worldspawn/tools/vmap/patch.c

570 lines
14 KiB
C
Raw Normal View History

2020-11-17 11:16:16 +00:00
/* -------------------------------------------------------------------------------
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
----------------------------------------------------------------------------------
This code has been altered significantly from its original form, to support
several games based on the Quake III Arena engine, in the form of "Q3Map2."
------------------------------------------------------------------------------- */
/* marker */
#define PATCH_C
/* dependencies */
#include "vmap.h"
/*
ExpandLongestCurve() - ydnar
finds length of quadratic curve specified and determines if length is longer than the supplied max
*/
#define APPROX_SUBDIVISION 8
static void ExpandLongestCurve( float *longestCurve, vec3_t a, vec3_t b, vec3_t c ){
int i;
float t, len;
vec3_t ab, bc, ac, pt, last, delta;
/* calc vectors */
VectorSubtract( b, a, ab );
if ( VectorNormalize( ab, ab ) < 0.125f ) {
return;
}
VectorSubtract( c, b, bc );
if ( VectorNormalize( bc, bc ) < 0.125f ) {
return;
}
VectorSubtract( c, a, ac );
if ( VectorNormalize( ac, ac ) < 0.125f ) {
return;
}
/* if all 3 vectors are the same direction, then this edge is linear, so we ignore it */
if ( DotProduct( ab, bc ) > 0.99f && DotProduct( ab, ac ) > 0.99f ) {
return;
}
/* recalculate vectors */
VectorSubtract( b, a, ab );
VectorSubtract( c, b, bc );
/* determine length */
VectorCopy( a, last );
for ( i = 0, len = 0.0f, t = 0.0f; i < APPROX_SUBDIVISION; i++, t += ( 1.0f / APPROX_SUBDIVISION ) )
{
/* calculate delta */
delta[ 0 ] = ( ( 1.0f - t ) * ab[ 0 ] ) + ( t * bc[ 0 ] );
delta[ 1 ] = ( ( 1.0f - t ) * ab[ 1 ] ) + ( t * bc[ 1 ] );
delta[ 2 ] = ( ( 1.0f - t ) * ab[ 2 ] ) + ( t * bc[ 2 ] );
/* add to first point and calculate pt-pt delta */
VectorAdd( a, delta, pt );
VectorSubtract( pt, last, delta );
/* add it to length and store last point */
len += VectorLength( delta );
VectorCopy( pt, last );
}
/* longer? */
if ( len > *longestCurve ) {
*longestCurve = len;
}
}
/*
ExpandMaxIterations() - ydnar
determines how many iterations a quadratic curve needs to be subdivided with to fit the specified error
*/
static void ExpandMaxIterations( int *maxIterations, int maxError, vec3_t a, vec3_t b, vec3_t c ){
int i, j;
vec3_t prev, next, mid, delta, delta2;
float len, len2;
int numPoints, iterations;
vec3_t points[ MAX_EXPANDED_AXIS ];
/* initial setup */
numPoints = 3;
VectorCopy( a, points[ 0 ] );
VectorCopy( b, points[ 1 ] );
VectorCopy( c, points[ 2 ] );
/* subdivide */
for ( i = 0; i + 2 < numPoints; i += 2 )
{
/* check subdivision limit */
if ( numPoints + 2 >= MAX_EXPANDED_AXIS ) {
break;
}
/* calculate new curve deltas */
for ( j = 0; j < 3; j++ )
{
prev[ j ] = points[ i + 1 ][ j ] - points[ i ][ j ];
next[ j ] = points[ i + 2 ][ j ] - points[ i + 1 ][ j ];
mid[ j ] = ( points[ i ][ j ] + points[ i + 1 ][ j ] * 2.0f + points[ i + 2 ][ j ] ) * 0.25f;
}
/* see if this midpoint is off far enough to subdivide */
VectorSubtract( points[ i + 1 ], mid, delta );
len = VectorLength( delta );
if ( len < maxError ) {
continue;
}
/* subdivide */
numPoints += 2;
/* create new points */
for ( j = 0; j < 3; j++ )
{
prev[ j ] = 0.5f * ( points[ i ][ j ] + points[ i + 1 ][ j ] );
next[ j ] = 0.5f * ( points[ i + 1 ][ j ] + points[ i + 2 ][ j ] );
mid[ j ] = 0.5f * ( prev[ j ] + next[ j ] );
}
/* push points out */
for ( j = numPoints - 1; j > i + 3; j-- )
VectorCopy( points[ j - 2 ], points[ j ] );
/* insert new points */
VectorCopy( prev, points[ i + 1 ] );
VectorCopy( mid, points[ i + 2 ] );
VectorCopy( next, points[ i + 3 ] );
/* back up and recheck this set again, it may need more subdivision */
i -= 2;
}
/* put the line on the curve */
for ( i = 1; i < numPoints; i += 2 )
{
for ( j = 0; j < 3; j++ )
{
prev[ j ] = 0.5f * ( points[ i ][ j ] + points[ i + 1 ][ j ] );
next[ j ] = 0.5f * ( points[ i ][ j ] + points[ i - 1 ][ j ] );
points[ i ][ j ] = 0.5f * ( prev[ j ] + next[ j ] );
}
}
/* eliminate linear sections */
for ( i = 0; i + 2 < numPoints; i++ )
{
/* create vectors */
VectorSubtract( points[ i + 1 ], points[ i ], delta );
len = VectorNormalize( delta, delta );
VectorSubtract( points[ i + 2 ], points[ i + 1 ], delta2 );
len2 = VectorNormalize( delta2, delta2 );
/* if either edge is degenerate, then eliminate it */
if ( len < 0.0625f || len2 < 0.0625f || DotProduct( delta, delta2 ) >= 1.0f ) {
for ( j = i + 1; j + 1 < numPoints; j++ )
VectorCopy( points[ j + 1 ], points[ j ] );
numPoints--;
continue;
}
}
/* the number of iterations is 2^(points - 1) - 1 */
numPoints >>= 1;
iterations = 0;
while ( numPoints > 1 )
{
numPoints >>= 1;
iterations++;
}
/* more? */
if ( iterations > *maxIterations ) {
*maxIterations = iterations;
}
}
void ParseVertMatrix(bspDrawVert_t *v)
{
vec4_t vcol;
int i;
MatchToken( "(" );
for ( i = 0 ; i < 3 ; i++ ) {
GetToken( qfalse );
v->xyz[i] = atof( token );
}
for ( i = 0 ; i < 2 ; i++ ) {
GetToken( qfalse );
v->st[i] = atof( token );
}
for ( i = 0 ; i < 4 ; i++ ) {
GetToken( qfalse );
if (!strcmp(token, ")"))
break;
vcol[i] = atof( token );
}
for ( ; i < 4 ; i++ ) {
vcol[i] = 1;
}
if (strcmp(token, ")"))
MatchToken( ")" );
/* ydnar: fix colors */
for ( i = 0; i < MAX_LIGHTMAPS; i++ )
{
v->color[ i ][ 0 ] = 255*vcol[0];
v->color[ i ][ 1 ] = 255*vcol[1];
v->color[ i ][ 2 ] = 255*vcol[2];
v->color[ i ][ 3 ] = 255*vcol[3];
}
}
/*
ParsePatch()
creates a mapDrawSurface_t from the patch text
*/
void ParsePatch( qboolean onlyLights, qboolean fixedtess ){
vec_t info[ 5 ];
int i, j;
parseMesh_t *pm;
char texture[ MAX_QPATH ];
char shader[ MAX_QPATH ];
mesh_t m;
bspDrawVert_t *verts;
epair_t *ep;
vec4_t delta, delta2, delta3;
qboolean degenerate;
float longestCurve;
int maxIterations;
MatchToken( "{" );
/* get texture */
GetToken( qtrue );
strcpy( texture, token );
if (fixedtess)
Parse1DMatrix( 7, info );
else
Parse1DMatrix( 5, info );
//Hack for fixed tessellation
/* info[2] = info[3] = 2;
fixedtess = qtrue;*/
m.width = info[0];
m.height = info[1];
m.subdiv_x = fixedtess?info[2]:-1;
m.subdiv_y = fixedtess?info[3]:-1;
m.verts = verts = safe_malloc( m.width * m.height * sizeof( m.verts[0] ) );
if ( m.width < 0 || m.width > MAX_PATCH_SIZE || m.height < 0 || m.height > MAX_PATCH_SIZE ) {
Error( "ParsePatch: bad size" );
}
MatchToken( "(" );
for ( j = 0; j < m.width ; j++ )
{
MatchToken( "(" );
for ( i = 0; i < m.height ; i++ )
ParseVertMatrix(&verts[ i * m.width + j ]);
MatchToken( ")" );
}
MatchToken( ")" );
// if brush primitives format, we may have some epairs to ignore here
GetToken( qtrue );
if ( g_bBrushPrimit != BPRIMIT_OLDBRUSHES && strcmp( token,"}" ) ) {
ep = ParseEPair();
free( ep->key );
free( ep->value );
free( ep );
}
else{
UnGetToken();
}
MatchToken( "}" );
MatchToken( "}" );
/* short circuit */
if ( noCurveBrushes || onlyLights ) {
return;
}
/* ydnar: delete and warn about degenerate patches */
j = ( m.width * m.height );
VectorClear( delta );
delta[ 3 ] = 0;
degenerate = qtrue;
/* find first valid vector */
for ( i = 1; i < j && delta[ 3 ] == 0; i++ )
{
VectorSubtract( m.verts[ 0 ].xyz, m.verts[ i ].xyz, delta );
delta[ 3 ] = VectorNormalize( delta, delta );
}
/* secondary degenerate test */
if ( delta[ 3 ] == 0 ) {
degenerate = qtrue;
}
else
{
/* if all vectors match this or are zero, then this is a degenerate patch */
for ( i = 1; i < j && degenerate == qtrue; i++ )
{
VectorSubtract( m.verts[ 0 ].xyz, m.verts[ i ].xyz, delta2 );
delta2[ 3 ] = VectorNormalize( delta2, delta2 );
if ( delta2[ 3 ] != 0 ) {
/* create inverse vector */
VectorCopy( delta2, delta3 );
delta3[ 3 ] = delta2[ 3 ];
VectorInverse( delta3 );
/* compare */
if ( VectorCompare( delta, delta2 ) == qfalse && VectorCompare( delta, delta3 ) == qfalse ) {
degenerate = qfalse;
}
}
}
}
/* warn and select degenerate patch */
if ( degenerate ) {
xml_Select( "degenerate patch", mapEnt->mapEntityNum, entitySourceBrushes, qfalse );
free( m.verts );
return;
}
/* find longest curve on the mesh */
longestCurve = 0.0f;
maxIterations = 0;
if (!fixedtess)
{
for ( j = 0; j + 2 < m.width; j += 2 )
{
for ( i = 0; i + 2 < m.height; i += 2 )
{
ExpandLongestCurve( &longestCurve, verts[ i * m.width + j ].xyz, verts[ i * m.width + ( j + 1 ) ].xyz, verts[ i * m.width + ( j + 2 ) ].xyz ); /* row */
ExpandLongestCurve( &longestCurve, verts[ i * m.width + j ].xyz, verts[ ( i + 1 ) * m.width + j ].xyz, verts[ ( i + 2 ) * m.width + j ].xyz ); /* col */
ExpandMaxIterations( &maxIterations, patchSubdivisions, verts[ i * m.width + j ].xyz, verts[ i * m.width + ( j + 1 ) ].xyz, verts[ i * m.width + ( j + 2 ) ].xyz ); /* row */
ExpandMaxIterations( &maxIterations, patchSubdivisions, verts[ i * m.width + j ].xyz, verts[ ( i + 1 ) * m.width + j ].xyz, verts[ ( i + 2 ) * m.width + j ].xyz ); /* col */
}
}
}
/* allocate patch mesh */
pm = safe_malloc( sizeof( *pm ) );
memset( pm, 0, sizeof( *pm ) );
/* ydnar: add entity/brush numbering */
pm->entityNum = mapEnt->mapEntityNum;
pm->brushNum = entitySourceBrushes;
/* set shader */
sprintf( shader, "textures/%s", texture );
pm->shaderInfo = ShaderInfoForShader( shader );
/* set mesh */
pm->mesh = m;
/* set longest curve */
pm->longestCurve = longestCurve;
pm->maxIterations = maxIterations;
/* link to the entity */
pm->next = mapEnt->patches;
mapEnt->patches = pm;
}
/*
GrowGroup_r()
recursively adds patches to a lod group
*/
static void GrowGroup_r( parseMesh_t *pm, int patchNum, int patchCount, parseMesh_t **meshes, byte *bordering, byte *group ){
int i;
const byte *row;
/* early out check */
if ( group[ patchNum ] ) {
return;
}
/* set it */
group[ patchNum ] = 1;
row = bordering + patchNum * patchCount;
/* check maximums */
if ( meshes[ patchNum ]->longestCurve > pm->longestCurve ) {
pm->longestCurve = meshes[ patchNum ]->longestCurve;
}
if ( meshes[ patchNum ]->maxIterations > pm->maxIterations ) {
pm->maxIterations = meshes[ patchNum ]->maxIterations;
}
/* walk other patches */
for ( i = 0; i < patchCount; i++ )
{
if ( row[ i ] ) {
GrowGroup_r( pm, i, patchCount, meshes, bordering, group );
}
}
}
/*
PatchMapDrawSurfs()
any patches that share an edge need to choose their
level of detail as a unit, otherwise the edges would
pull apart.
*/
void PatchMapDrawSurfs( entity_t *e ){
int i, j, k, l, c1, c2;
parseMesh_t *pm;
parseMesh_t *check, *scan;
mapDrawSurface_t *ds;
int patchCount, groupCount;
bspDrawVert_t *v1, *v2;
vec3_t bounds[ 2 ];
byte *bordering;
/* ydnar: mac os x fails with these if not static */
MAC_STATIC parseMesh_t *meshes[ MAX_MAP_DRAW_SURFS ];
MAC_STATIC qb_t grouped[ MAX_MAP_DRAW_SURFS ];
MAC_STATIC byte group[ MAX_MAP_DRAW_SURFS ];
/* note it */
Sys_FPrintf( SYS_VRB, "--- PatchMapDrawSurfs ---\n" );
patchCount = 0;
for ( pm = e->patches ; pm ; pm = pm->next ) {
meshes[patchCount] = pm;
patchCount++;
}
if ( !patchCount ) {
return;
}
bordering = safe_malloc( patchCount * patchCount );
memset( bordering, 0, patchCount * patchCount );
// build the bordering matrix
for ( k = 0 ; k < patchCount ; k++ ) {
bordering[k * patchCount + k] = 1;
for ( l = k + 1 ; l < patchCount ; l++ ) {
check = meshes[k];
scan = meshes[l];
c1 = scan->mesh.width * scan->mesh.height;
v1 = scan->mesh.verts;
for ( i = 0 ; i < c1 ; i++, v1++ ) {
c2 = check->mesh.width * check->mesh.height;
v2 = check->mesh.verts;
for ( j = 0 ; j < c2 ; j++, v2++ ) {
if ( fabs( v1->xyz[0] - v2->xyz[0] ) < 1.0
&& fabs( v1->xyz[1] - v2->xyz[1] ) < 1.0
&& fabs( v1->xyz[2] - v2->xyz[2] ) < 1.0 ) {
break;
}
}
if ( j != c2 ) {
break;
}
}
if ( i != c1 ) {
// we have a connection
bordering[k * patchCount + l] =
bordering[l * patchCount + k] = 1;
}
else {
// no connection
bordering[k * patchCount + l] =
bordering[l * patchCount + k] = 0;
}
}
}
/* build groups */
memset( grouped, 0, patchCount );
groupCount = 0;
for ( i = 0; i < patchCount; i++ )
{
/* get patch */
scan = meshes[ i ];
/* start a new group */
if ( !grouped[ i ] ) {
groupCount++;
}
/* recursively find all patches that belong in the same group */
memset( group, 0, patchCount );
GrowGroup_r( scan, i, patchCount, meshes, bordering, group );
/* bound them */
ClearBounds( bounds[ 0 ], bounds[ 1 ] );
for ( j = 0; j < patchCount; j++ )
{
if ( group[ j ] ) {
grouped[ j ] = qtrue;
check = meshes[ j ];
c1 = check->mesh.width * check->mesh.height;
v1 = check->mesh.verts;
for ( k = 0; k < c1; k++, v1++ )
AddPointToBounds( v1->xyz, bounds[ 0 ], bounds[ 1 ] );
}
}
/* debug code */
//% Sys_Printf( "Longest curve: %f Iterations: %d\n", scan->longestCurve, scan->maxIterations );
/* create drawsurf */
scan->grouped = qtrue;
ds = DrawSurfaceForMesh( e, scan, NULL ); /* ydnar */
VectorCopy( bounds[ 0 ], ds->bounds[ 0 ] );
VectorCopy( bounds[ 1 ], ds->bounds[ 1 ] );
}
/* emit some statistics */
Sys_FPrintf( SYS_VRB, "%9d patches\n", patchCount );
Sys_FPrintf( SYS_VRB, "%9d patch LOD groups\n", groupCount );
}