklights size");
}
/* set to full bright if no light data */
if (!surf->samples)
{
for (i = 0; i < size * 3; i++)
{
s_blocklights[i] = 255;
}
goto store;
}
/* count the # of maps */
for (nummaps = 0; nummaps < MAXLIGHTMAPS && surf->styles[nummaps] != 255;
nummaps++)
{
}
lightmap = surf->samples;
/* add all the lightmaps */
if (nummaps == 1)
{
int maps;
for (maps = 0; maps < MAXLIGHTMAPS && surf->styles[maps] != 255; maps++)
{
bl = s_blocklights;
for (i = 0; i < 3; i++)
{
scale[i] = gl_modulate->value *
r_newrefdef.lightstyles[surf->styles[maps]].rgb[i];
}
if ((scale[0] == 1.0F) &&
(scale[1] == 1.0F) &&
(scale[2] == 1.0F))
{
for (i = 0; i < size; i++, bl += 3)
{
bl[0] = lightmap[i * 3 + 0];
bl[1] = lightmap[i * 3 + 1];
bl[2] = lightmap[i * 3 + 2];
}
}
else
{
for (i = 0; i < size; i++, bl += 3)
{
bl[0] = lightmap[i * 3 + 0] * scale[0];
bl[1] = lightmap[i * 3 + 1] * scale[1];
bl[2] = lightmap[i * 3 + 2] * scale[2];
}
}
lightmap += size * 3; /* skip to next lightmap */
}
}
else
{
int maps;
memset(s_blocklights, 0, sizeof(s_blocklights[0]) * size * 3);
for (maps = 0; maps < MAXLIGHTMAPS && surf->styles[maps] != 255; maps++)
{
bl = s_blocklights;
for (i = 0; i < 3; i++)
{
scale[i] = gl_modulate->value *
r_newrefdef.lightstyles[surf->styles[maps]].rgb[i];
}
if ((scale[0] == 1.0F) &&
(scale[1] == 1.0F) &&
(scale[2] == 1.0F))
{
for (i = 0; i < size; i++, bl += 3)
{
bl[0] += lightmap[i * 3 + 0];
bl[1] += lightmap[i * 3 + 1];
bl[2] += lightmap[i * 3 + 2];
}
}
else
{
for (i = 0; i < size; i++, bl += 3)
{
bl[0] += lightmap[i * 3 + 0] * scale[0];
bl[1] += lightmap[i * 3 + 1] * scale[1];
bl[2] += lightmap[i * 3 + 2] * scale[2];
}
}
lightmap += size * 3; /* skip to next lightmap */
}
}
/* add all the dynamic lights */
if (surf->dlightframe == r_framecount)
{
R_AddDynamicLights(surf);
}
store:
stride -= (smax << 2);
bl = s_blocklights;
for (i = 0; i < tmax; i++, dest += stride)
{
for (j = 0; j < smax; j++)
{
r = Q_ftol(bl[0]);
g = Q_ftol(bl[1]);
b = Q_ftol(bl[2]);
/* catch negative lights */
if (r < 0)
{
r = 0;
}
if (g < 0)
{
g = 0;
}
if (b < 0)
{
b = 0;
}
/* determine the brightest of the three color components */
if (r > g)
{
max = r;
}
else
{
max = g;
}
if (b > max)
{
max = b;
}
/* alpha is ONLY used for the mono lightmap case. For this
reason we set it to the brightest of the color components
so that things don't get too dim. */
a = max;
/* rescale all the color components if the
intensity of the greatest channel exceeds
1.0 */
if (max > 255)
{
float t = 255.0F / max;
r = r * t;
g = g * t;
b = b * t;
a = a * t;
}
dest[0] = r;
dest[1] = g;
dest[2] = b;
dest[3] = a;
bl += 3;
dest += 4;
}
}
}