vmap/plugins/entity/curve.h
2020-11-17 12:16:16 +01:00

452 lines
14 KiB
C++

/*
Copyright (C) 2001-2006, William Joseph.
All Rights Reserved.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#if !defined( INCLUDED_CURVE_H )
#define INCLUDED_CURVE_H
#include "ientity.h"
#include "selectable.h"
#include "renderable.h"
#include <set>
#include "math/curve.h"
#include "stream/stringstream.h"
#include "signal/signal.h"
#include "selectionlib.h"
#include "render.h"
#include "stringio.h"
class RenderableCurve : public OpenGLRenderable {
public:
std::vector<PointVertex> m_vertices;
void render(RenderStateFlags state) const
{
pointvertex_gl_array(&m_vertices.front());
glDrawArrays(GL_LINE_STRIP, 0, GLsizei(m_vertices.size()));
}
};
inline void plotBasisFunction(std::size_t numSegments, int point, int degree)
{
Knots knots;
KnotVector_openUniform(knots, 4, degree);
globalOutputStream() << "plotBasisFunction point " << point << " of 4, knot vector:";
for (Knots::iterator i = knots.begin(); i != knots.end(); ++i) {
globalOutputStream() << " " << *i;
}
globalOutputStream() << "\n";
globalOutputStream() << "t=0 basis=" << BSpline_basis(knots, point, degree, 0.0) << "\n";
for (std::size_t i = 1; i < numSegments; ++i) {
double t = (1.0 / double(numSegments)) * double(i);
globalOutputStream() << "t=" << t << " basis=" << BSpline_basis(knots, point, degree, t) << "\n";
}
globalOutputStream() << "t=1 basis=" << BSpline_basis(knots, point, degree, 1.0) << "\n";
}
inline bool ControlPoints_parse(ControlPoints &controlPoints, const char *value)
{
StringTokeniser tokeniser(value, " ");
std::size_t size;
if (!string_parse_size(tokeniser.getToken(), size)) {
return false;
}
if (size < 3) {
return false;
}
controlPoints.resize(size);
if (!string_equal(tokeniser.getToken(), "(")) {
return false;
}
for (ControlPoints::iterator i = controlPoints.begin(); i != controlPoints.end(); ++i) {
if (!string_parse_float(tokeniser.getToken(), (*i).x())
|| !string_parse_float(tokeniser.getToken(), (*i).y())
|| !string_parse_float(tokeniser.getToken(), (*i).z())) {
return false;
}
}
if (!string_equal(tokeniser.getToken(), ")")) {
return false;
}
return true;
}
inline void ControlPoints_write(const ControlPoints &controlPoints, StringOutputStream &value)
{
value << Unsigned(controlPoints.size()) << " (";
for (ControlPoints::const_iterator i = controlPoints.begin(); i != controlPoints.end(); ++i) {
value << " " << (*i).x() << " " << (*i).y() << " " << (*i).z() << " ";
}
value << ")";
}
inline void
ControlPoint_testSelect(const Vector3 &point, ObservedSelectable &selectable, Selector &selector, SelectionTest &test)
{
SelectionIntersection best;
test.TestPoint(point, best);
if (best.valid()) {
Selector_add(selector, selectable, best);
}
}
class CurveEditType {
public:
Shader *m_controlsShader;
Shader *m_selectedShader;
};
inline void ControlPoints_write(ControlPoints &controlPoints, const char *key, Entity &entity)
{
StringOutputStream value(256);
if (!controlPoints.empty()) {
ControlPoints_write(controlPoints, value);
}
entity.setKeyValue(key, value.c_str());
}
class CurveEdit {
SelectionChangeCallback m_selectionChanged;
ControlPoints &m_controlPoints;
typedef Array<ObservedSelectable> Selectables;
Selectables m_selectables;
RenderablePointVector m_controlsRender;
mutable RenderablePointVector m_selectedRender;
public:
typedef Static<CurveEditType> Type;
CurveEdit(ControlPoints &controlPoints, const SelectionChangeCallback &selectionChanged) :
m_selectionChanged(selectionChanged),
m_controlPoints(controlPoints),
m_controlsRender(GL_POINTS),
m_selectedRender(GL_POINTS)
{
}
template<typename Functor>
const Functor &forEachSelected(const Functor &functor)
{
ASSERT_MESSAGE(m_controlPoints.size() == m_selectables.size(), "curve instance mismatch");
ControlPoints::iterator p = m_controlPoints.begin();
for (Selectables::iterator i = m_selectables.begin(); i != m_selectables.end(); ++i, ++p) {
if ((*i).isSelected()) {
functor(*p);
}
}
return functor;
}
template<typename Functor>
const Functor &forEachSelected(const Functor &functor) const
{
ASSERT_MESSAGE(m_controlPoints.size() == m_selectables.size(), "curve instance mismatch");
ControlPoints::const_iterator p = m_controlPoints.begin();
for (Selectables::const_iterator i = m_selectables.begin(); i != m_selectables.end(); ++i, ++p) {
if ((*i).isSelected()) {
functor(*p);
}
}
return functor;
}
template<typename Functor>
const Functor &forEach(const Functor &functor) const
{
for (ControlPoints::const_iterator i = m_controlPoints.begin(); i != m_controlPoints.end(); ++i) {
functor(*i);
}
return functor;
}
void testSelect(Selector &selector, SelectionTest &test)
{
ASSERT_MESSAGE(m_controlPoints.size() == m_selectables.size(), "curve instance mismatch");
ControlPoints::const_iterator p = m_controlPoints.begin();
for (Selectables::iterator i = m_selectables.begin(); i != m_selectables.end(); ++i, ++p) {
ControlPoint_testSelect(*p, *i, selector, test);
}
}
bool isSelected() const
{
for (Selectables::const_iterator i = m_selectables.begin(); i != m_selectables.end(); ++i) {
if ((*i).isSelected()) {
return true;
}
}
return false;
}
void setSelected(bool selected)
{
for (Selectables::iterator i = m_selectables.begin(); i != m_selectables.end(); ++i) {
(*i).setSelected(selected);
}
}
void write(const char *key, Entity &entity)
{
ControlPoints_write(m_controlPoints, key, entity);
}
void transform(const Matrix4 &matrix)
{
forEachSelected([&](Vector3 &point) {
matrix4_transform_point(matrix, point);
});
}
void snapto(float snap)
{
forEachSelected([&](Vector3 &point) {
vector3_snap(point, snap);
});
}
void updateSelected() const
{
m_selectedRender.clear();
forEachSelected([&](const Vector3 &point) {
m_selectedRender.push_back(PointVertex(vertex3f_for_vector3(point), colour_selected));
});
}
void renderComponents(Renderer &renderer, const VolumeTest &volume, const Matrix4 &localToWorld) const
{
renderer.SetState(Type::instance().m_controlsShader, Renderer::eWireframeOnly);
renderer.SetState(Type::instance().m_controlsShader, Renderer::eFullMaterials);
renderer.addRenderable(m_controlsRender, localToWorld);
}
void renderComponentsSelected(Renderer &renderer, const VolumeTest &volume, const Matrix4 &localToWorld) const
{
updateSelected();
if (!m_selectedRender.empty()) {
renderer.Highlight(Renderer::ePrimitive, false);
renderer.SetState(Type::instance().m_selectedShader, Renderer::eWireframeOnly);
renderer.SetState(Type::instance().m_selectedShader, Renderer::eFullMaterials);
renderer.addRenderable(m_selectedRender, localToWorld);
}
}
void curveChanged()
{
m_selectables.resize(m_controlPoints.size(), m_selectionChanged);
m_controlsRender.clear();
m_controlsRender.reserve(m_controlPoints.size());
forEach([&](const Vector3 &point) {
m_controlsRender.push_back(PointVertex(vertex3f_for_vector3(point), colour_vertex));
});
m_selectedRender.reserve(m_controlPoints.size());
}
typedef MemberCaller<CurveEdit, void(), &CurveEdit::curveChanged> CurveChangedCaller;
};
const int NURBS_degree = 3;
class NURBSCurve {
Signal0 m_curveChanged;
Callback<void()> m_boundsChanged;
public:
ControlPoints m_controlPoints;
ControlPoints m_controlPointsTransformed;
NURBSWeights m_weights;
Knots m_knots;
RenderableCurve m_renderCurve;
AABB m_bounds;
NURBSCurve(const Callback<void()> &boundsChanged) : m_boundsChanged(boundsChanged)
{
}
SignalHandlerId connect(const SignalHandler &curveChanged)
{
curveChanged();
return m_curveChanged.connectLast(curveChanged);
}
void disconnect(SignalHandlerId id)
{
m_curveChanged.disconnect(id);
}
void notify()
{
m_curveChanged();
}
void tesselate()
{
if (!m_controlPointsTransformed.empty()) {
const std::size_t numSegments = (m_controlPointsTransformed.size() - 1) * 16;
m_renderCurve.m_vertices.resize(numSegments + 1);
m_renderCurve.m_vertices[0].vertex = vertex3f_for_vector3(m_controlPointsTransformed[0]);
for (std::size_t i = 1; i < numSegments; ++i) {
m_renderCurve.m_vertices[i].vertex = vertex3f_for_vector3(
NURBS_evaluate(m_controlPointsTransformed, m_weights, m_knots, NURBS_degree,
(1.0 / double(numSegments)) * double(i)));
}
m_renderCurve.m_vertices[numSegments].vertex = vertex3f_for_vector3(
m_controlPointsTransformed[m_controlPointsTransformed.size() - 1]);
} else {
m_renderCurve.m_vertices.clear();
}
}
void curveChanged()
{
tesselate();
m_bounds = AABB();
for (ControlPoints::iterator i = m_controlPointsTransformed.begin();
i != m_controlPointsTransformed.end(); ++i) {
aabb_extend_by_point_safe(m_bounds, (*i));
}
m_boundsChanged();
notify();
}
bool parseCurve(const char *value)
{
if (!ControlPoints_parse(m_controlPoints, value)) {
return false;
}
m_weights.resize(m_controlPoints.size());
for (NURBSWeights::iterator i = m_weights.begin(); i != m_weights.end(); ++i) {
(*i) = 1;
}
KnotVector_openUniform(m_knots, m_controlPoints.size(), NURBS_degree);
//plotBasisFunction(8, 0, NURBS_degree);
return true;
}
void curveChanged(const char *value)
{
if (string_empty(value) || !parseCurve(value)) {
m_controlPoints.resize(0);
m_knots.resize(0);
m_weights.resize(0);
}
m_controlPointsTransformed = m_controlPoints;
curveChanged();
}
typedef MemberCaller<NURBSCurve, void(const char *), &NURBSCurve::curveChanged> CurveChangedCaller;
};
class CatmullRomSpline {
Signal0 m_curveChanged;
Callback<void()> m_boundsChanged;
public:
ControlPoints m_controlPoints;
ControlPoints m_controlPointsTransformed;
RenderableCurve m_renderCurve;
AABB m_bounds;
CatmullRomSpline(const Callback<void()> &boundsChanged) : m_boundsChanged(boundsChanged)
{
}
SignalHandlerId connect(const SignalHandler &curveChanged)
{
curveChanged();
return m_curveChanged.connectLast(curveChanged);
}
void disconnect(SignalHandlerId id)
{
m_curveChanged.disconnect(id);
}
void notify()
{
m_curveChanged();
}
void tesselate()
{
if (!m_controlPointsTransformed.empty()) {
const std::size_t numSegments = (m_controlPointsTransformed.size() - 1) * 16;
m_renderCurve.m_vertices.resize(numSegments + 1);
m_renderCurve.m_vertices[0].vertex = vertex3f_for_vector3(m_controlPointsTransformed[0]);
for (std::size_t i = 1; i < numSegments; ++i) {
m_renderCurve.m_vertices[i].vertex = vertex3f_for_vector3(
CatmullRom_evaluate(m_controlPointsTransformed, (1.0 / double(numSegments)) * double(i)));
}
m_renderCurve.m_vertices[numSegments].vertex = vertex3f_for_vector3(
m_controlPointsTransformed[m_controlPointsTransformed.size() - 1]);
} else {
m_renderCurve.m_vertices.clear();
}
}
bool parseCurve(const char *value)
{
return ControlPoints_parse(m_controlPoints, value);
}
void curveChanged()
{
tesselate();
m_bounds = AABB();
for (ControlPoints::iterator i = m_controlPointsTransformed.begin();
i != m_controlPointsTransformed.end(); ++i) {
aabb_extend_by_point_safe(m_bounds, (*i));
}
m_boundsChanged();
notify();
}
void curveChanged(const char *value)
{
if (string_empty(value) || !parseCurve(value)) {
m_controlPoints.resize(0);
}
m_controlPointsTransformed = m_controlPoints;
curveChanged();
}
typedef MemberCaller<CatmullRomSpline, void(const char *), &CatmullRomSpline::curveChanged> CurveChangedCaller;
};
const char *const curve_Nurbs = "curve_Nurbs";
const char *const curve_CatmullRomSpline = "curve_CatmullRomSpline";
#endif