worldspawn/libs/mathlib/ray.c
2020-11-17 12:16:16 +01:00

143 lines
4.3 KiB
C

/*
Copyright (C) 2001-2006, William Joseph.
All Rights Reserved.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "mathlib.h"
#include <float.h>
vec3_t identity = { 0,0,0 };
void ray_construct_for_vec3( ray_t *ray, const vec3_t origin, const vec3_t direction ){
VectorCopy( origin, ray->origin );
VectorCopy( direction, ray->direction );
}
void ray_transform( ray_t *ray, const m4x4_t matrix ){
m4x4_transform_point( matrix, ray->origin );
m4x4_transform_normal( matrix, ray->direction );
}
vec_t ray_intersect_point( const ray_t *ray, const vec3_t point, vec_t epsilon, vec_t divergence ){
vec3_t displacement;
vec_t depth;
// calc displacement of test point from ray origin
VectorSubtract( point, ray->origin, displacement );
// calc length of displacement vector along ray direction
depth = DotProduct( displacement, ray->direction );
if ( depth < 0.0f ) {
return (vec_t)FLT_MAX;
}
// calc position of closest point on ray to test point
VectorMA( ray->origin, depth, ray->direction, displacement );
// calc displacement of test point from closest point
VectorSubtract( point, displacement, displacement );
// calc length of displacement, subtract depth-dependant epsilon
if ( VectorLength( displacement ) - ( epsilon + ( depth * divergence ) ) > 0.0f ) {
return (vec_t)FLT_MAX;
}
return depth;
}
// Tomas Moller and Ben Trumbore. Fast, minimum storage ray-triangle intersection. Journal of graphics tools, 2(1):21-28, 1997
const double EPSILON = 0.000001;
vec_t ray_intersect_triangle( const ray_t *ray, qboolean bCullBack, const vec3_t vert0, const vec3_t vert1, const vec3_t vert2 ){
float edge1[3], edge2[3], tvec[3], pvec[3], qvec[3];
float det,inv_det;
float u, v;
vec_t depth = (vec_t)FLT_MAX;
/* find vectors for two edges sharing vert0 */
VectorSubtract( vert1, vert0, edge1 );
VectorSubtract( vert2, vert0, edge2 );
/* begin calculating determinant - also used to calculate U parameter */
CrossProduct( ray->direction, edge2, pvec );
/* if determinant is near zero, ray lies in plane of triangle */
det = DotProduct( edge1, pvec );
if ( bCullBack == qtrue ) {
if ( det < EPSILON ) {
return depth;
}
// calculate distance from vert0 to ray origin
VectorSubtract( ray->origin, vert0, tvec );
// calculate U parameter and test bounds
u = DotProduct( tvec, pvec );
if ( u < 0.0 || u > det ) {
return depth;
}
// prepare to test V parameter
CrossProduct( tvec, edge1, qvec );
// calculate V parameter and test bounds
v = DotProduct( ray->direction, qvec );
if ( v < 0.0 || u + v > det ) {
return depth;
}
// calculate t, scale parameters, ray intersects triangle
depth = DotProduct( edge2, qvec );
inv_det = 1.0f / det;
depth *= inv_det;
//u *= inv_det;
//v *= inv_det;
}
else
{
/* the non-culling branch */
if ( det > -EPSILON && det < EPSILON ) {
return depth;
}
inv_det = 1.0f / det;
/* calculate distance from vert0 to ray origin */
VectorSubtract( ray->origin, vert0, tvec );
/* calculate U parameter and test bounds */
u = DotProduct( tvec, pvec ) * inv_det;
if ( u < 0.0 || u > 1.0 ) {
return depth;
}
/* prepare to test V parameter */
CrossProduct( tvec, edge1, qvec );
/* calculate V parameter and test bounds */
v = DotProduct( ray->direction, qvec ) * inv_det;
if ( v < 0.0 || u + v > 1.0 ) {
return depth;
}
/* calculate t, ray intersects triangle */
depth = DotProduct( edge2, qvec ) * inv_det;
}
return depth;
}
vec_t ray_intersect_plane( const ray_t* ray, const vec3_t normal, vec_t dist ){
return -( DotProduct( normal, ray->origin ) - dist ) / DotProduct( ray->direction, normal );
}