553 lines
15 KiB
C
553 lines
15 KiB
C
|
/*
|
||
|
Copyright (C) 2001-2006, William Joseph.
|
||
|
All Rights Reserved.
|
||
|
|
||
|
This file is part of GtkRadiant.
|
||
|
|
||
|
GtkRadiant is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
GtkRadiant is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with GtkRadiant; if not, write to the Free Software
|
||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*/
|
||
|
|
||
|
#if !defined ( INCLUDED_EXPRESSION_H )
|
||
|
#define INCLUDED_EXPRESSION_H
|
||
|
|
||
|
#include <math/matrix.h>
|
||
|
|
||
|
template<typename Value>
|
||
|
class Literal
|
||
|
{
|
||
|
Value m_value;
|
||
|
public:
|
||
|
typedef Value value_type;
|
||
|
|
||
|
Literal( const Value& value )
|
||
|
: m_value( value ){
|
||
|
}
|
||
|
const value_type& eval() const {
|
||
|
return m_value;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Value>
|
||
|
inline Literal<Value> float_literal( const Value& value ){
|
||
|
return Literal<Value>( value );
|
||
|
}
|
||
|
|
||
|
template<typename Expression>
|
||
|
inline float float_for_expression( const Expression& expression ){
|
||
|
return expression.eval();
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename First, typename Second>
|
||
|
class ScalarDivided
|
||
|
{
|
||
|
First first;
|
||
|
Second second;
|
||
|
public:
|
||
|
typedef typename First::value_type value_type;
|
||
|
|
||
|
ScalarDivided( const First& first_, const Second& second_ ) : first( first_ ), second( second_ ){
|
||
|
}
|
||
|
value_type eval() const {
|
||
|
return static_cast<value_type>( first.eval() / second.eval() );
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename First, typename Second>
|
||
|
inline ScalarDivided<First, Second> float_divided( const First& first, const Second& second ){
|
||
|
return ScalarDivided<First, Second>( first, second );
|
||
|
}
|
||
|
|
||
|
template<typename First>
|
||
|
inline ScalarDivided<Literal<typename First::value_type>, First> float_reciprocal( const First& first ){
|
||
|
typedef typename First::value_type first_value_type;
|
||
|
return ScalarDivided<Literal<first_value_type>, First>( float_literal( first_value_type( 1.0 ) ), first );
|
||
|
}
|
||
|
|
||
|
template<typename First>
|
||
|
class SquareRoot
|
||
|
{
|
||
|
First first;
|
||
|
public:
|
||
|
typedef typename First::value_type value_type;
|
||
|
|
||
|
SquareRoot( const First& first_ ) : first( first_ ){
|
||
|
}
|
||
|
value_type eval() const {
|
||
|
return static_cast<value_type>( sqrt( first.eval() ) );
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename First>
|
||
|
inline SquareRoot<First> float_square_root( const First& first ){
|
||
|
return SquareRoot<First>( first );
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename Element>
|
||
|
class BasicVector3Literal
|
||
|
{
|
||
|
const BasicVector3<Element> m_value;
|
||
|
public:
|
||
|
typedef Element value_type;
|
||
|
typedef IntegralConstant<3> dimension;
|
||
|
|
||
|
BasicVector3Literal( const BasicVector3<Element>& value )
|
||
|
: m_value( value ){
|
||
|
}
|
||
|
const value_type& eval( unsigned int i ) const {
|
||
|
return m_value[i];
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Element>
|
||
|
inline BasicVector3Literal<Element> vector3_literal( const BasicVector3<Element>& value ){
|
||
|
return BasicVector3Literal<Element>( value );
|
||
|
}
|
||
|
|
||
|
typedef BasicVector3Literal<float> Vector3Literal;
|
||
|
|
||
|
template<typename Element>
|
||
|
class BasicVector3Identity
|
||
|
{
|
||
|
const BasicVector3<Element>& m_value;
|
||
|
public:
|
||
|
typedef Element value_type;
|
||
|
typedef IntegralConstant<3> dimension;
|
||
|
|
||
|
BasicVector3Identity( const BasicVector3<Element>& value )
|
||
|
: m_value( value ){
|
||
|
}
|
||
|
const value_type& eval( unsigned int i ) const {
|
||
|
return m_value[i];
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Element>
|
||
|
inline BasicVector3Identity<Element> vector3_identity( const BasicVector3<Element>& value ){
|
||
|
return BasicVector3Identity<Element>( value );
|
||
|
}
|
||
|
|
||
|
typedef BasicVector3Identity<float> Vector3Identity;
|
||
|
|
||
|
template<typename Expression>
|
||
|
inline BasicVector3<typename Expression::value_type> vector3_for_expression( const Expression& expression ){
|
||
|
return Vector3( expression.eval( 0 ), expression.eval( 1 ), expression.eval( 2 ) );
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename Operation, typename First, typename Second>
|
||
|
class VectorScalar
|
||
|
{
|
||
|
First first;
|
||
|
Literal<typename Second::value_type> second;
|
||
|
public:
|
||
|
typedef typename First::value_type value_type;
|
||
|
typedef typename First::dimension dimension;
|
||
|
|
||
|
VectorScalar( const First& first_, const Second& second_ )
|
||
|
: first( first_ ), second( second_.eval() ){
|
||
|
}
|
||
|
value_type eval( unsigned int i ) const {
|
||
|
return Operation::apply( first.eval( i ), second.eval() );
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
template<typename Operation, typename First, typename Second>
|
||
|
class VectorVector
|
||
|
{
|
||
|
First first;
|
||
|
Second second;
|
||
|
public:
|
||
|
typedef typename First::value_type value_type;
|
||
|
typedef typename First::dimension dimension;
|
||
|
|
||
|
VectorVector( const First& first_, const Second& second_ )
|
||
|
: first( first_ ), second( second_ ){
|
||
|
}
|
||
|
value_type eval( unsigned int i ) const {
|
||
|
return Operation::apply( first.eval( i ), second.eval( i ) );
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename First, typename Second>
|
||
|
class Added
|
||
|
{
|
||
|
public:
|
||
|
typedef First value_type;
|
||
|
|
||
|
static value_type apply( const First& first, const Second& second ){
|
||
|
return static_cast<value_type>( first + second );
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename First, typename Second>
|
||
|
inline VectorVector<Added<typename First::value_type, typename Second::value_type>, First, Second>
|
||
|
vector_added( const First& first, const Second& second ){
|
||
|
typedef typename First::value_type first_value_type;
|
||
|
typedef typename Second::value_type second_value_type;
|
||
|
return VectorVector<Added<first_value_type, second_value_type>, First, Second>( first, second );
|
||
|
}
|
||
|
|
||
|
template<typename First, typename Second>
|
||
|
class Multiplied
|
||
|
{
|
||
|
public:
|
||
|
typedef First value_type;
|
||
|
|
||
|
static value_type apply( const First& first, const Second& second ){
|
||
|
return static_cast<value_type>( first * second );
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename First, typename Second>
|
||
|
inline VectorVector<Multiplied<typename First::value_type, typename Second::value_type>, First, Second>
|
||
|
vector_multiplied( const First& first, const Second& second ){
|
||
|
typedef typename First::value_type first_value_type;
|
||
|
typedef typename Second::value_type second_value_type;
|
||
|
return VectorVector<Multiplied<first_value_type, second_value_type>, First, Second>( first, second );
|
||
|
}
|
||
|
|
||
|
template<typename First, typename Second>
|
||
|
inline VectorScalar<Multiplied<typename First::value_type, typename Second::value_type>, First, Second>
|
||
|
vector_scaled( const First& first, const Second& second ){
|
||
|
typedef typename First::value_type first_value_type;
|
||
|
typedef typename Second::value_type second_value_type;
|
||
|
return VectorScalar<Multiplied<first_value_type, second_value_type>, First, Second>( first, second );
|
||
|
}
|
||
|
|
||
|
template<typename First>
|
||
|
class Negated
|
||
|
{
|
||
|
public:
|
||
|
typedef First value_type;
|
||
|
|
||
|
static value_type apply( const First& first ){
|
||
|
return -first;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename First, typename Operation>
|
||
|
class VectorUnary
|
||
|
{
|
||
|
First first;
|
||
|
public:
|
||
|
typedef typename First::value_type value_type;
|
||
|
typedef typename First::dimension dimension;
|
||
|
|
||
|
VectorUnary( const First& first_ ) : first( first_ ){
|
||
|
}
|
||
|
value_type eval( unsigned int i ) const {
|
||
|
return Operation::apply( first.eval( i ) );
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename First>
|
||
|
inline VectorUnary<First, Negated<typename First::value_type> >
|
||
|
vector_negated( const First& first ){
|
||
|
typedef typename First::value_type first_value_type;
|
||
|
return VectorUnary<First, Negated<first_value_type> >( first );
|
||
|
}
|
||
|
|
||
|
template<typename First, typename Second>
|
||
|
class VectorCross
|
||
|
{
|
||
|
First first;
|
||
|
Second second;
|
||
|
public:
|
||
|
typedef typename First::value_type value_type;
|
||
|
typedef typename First::dimension dimension;
|
||
|
|
||
|
VectorCross( const First& first_, const Second& second_ )
|
||
|
: first( first_ ), second( second_ ){
|
||
|
}
|
||
|
value_type eval( unsigned int i ) const {
|
||
|
return first.eval( ( i + 1 ) % 3 ) * second.eval( ( i + 2 ) % 3 ) - first.eval( ( i + 2 ) % 3 ) * second.eval( ( i + 1 ) % 3 );
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename First, typename Second>
|
||
|
inline VectorCross<First, Second>
|
||
|
vector_cross( const First& first, const Second& second ){
|
||
|
return VectorCross<First, Second>( first, second );
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename First, typename Second>
|
||
|
class VectorDot
|
||
|
{
|
||
|
First first;
|
||
|
Second second;
|
||
|
public:
|
||
|
typedef typename First::value_type value_type;
|
||
|
typedef typename First::dimension dimension;
|
||
|
|
||
|
VectorDot( const First& first_, const Second& second_ )
|
||
|
: first( first_ ), second( second_ ){
|
||
|
}
|
||
|
|
||
|
template<typename Index>
|
||
|
struct eval_dot
|
||
|
{
|
||
|
static value_type apply( const First& first, const Second& second ){
|
||
|
return static_cast<value_type>(
|
||
|
first.eval( Index::VALUE ) * second.eval( Index::VALUE )
|
||
|
+ eval_dot< IntegralConstant<Index::VALUE - 1> >::apply( first, second )
|
||
|
);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<>
|
||
|
struct eval_dot< IntegralConstant<0> >
|
||
|
{
|
||
|
static value_type apply( const First& first, const Second& second ){
|
||
|
return first.eval( 0 ) * second.eval( 0 );
|
||
|
}
|
||
|
};
|
||
|
|
||
|
value_type eval() const {
|
||
|
return eval_dot< IntegralConstant<dimension::VALUE - 1> >::apply( first, second );
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
template<typename First, typename Second>
|
||
|
inline VectorDot<First, Second> vector_dot( const First& first, const Second& second ){
|
||
|
return VectorDot<First, Second>( first, second );
|
||
|
}
|
||
|
|
||
|
template<typename First>
|
||
|
class VectorLengthSquared
|
||
|
{
|
||
|
First first;
|
||
|
public:
|
||
|
typedef typename First::value_type value_type;
|
||
|
typedef typename First::dimension dimension;
|
||
|
|
||
|
VectorLengthSquared( const First& first_ )
|
||
|
: first( first_ ){
|
||
|
}
|
||
|
|
||
|
static value_type squared( const value_type& value ){
|
||
|
return value * value;
|
||
|
}
|
||
|
|
||
|
template<typename Index>
|
||
|
struct eval_squared
|
||
|
{
|
||
|
static value_type apply( const First& first ){
|
||
|
return static_cast<value_type>(
|
||
|
squared( first.eval( Index::VALUE ) )
|
||
|
+ eval_squared< IntegralConstant<Index::VALUE - 1> >::apply( first )
|
||
|
);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<>
|
||
|
struct eval_squared< IntegralConstant<0> >
|
||
|
{
|
||
|
static value_type apply( const First& first ){
|
||
|
return squared( first.eval( 0 ) );
|
||
|
}
|
||
|
};
|
||
|
|
||
|
value_type eval() const {
|
||
|
return eval_squared< IntegralConstant<dimension::VALUE - 1> >::apply( first );
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename First>
|
||
|
inline VectorLengthSquared<First> vector_length_squared( const First& first ){
|
||
|
return VectorLengthSquared<First>( first );
|
||
|
}
|
||
|
|
||
|
template<typename First>
|
||
|
inline SquareRoot< VectorLengthSquared<First> > vector_length( const First& first ){
|
||
|
return float_square_root( vector_length_squared( first ) );
|
||
|
}
|
||
|
|
||
|
#if 1
|
||
|
template<typename First>
|
||
|
inline VectorScalar<
|
||
|
Multiplied<typename First::value_type, typename First::value_type>,
|
||
|
First,
|
||
|
// multiple evaulations of subexpression
|
||
|
ScalarDivided<
|
||
|
Literal<typename First::value_type>,
|
||
|
SquareRoot<
|
||
|
VectorLengthSquared<First>
|
||
|
>
|
||
|
>
|
||
|
> vector_normalised( const First& first ){
|
||
|
typedef typename First::value_type first_value_type;
|
||
|
return vector_scaled( first, float_reciprocal( vector_length( first ) ) );
|
||
|
}
|
||
|
#else
|
||
|
template<typename First>
|
||
|
inline VectorScalar<
|
||
|
Multiplied<typename First::value_type, typename First::value_type>,
|
||
|
First,
|
||
|
// single evaluation of subexpression
|
||
|
Literal<typename First::value_type>
|
||
|
>
|
||
|
vector_normalised( const First& first ){
|
||
|
typedef typename First::value_type first_value_type;
|
||
|
return vector_scaled( first, float_literal( static_cast<first_value_type>( first_value_type( 1.0 ) / vector_length( first ).eval() ) ) );
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
class Matrix4Literal
|
||
|
{
|
||
|
const Matrix4 m_value;
|
||
|
public:
|
||
|
typedef float value_type;
|
||
|
typedef IntegralConstant<4> dimension0;
|
||
|
typedef IntegralConstant<4> dimension1;
|
||
|
|
||
|
Matrix4Literal( const Matrix4& value )
|
||
|
: m_value( value ){
|
||
|
}
|
||
|
const value_type& eval( unsigned int r, unsigned int c ) const {
|
||
|
return m_value[r * 4 + c];
|
||
|
}
|
||
|
};
|
||
|
|
||
|
inline Matrix4Literal matrix4_literal( const Matrix4& value ){
|
||
|
return Matrix4Literal( value );
|
||
|
}
|
||
|
|
||
|
class Matrix4Identity
|
||
|
{
|
||
|
const Matrix4& m_value;
|
||
|
public:
|
||
|
typedef float value_type;
|
||
|
typedef IntegralConstant<4> dimension0;
|
||
|
typedef IntegralConstant<4> dimension1;
|
||
|
|
||
|
Matrix4Identity( const Matrix4& value )
|
||
|
: m_value( value ){
|
||
|
}
|
||
|
const value_type& eval( unsigned int r, unsigned int c ) const {
|
||
|
return m_value[r * 4 + c];
|
||
|
}
|
||
|
};
|
||
|
|
||
|
inline Matrix4Identity matrix4_identity( const Matrix4& value ){
|
||
|
return Matrix4Identity( value );
|
||
|
}
|
||
|
|
||
|
template<typename Expression>
|
||
|
inline Matrix4 matrix4_for_expression( const Expression& expression ){
|
||
|
return Matrix4(
|
||
|
expression.eval( 0, 0 ), expression.eval( 0, 1 ), expression.eval( 0, 2 ), expression.eval( 0, 3 ),
|
||
|
expression.eval( 1, 0 ), expression.eval( 1, 1 ), expression.eval( 1, 2 ), expression.eval( 1, 3 ),
|
||
|
expression.eval( 2, 0 ), expression.eval( 2, 1 ), expression.eval( 2, 2 ), expression.eval( 2, 3 ),
|
||
|
expression.eval( 3, 0 ), expression.eval( 3, 1 ), expression.eval( 3, 2 ), expression.eval( 3, 3 )
|
||
|
);
|
||
|
}
|
||
|
|
||
|
template<typename Expression>
|
||
|
inline Matrix4 matrix4_affine_for_expression( const Expression& expression ){
|
||
|
return Matrix4(
|
||
|
expression.eval( 0, 0 ), expression.eval( 0, 1 ), expression.eval( 0, 2 ), 0,
|
||
|
expression.eval( 1, 0 ), expression.eval( 1, 1 ), expression.eval( 1, 2 ), 0,
|
||
|
expression.eval( 2, 0 ), expression.eval( 2, 1 ), expression.eval( 2, 2 ), 0,
|
||
|
expression.eval( 3, 0 ), expression.eval( 3, 1 ), expression.eval( 3, 2 ), 1
|
||
|
);
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename First, typename Second>
|
||
|
class PointMultiplied
|
||
|
{
|
||
|
const First& first;
|
||
|
const Second& second;
|
||
|
public:
|
||
|
typedef typename First::value_type value_type;
|
||
|
typedef typename First::dimension dimension;
|
||
|
|
||
|
PointMultiplied( const First& first_, const Second& second_ )
|
||
|
: first( first_ ), second( second_ ){
|
||
|
}
|
||
|
value_type eval( unsigned int i ) const {
|
||
|
return static_cast<value_type>( second.eval( 0, i ) * first.eval( 0 )
|
||
|
+ second.eval( 1, i ) * first.eval( 1 )
|
||
|
+ second.eval( 2, i ) * first.eval( 2 )
|
||
|
+ second.eval( 3, i ) );
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename First, typename Second>
|
||
|
inline PointMultiplied<First, Second> point_multiplied( const First& point, const Second& matrix ){
|
||
|
return PointMultiplied<First, Second>( point, matrix );
|
||
|
}
|
||
|
|
||
|
template<typename First, typename Second>
|
||
|
class Matrix4Multiplied
|
||
|
{
|
||
|
const First& first;
|
||
|
const Second& second;
|
||
|
public:
|
||
|
typedef typename First::value_type value_type;
|
||
|
typedef typename First::dimension0 dimension0;
|
||
|
typedef typename First::dimension1 dimension1;
|
||
|
|
||
|
Matrix4Multiplied( const First& first_, const Second& second_ )
|
||
|
: first( first_ ), second( second_ ){
|
||
|
}
|
||
|
|
||
|
value_type eval( unsigned int r, unsigned int c ) const {
|
||
|
return static_cast<value_type>(
|
||
|
second.eval( r, 0 ) * first.eval( 0, c )
|
||
|
+ second.eval( r, 1 ) * first.eval( 1, c )
|
||
|
+ second.eval( r, 2 ) * first.eval( 2, c )
|
||
|
+ second.eval( r, 3 ) * first.eval( 3, c )
|
||
|
);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename First, typename Second>
|
||
|
inline Matrix4Multiplied<First, Second> matrix4_multiplied( const First& first, const Second& second ){
|
||
|
return Matrix4Multiplied<First, Second>( first, second );
|
||
|
}
|
||
|
|
||
|
template<typename First>
|
||
|
class MatrixTransposed
|
||
|
{
|
||
|
const First& first;
|
||
|
public:
|
||
|
typedef typename First::value_type value_type;
|
||
|
typedef typename First::dimension0 dimension0;
|
||
|
typedef typename First::dimension1 dimension1;
|
||
|
|
||
|
MatrixTransposed( const First& first_ )
|
||
|
: first( first_ ){
|
||
|
}
|
||
|
|
||
|
value_type eval( unsigned int r, unsigned int c ) const {
|
||
|
return first.eval( c, r );
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename First>
|
||
|
inline MatrixTransposed<First> matrix_transposed( const First& first ){
|
||
|
return MatrixTransposed<First>( first );
|
||
|
}
|
||
|
|
||
|
#endif
|