vmap/libs/container/stack.h
2020-11-17 12:16:16 +01:00

211 lines
5.3 KiB
C++

/*
Copyright (C) 2001-2006, William Joseph.
All Rights Reserved.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#if !defined( INCLUDED_CONTAINER_STACK_H )
#define INCLUDED_CONTAINER_STACK_H
#include "memory/allocator.h"
#include <algorithm>
/// \brief A stack whose storage capacity is variable at run-time. Similar to std::vector.
///
/// - Pushing or popping elements is a constant-time operation (on average).
/// - The storage capacity of the stack will grow when a new element is added beyond the current capacity. Iterators are invalidated when the storage capacity grows.
/// - DefaultConstructible, Copyable, Assignable.
/// - Compatible with the containers and algorithms in the Standard Template Library (STL) - http://www.sgi.com/tech/stl/
///
/// \param Type: The type to be stored in the stack. Must provide a copy-constructor.
template<typename Type>
class Stack : public DefaultAllocator<Type>
{
typedef DefaultAllocator<Type> Allocator;
enum
{
DEFAULT_CAPACITY = 4,
};
typedef Type* pointer;
typedef const Type* const_pointer;
public:
typedef const_pointer const_iterator;
private:
pointer m_data;
pointer m_end;
std::size_t m_capacity;
void insert( const Type& value ){
Allocator::construct( m_end++, value );
}
void insert_overflow( const Type& value ){
const std::size_t new_capacity = ( m_capacity ) ? m_capacity + m_capacity : std::size_t( DEFAULT_CAPACITY );
const pointer new_data = Allocator::allocate( new_capacity );
const pointer new_end = std::copy( m_data, m_end, new_data );
destroy();
Allocator::deallocate( m_data, m_capacity );
m_capacity = new_capacity;
m_data = new_data;
m_end = new_end;
insert( value );
}
void destroy(){
for ( pointer p = m_data; p != m_end; ++p )
{
Allocator::destroy( p );
}
}
void construct( const Stack& other ){
pointer p = m_data;
for ( const_iterator i = other.begin(); i != other.end(); ++i )
{
Allocator::construct( p++, *i );
}
}
public:
Stack() :
m_data( 0 ),
m_end( 0 ),
m_capacity( 0 ){
}
Stack( const Type& value ) :
m_data( 0 ),
m_end( 0 ),
m_capacity( 0 ){
push( value );
}
Stack( const Stack& other ) :
DefaultAllocator<Type>( other ){
m_capacity = other.m_capacity;
m_data = Allocator::allocate( m_capacity );
construct( other );
m_end = m_data + other.size();
}
~Stack(){
destroy();
Allocator::deallocate( m_data, m_capacity );
}
const_iterator begin() const {
return m_data;
}
const_iterator end() const {
return m_end;
}
bool empty() const {
return end() == begin();
}
void clear(){
destroy();
m_end = m_data;
}
std::size_t size() const {
return m_end - m_data;
}
Type operator[]( const std::size_t i ) const {
return m_data[i];
}
/// \brief Pushes \p value onto the stack at the top element. If reserved storage is insufficient for the new element, this will invalidate all iterators.
void push( const Type& value ){
if ( size() == m_capacity ) {
insert_overflow( value );
}
else
{
insert( value );
}
}
/// \brief Removes the top element of the stack.
void pop(){
Allocator::destroy( --m_end );
}
/// \brief Returns the top element of the mutable stack.
Type& top(){
return *( m_end - 1 );
}
/// \brief Returns the top element of the non-mutable stack.
const Type& top() const {
return *( m_end - 1 );
}
/// \brief Returns the element below the top element of the mutable stack.
Type& parent(){
return *( m_end - 2 );
}
/// \brief Returns the element below the top element of the non-mutable stack.
const Type& parent() const {
return *( m_end - 2 );
}
/// \brief Swaps the values of this stack and \p other.
void swap( Stack& other ){
std::swap( m_data, other.m_data );
std::swap( m_end, other.m_end );
std::swap( m_capacity, other.m_capacity );
}
#if 1 // use copy-swap technique
Stack& operator=( const Stack& other ){
Stack temp( other );
temp.swap( *this );
return *this;
}
#else // avoids memory allocation if capacity is already sufficient.
Stack& operator=( const Stack& other ){
if ( &other != this ) {
destroy();
if ( other.size() > m_capacity ) {
Allocator::deallocate( m_data, m_capacity );
m_capacity = other.m_capacity;
m_data = Allocator::allocate( m_capacity );
}
m_end = m_data + other.size();
construct( other );
}
return *this;
}
#endif
};
/// \brief Returns true if \p self is lexicographically less than \p other.
template<typename Type>
inline bool operator<( const Stack<Type>& self, const Stack<Type>& other ){
return std::lexicographical_compare( self.begin(), self.end(), other.begin(), other.end() );
}
namespace std
{
/// \brief Swaps the values of \p self and \p other.
/// Overloads std::swap().
template<typename Type>
inline void swap( Stack<Type>& self, Stack<Type>& other ){
self.swap( other );
}
}
#endif