vmap/libs/render.h
2020-11-17 12:16:16 +01:00

1209 lines
33 KiB
C++

/*
Copyright (C) 2001-2006, William Joseph.
All Rights Reserved.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#if !defined( INCLUDED_RENDER_H )
#define INCLUDED_RENDER_H
/// \file
/// \brief High-level constructs for efficient OpenGL rendering.
#include "irender.h"
#include "igl.h"
#include "container/array.h"
#include "math/vector.h"
#include "math/pi.h"
#include <vector>
typedef unsigned int RenderIndex;
const GLenum RenderIndexTypeID = GL_UNSIGNED_INT;
/// \brief A resizable buffer of indices.
class IndexBuffer
{
typedef std::vector<RenderIndex> Indices;
Indices m_data;
public:
typedef Indices::iterator iterator;
typedef Indices::const_iterator const_iterator;
iterator begin(){
return m_data.begin();
}
const_iterator begin() const {
return m_data.begin();
}
iterator end(){
return m_data.end();
}
const_iterator end() const {
return m_data.end();
}
bool empty() const {
return m_data.empty();
}
std::size_t size() const {
return m_data.size();
}
const RenderIndex* data() const {
return &( *m_data.begin() );
}
RenderIndex& operator[]( std::size_t index ){
return m_data[index];
}
const RenderIndex& operator[]( std::size_t index ) const {
return m_data[index];
}
void clear(){
m_data.clear();
}
void reserve( std::size_t max_indices ){
m_data.reserve( max_indices );
}
void insert( RenderIndex index ){
m_data.push_back( index );
}
void swap( IndexBuffer& other ){
std::swap( m_data, m_data );
}
};
namespace std
{
/// \brief Swaps the values of \p self and \p other.
/// Overloads std::swap.
inline void swap( IndexBuffer& self, IndexBuffer& other ){
self.swap( other );
}
}
/// \brief A resizable buffer of vertices.
/// \param Vertex The vertex data type.
template<typename Vertex>
class VertexBuffer
{
typedef typename std::vector<Vertex> Vertices;
Vertices m_data;
public:
typedef typename Vertices::iterator iterator;
typedef typename Vertices::const_iterator const_iterator;
iterator begin(){
return m_data.begin();
}
iterator end(){
return m_data.end();
}
const_iterator begin() const {
return m_data.begin();
}
const_iterator end() const {
return m_data.end();
}
bool empty() const {
return m_data.empty();
}
RenderIndex size() const {
return RenderIndex( m_data.size() );
}
const Vertex* data() const {
return &( *m_data.begin() );
}
Vertex& operator[]( std::size_t index ){
return m_data[index];
}
const Vertex& operator[]( std::size_t index ) const {
return m_data[index];
}
void clear(){
m_data.clear();
}
void reserve( std::size_t max_vertices ){
m_data.reserve( max_vertices );
}
void push_back( const Vertex& vertex ){
m_data.push_back( vertex );
}
};
/// \brief A wrapper around a VertexBuffer which inserts only vertices which have not already been inserted.
/// \param Vertex The vertex data type. Must support operator<, operator== and operator!=.
/// For best performance, quantise vertices before inserting them.
template<typename Vertex>
class UniqueVertexBuffer
{
typedef VertexBuffer<Vertex> Vertices;
Vertices& m_data;
struct bnode
{
bnode()
: m_left( 0 ), m_right( 0 ){
}
RenderIndex m_left;
RenderIndex m_right;
};
std::vector<bnode> m_btree;
RenderIndex m_prev0;
RenderIndex m_prev1;
RenderIndex m_prev2;
RenderIndex find_or_insert( const Vertex& vertex ){
RenderIndex index = 0;
while ( 1 )
{
if ( vertex < m_data[index] ) {
bnode& node = m_btree[index];
if ( node.m_left != 0 ) {
index = node.m_left;
continue;
}
else
{
node.m_left = RenderIndex( m_btree.size() );
m_btree.push_back( bnode() );
m_data.push_back( vertex );
return RenderIndex( m_btree.size() - 1 );
}
}
if ( m_data[index] < vertex ) {
bnode& node = m_btree[index];
if ( node.m_right != 0 ) {
index = node.m_right;
continue;
}
else
{
node.m_right = RenderIndex( m_btree.size() );
m_btree.push_back( bnode() );
m_data.push_back( vertex );
return RenderIndex( m_btree.size() - 1 );
}
}
return index;
}
}
public:
UniqueVertexBuffer( Vertices& data )
: m_data( data ), m_prev0( 0 ), m_prev1( 0 ), m_prev2( 0 ){
}
typedef typename Vertices::const_iterator iterator;
iterator begin() const {
return m_data.begin();
}
iterator end() const {
return m_data.end();
}
std::size_t size() const {
return m_data.size();
}
const Vertex* data() const {
return &( *m_data.begin() );
}
Vertex& operator[]( std::size_t index ){
return m_data[index];
}
const Vertex& operator[]( std::size_t index ) const {
return m_data[index];
}
void clear(){
m_prev0 = 0;
m_prev1 = 0;
m_prev2 = 0;
m_data.clear();
m_btree.clear();
}
void reserve( std::size_t max_vertices ){
m_data.reserve( max_vertices );
m_btree.reserve( max_vertices );
}
/// \brief Returns the index of the element equal to \p vertex.
RenderIndex insert( const Vertex& vertex ){
if ( m_data.empty() ) {
m_data.push_back( vertex );
m_btree.push_back( bnode() );
return 0;
}
if ( m_data[m_prev0] == vertex ) {
return m_prev0;
}
if ( m_prev1 != m_prev0 && m_data[m_prev1] == vertex ) {
return m_prev1;
}
if ( m_prev2 != m_prev0 && m_prev2 != m_prev1 && m_data[m_prev2] == vertex ) {
return m_prev2;
}
m_prev2 = m_prev1;
m_prev1 = m_prev0;
m_prev0 = find_or_insert( vertex );
return m_prev0;
}
};
/// \brief A 4-byte colour.
struct Colour4b
{
unsigned char r, g, b, a;
Colour4b(){
}
Colour4b( unsigned char _r, unsigned char _g, unsigned char _b, unsigned char _a )
: r( _r ), g( _g ), b( _b ), a( _a ){
}
};
const Colour4b colour_vertex( 0, 255, 0, 255 );
const Colour4b colour_selected( 0, 0, 255, 255 );
inline bool operator<( const Colour4b& self, const Colour4b& other ){
if ( self.r != other.r ) {
return self.r < other.r;
}
if ( self.g != other.g ) {
return self.g < other.g;
}
if ( self.b != other.b ) {
return self.b < other.b;
}
if ( self.a != other.a ) {
return self.a < other.a;
}
return false;
}
inline bool operator==( const Colour4b& self, const Colour4b& other ){
return self.r == other.r && self.g == other.g && self.b == other.b && self.a == other.a;
}
inline bool operator!=( const Colour4b& self, const Colour4b& other ){
return !operator==( self, other );
}
/// \brief A 3-float vertex.
struct Vertex3f : public Vector3
{
Vertex3f(){
}
Vertex3f( float _x, float _y, float _z )
: Vector3( _x, _y, _z ){
}
};
inline bool operator<( const Vertex3f& self, const Vertex3f& other ){
if ( self.x() != other.x() ) {
return self.x() < other.x();
}
if ( self.y() != other.y() ) {
return self.y() < other.y();
}
if ( self.z() != other.z() ) {
return self.z() < other.z();
}
return false;
}
inline bool operator==( const Vertex3f& self, const Vertex3f& other ){
return self.x() == other.x() && self.y() == other.y() && self.z() == other.z();
}
inline bool operator!=( const Vertex3f& self, const Vertex3f& other ){
return !operator==( self, other );
}
inline Vertex3f vertex3f_from_array( const float* array ){
return Vertex3f( array[0], array[1], array[2] );
}
inline float* vertex3f_to_array( Vertex3f& vertex ){
return reinterpret_cast<float*>( &vertex );
}
inline const float* vertex3f_to_array( const Vertex3f& vertex ){
return reinterpret_cast<const float*>( &vertex );
}
const Vertex3f vertex3f_identity( 0, 0, 0 );
inline Vertex3f vertex3f_for_vector3( const Vector3& vector3 ){
return Vertex3f( vector3.x(), vector3.y(), vector3.z() );
}
inline const Vector3& vertex3f_to_vector3( const Vertex3f& vertex ){
return vertex;
}
inline Vector3& vertex3f_to_vector3( Vertex3f& vertex ){
return vertex;
}
/// \brief A 3-float normal.
struct Normal3f : public Vector3
{
Normal3f(){
}
Normal3f( float _x, float _y, float _z )
: Vector3( _x, _y, _z ){
}
};
inline bool operator<( const Normal3f& self, const Normal3f& other ){
if ( self.x() != other.x() ) {
return self.x() < other.x();
}
if ( self.y() != other.y() ) {
return self.y() < other.y();
}
if ( self.z() != other.z() ) {
return self.z() < other.z();
}
return false;
}
inline bool operator==( const Normal3f& self, const Normal3f& other ){
return self.x() == other.x() && self.y() == other.y() && self.z() == other.z();
}
inline bool operator!=( const Normal3f& self, const Normal3f& other ){
return !operator==( self, other );
}
inline Normal3f normal3f_from_array( const float* array ){
return Normal3f( array[0], array[1], array[2] );
}
inline float* normal3f_to_array( Normal3f& normal ){
return reinterpret_cast<float*>( &normal );
}
inline const float* normal3f_to_array( const Normal3f& normal ){
return reinterpret_cast<const float*>( &normal );
}
inline Normal3f normal3f_for_vector3( const Vector3& vector3 ){
return Normal3f( vector3.x(), vector3.y(), vector3.z() );
}
inline const Vector3& normal3f_to_vector3( const Normal3f& normal ){
return normal;
}
inline Vector3& normal3f_to_vector3( Normal3f& normal ){
return normal;
}
/// \brief A 2-float texture-coordinate set.
struct TexCoord2f : public Vector2
{
TexCoord2f(){
}
TexCoord2f( float _s, float _t )
: Vector2( _s, _t ){
}
float& s(){
return x();
}
const float& s() const {
return x();
}
float& t(){
return y();
}
const float& t() const {
return y();
}
};
inline bool operator<( const TexCoord2f& self, const TexCoord2f& other ){
if ( self.s() != other.s() ) {
return self.s() < other.s();
}
if ( self.t() != other.t() ) {
return self.t() < other.t();
}
return false;
}
inline bool operator==( const TexCoord2f& self, const TexCoord2f& other ){
return self.s() == other.s() && self.t() == other.t();
}
inline bool operator!=( const TexCoord2f& self, const TexCoord2f& other ){
return !operator==( self, other );
}
inline float* texcoord2f_to_array( TexCoord2f& texcoord ){
return reinterpret_cast<float*>( &texcoord );
}
inline const float* texcoord2f_to_array( const TexCoord2f& texcoord ){
return reinterpret_cast<const float*>( &texcoord );
}
inline const TexCoord2f& texcoord2f_from_array( const float* array ){
return *reinterpret_cast<const TexCoord2f*>( array );
}
inline TexCoord2f texcoord2f_for_vector2( const Vector2& vector2 ){
return TexCoord2f( vector2.x(), vector2.y() );
}
inline Vector4 colour4f_for_vector4( const Vector4& vector4 ){
return vector4;
}
inline const Vector2& texcoord2f_to_vector2( const TexCoord2f& vertex ){
return vertex;
}
inline Vector2& texcoord2f_to_vector2( TexCoord2f& vertex ){
return vertex;
}
inline Vector4& colour4f_to_vector4( Vector4& vertex ){
return vertex;
}
/// \brief Returns \p normal rescaled to be unit-length.
inline Normal3f normal3f_normalised( const Normal3f& normal ){
return normal3f_for_vector3( vector3_normalised( normal3f_to_vector3( normal ) ) );
}
enum UnitSphereOctant
{
UNITSPHEREOCTANT_000 = 0 << 0 | 0 << 1 | 0 << 2,
UNITSPHEREOCTANT_001 = 0 << 0 | 0 << 1 | 1 << 2,
UNITSPHEREOCTANT_010 = 0 << 0 | 1 << 1 | 0 << 2,
UNITSPHEREOCTANT_011 = 0 << 0 | 1 << 1 | 1 << 2,
UNITSPHEREOCTANT_100 = 1 << 0 | 0 << 1 | 0 << 2,
UNITSPHEREOCTANT_101 = 1 << 0 | 0 << 1 | 1 << 2,
UNITSPHEREOCTANT_110 = 1 << 0 | 1 << 1 | 0 << 2,
UNITSPHEREOCTANT_111 = 1 << 0 | 1 << 1 | 1 << 2,
};
/// \brief Returns the octant for \p normal indicating the sign of the region of unit-sphere space it lies within.
inline UnitSphereOctant normal3f_classify_octant( const Normal3f& normal ){
return static_cast<UnitSphereOctant>(
( ( normal.x() > 0 ) << 0 ) | ( ( normal.y() > 0 ) << 1 ) | ( ( normal.z() > 0 ) << 2 )
);
}
/// \brief Returns \p normal with its components signs made positive based on \p octant.
inline Normal3f normal3f_fold_octant( const Normal3f& normal, UnitSphereOctant octant ){
switch ( octant )
{
case UNITSPHEREOCTANT_000:
return Normal3f( -normal.x(), -normal.y(), -normal.z() );
case UNITSPHEREOCTANT_001:
return Normal3f( normal.x(), -normal.y(), -normal.z() );
case UNITSPHEREOCTANT_010:
return Normal3f( -normal.x(), normal.y(), -normal.z() );
case UNITSPHEREOCTANT_011:
return Normal3f( normal.x(), normal.y(), -normal.z() );
case UNITSPHEREOCTANT_100:
return Normal3f( -normal.x(), -normal.y(), normal.z() );
case UNITSPHEREOCTANT_101:
return Normal3f( normal.x(), -normal.y(), normal.z() );
case UNITSPHEREOCTANT_110:
return Normal3f( -normal.x(), normal.y(), normal.z() );
case UNITSPHEREOCTANT_111:
return Normal3f( normal.x(), normal.y(), normal.z() );
}
return Normal3f();
}
/// \brief Reverses the effect of normal3f_fold_octant() on \p normal with \p octant.
/// \p normal must have been obtained with normal3f_fold_octant().
/// \p octant must have been obtained with normal3f_classify_octant().
inline Normal3f normal3f_unfold_octant( const Normal3f& normal, UnitSphereOctant octant ){
return normal3f_fold_octant( normal, octant );
}
enum UnitSphereSextant
{
UNITSPHERESEXTANT_XYZ = 0,
UNITSPHERESEXTANT_XZY = 1,
UNITSPHERESEXTANT_YXZ = 2,
UNITSPHERESEXTANT_YZX = 3,
UNITSPHERESEXTANT_ZXY = 4,
UNITSPHERESEXTANT_ZYX = 5,
};
/// \brief Returns the sextant for \p normal indicating how to sort its components so that x > y > z.
/// All components of \p normal must be positive.
/// \p normal must be normalised.
inline UnitSphereSextant normal3f_classify_sextant( const Normal3f& normal ){
return
normal.x() >= normal.y()
? normal.x() >= normal.z()
? normal.y() >= normal.z()
? UNITSPHERESEXTANT_XYZ
: UNITSPHERESEXTANT_XZY
: UNITSPHERESEXTANT_ZXY
: normal.y() >= normal.z()
? normal.x() >= normal.z()
? UNITSPHERESEXTANT_YXZ
: UNITSPHERESEXTANT_YZX
: UNITSPHERESEXTANT_ZYX;
}
/// \brief Returns \p normal with its components sorted so that x > y > z based on \p sextant.
/// All components of \p normal must be positive.
/// \p normal must be normalised.
inline Normal3f normal3f_fold_sextant( const Normal3f& normal, UnitSphereSextant sextant ){
switch ( sextant )
{
case UNITSPHERESEXTANT_XYZ:
return Normal3f( normal.x(), normal.y(), normal.z() );
case UNITSPHERESEXTANT_XZY:
return Normal3f( normal.x(), normal.z(), normal.y() );
case UNITSPHERESEXTANT_YXZ:
return Normal3f( normal.y(), normal.x(), normal.z() );
case UNITSPHERESEXTANT_YZX:
return Normal3f( normal.y(), normal.z(), normal.x() );
case UNITSPHERESEXTANT_ZXY:
return Normal3f( normal.z(), normal.x(), normal.y() );
case UNITSPHERESEXTANT_ZYX:
return Normal3f( normal.z(), normal.y(), normal.x() );
}
return Normal3f();
}
/// \brief Reverses the effect of normal3f_fold_sextant() on \p normal with \p sextant.
/// \p normal must have been obtained with normal3f_fold_sextant().
/// \p sextant must have been obtained with normal3f_classify_sextant().
inline Normal3f normal3f_unfold_sextant( const Normal3f& normal, UnitSphereSextant sextant ){
return normal3f_fold_sextant( normal, sextant );
}
const std::size_t c_quantise_normal = 1 << 6;
/// \brief All the components of \p folded must be positive and sorted so that x > y > z.
inline Normal3f normal3f_folded_quantised( const Normal3f& folded ){
// compress
double scale = static_cast<float>( c_quantise_normal ) / ( folded.x() + folded.y() + folded.z() );
unsigned int zbits = static_cast<unsigned int>( folded.z() * scale );
unsigned int ybits = static_cast<unsigned int>( folded.y() * scale );
// decompress
return normal3f_normalised( Normal3f(
static_cast<float>( c_quantise_normal - zbits - ybits ),
static_cast<float>( ybits ),
static_cast<float>( zbits )
) );
}
/// \brief Returns \p normal quantised by compressing and then decompressing its representation.
inline Normal3f normal3f_quantised_custom( const Normal3f& normal ){
UnitSphereOctant octant = normal3f_classify_octant( normal );
Normal3f folded = normal3f_fold_octant( normal, octant );
UnitSphereSextant sextant = normal3f_classify_sextant( folded );
folded = normal3f_fold_sextant( folded, sextant );
return normal3f_unfold_octant( normal3f_unfold_sextant( normal3f_folded_quantised( folded ), sextant ), octant );
}
struct spherical_t
{
double longditude, latitude;
spherical_t( double _longditude, double _latitude )
: longditude( _longditude ), latitude( _latitude ){
}
};
/*
{
theta = 2pi * U;
phi = acos((2 * V) - 1);
U = theta / 2pi;
V = (cos(phi) + 1) / 2;
}
longitude = atan(y / x);
latitude = acos(z);
*/
struct uniformspherical_t
{
double U, V;
uniformspherical_t( double U_, double V_ )
: U( U_ ), V( V_ ){
}
};
inline spherical_t spherical_from_normal3f( const Normal3f& normal ){
return spherical_t( normal.x() == 0 ? c_pi / 2 : normal.x() > 0 ? atan( normal.y() / normal.x() ) : atan( normal.y() / normal.x() ) + c_pi, acos( normal.z() ) );
}
inline Normal3f normal3f_from_spherical( const spherical_t& spherical ){
return Normal3f(
static_cast<float>( cos( spherical.longditude ) * sin( spherical.latitude ) ),
static_cast<float>( sin( spherical.longditude ) * sin( spherical.latitude ) ),
static_cast<float>( cos( spherical.latitude ) )
);
}
inline uniformspherical_t uniformspherical_from_spherical( const spherical_t& spherical ){
return uniformspherical_t( spherical.longditude * c_inv_2pi, ( cos( spherical.latitude ) + 1 ) * 0.5 );
}
inline spherical_t spherical_from_uniformspherical( const uniformspherical_t& uniformspherical ){
return spherical_t( c_2pi * uniformspherical.U, acos( ( 2 * uniformspherical.V ) - 1 ) );
}
inline uniformspherical_t uniformspherical_from_normal3f( const Normal3f& normal ){
return uniformspherical_from_spherical( spherical_from_normal3f( normal ) );
//return uniformspherical_t(atan2(normal.y / normal.x) * c_inv_2pi, (normal.z + 1) * 0.5);
}
inline Normal3f normal3f_from_uniformspherical( const uniformspherical_t& uniformspherical ){
return normal3f_from_spherical( spherical_from_uniformspherical( uniformspherical ) );
}
/// \brief Returns a single-precision \p component quantised to \p precision.
inline float float_quantise( float component, float precision ){
return float_snapped( component, precision );
}
/// \brief Returns a double-precision \p component quantised to \p precision.
inline double double_quantise( double component, double precision ){
return float_snapped( component, precision );
}
inline spherical_t spherical_quantised( const spherical_t& spherical, float snap ){
return spherical_t( double_quantise( spherical.longditude, snap ), double_quantise( spherical.latitude, snap ) );
}
inline uniformspherical_t uniformspherical_quantised( const uniformspherical_t& uniformspherical, float snap ){
return uniformspherical_t( double_quantise( uniformspherical.U, snap ), double_quantise( uniformspherical.V, snap ) );
}
/// \brief Returns a \p vertex quantised to \p precision.
inline Vertex3f vertex3f_quantised( const Vertex3f& vertex, float precision ){
return Vertex3f( float_quantise( vertex.x(), precision ), float_quantise( vertex.y(), precision ), float_quantise( vertex.z(), precision ) );
}
/// \brief Returns a \p normal quantised to a fixed precision.
inline Normal3f normal3f_quantised( const Normal3f& normal ){
return normal3f_quantised_custom( normal );
//return normal3f_from_spherical(spherical_quantised(spherical_from_normal3f(normal), snap));
//return normal3f_from_uniformspherical(uniformspherical_quantised(uniformspherical_from_normal3f(normal), snap));
// float_quantise(normal.x, snap), float_quantise(normal.y, snap), float_quantise(normal.y, snap));
}
/// \brief Returns a \p texcoord quantised to \p precision.
inline TexCoord2f texcoord2f_quantised( const TexCoord2f& texcoord, float precision ){
return TexCoord2f( float_quantise( texcoord.s(), precision ), float_quantise( texcoord.t(), precision ) );
}
/// \brief Standard vertex type for lines and points.
struct PointVertex
{
Colour4b colour;
Vertex3f vertex;
PointVertex(){
}
PointVertex( Vertex3f _vertex )
: colour( Colour4b( 255, 255, 255, 255 ) ), vertex( _vertex ){
}
PointVertex( Vertex3f _vertex, Colour4b _colour )
: colour( _colour ), vertex( _vertex ){
}
};
inline bool operator<( const PointVertex& self, const PointVertex& other ){
if ( self.vertex != other.vertex ) {
return self.vertex < other.vertex;
}
if ( self.colour != other.colour ) {
return self.colour < other.colour;
}
return false;
}
inline bool operator==( const PointVertex& self, const PointVertex& other ){
return self.colour == other.colour && self.vertex == other.vertex;
}
inline bool operator!=( const PointVertex& self, const PointVertex& other ){
return !operator==( self, other );
}
/// \brief Standard vertex type for lit/textured meshes.
struct ArbitraryMeshVertex
{
TexCoord2f texcoord;
Normal3f normal;
Vertex3f vertex;
Normal3f tangent;
Normal3f bitangent;
Vector4 colour;
ArbitraryMeshVertex() : tangent( 0, 0, 0 ), bitangent( 0, 0, 0 ), colour( 1, 1, 1, 1 ){
}
ArbitraryMeshVertex( Vertex3f _vertex, Normal3f _normal, TexCoord2f _texcoord )
: texcoord( _texcoord ), normal( _normal ), vertex( _vertex ), tangent( 0, 0, 0 ), bitangent( 0, 0, 0 ), colour( 1, 1, 1, 1 ){
}
};
inline bool operator<( const ArbitraryMeshVertex& self, const ArbitraryMeshVertex& other ){
if ( self.texcoord != other.texcoord ) {
return self.texcoord < other.texcoord;
}
if ( self.normal != other.normal ) {
return self.normal < other.normal;
}
if ( self.vertex != other.vertex ) {
return self.vertex < other.vertex;
}
return false;
}
inline bool operator==( const ArbitraryMeshVertex& self, const ArbitraryMeshVertex& other ){
return self.texcoord == other.texcoord && self.normal == other.normal && self.vertex == other.vertex;
}
inline bool operator!=( const ArbitraryMeshVertex& self, const ArbitraryMeshVertex& other ){
return !operator==( self, other );
}
const float c_quantise_vertex = 1.f / static_cast<float>( 1 << 3 );
/// \brief Returns \p v with vertex quantised to a fixed precision.
inline PointVertex pointvertex_quantised( const PointVertex& v ){
return PointVertex( vertex3f_quantised( v.vertex, c_quantise_vertex ), v.colour );
}
const float c_quantise_texcoord = 1.f / static_cast<float>( 1 << 8 );
/// \brief Returns \p v with vertex, normal and texcoord quantised to a fixed precision.
inline ArbitraryMeshVertex arbitrarymeshvertex_quantised( const ArbitraryMeshVertex& v ){
return ArbitraryMeshVertex( vertex3f_quantised( v.vertex, c_quantise_vertex ), normal3f_quantised( v.normal ), texcoord2f_quantised( v.texcoord, c_quantise_texcoord ) );
}
/// \brief Sets up the OpenGL colour and vertex arrays for \p array.
inline void pointvertex_gl_array( const PointVertex* array ){
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &array->colour );
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &array->vertex );
}
class RenderablePointArray : public OpenGLRenderable
{
const Array<PointVertex>& m_array;
const GLenum m_mode;
public:
RenderablePointArray( const Array<PointVertex>& array, GLenum mode )
: m_array( array ), m_mode( mode ){
}
void render( RenderStateFlags state ) const {
#define NV_DRIVER_BUG 1
#if NV_DRIVER_BUG
glColorPointer( 4, GL_UNSIGNED_BYTE, 0, 0 );
glVertexPointer( 3, GL_FLOAT, 0, 0 );
glDrawArrays( GL_TRIANGLE_FAN, 0, 0 );
#endif
pointvertex_gl_array( m_array.data() );
glDrawArrays( m_mode, 0, GLsizei( m_array.size() ) );
}
};
class RenderablePointVector : public OpenGLRenderable
{
std::vector<PointVertex> m_vector;
const GLenum m_mode;
public:
RenderablePointVector( GLenum mode )
: m_mode( mode ){
}
void render( RenderStateFlags state ) const {
pointvertex_gl_array( &m_vector.front() );
glDrawArrays( m_mode, 0, GLsizei( m_vector.size() ) );
}
std::size_t size() const {
return m_vector.size();
}
bool empty() const {
return m_vector.empty();
}
void clear(){
m_vector.clear();
}
void reserve( std::size_t size ){
m_vector.reserve( size );
}
void push_back( const PointVertex& point ){
m_vector.push_back( point );
}
};
class RenderableVertexBuffer : public OpenGLRenderable
{
const GLenum m_mode;
const VertexBuffer<PointVertex>& m_vertices;
public:
RenderableVertexBuffer( GLenum mode, const VertexBuffer<PointVertex>& vertices )
: m_mode( mode ), m_vertices( vertices ){
}
void render( RenderStateFlags state ) const {
pointvertex_gl_array( m_vertices.data() );
glDrawArrays( m_mode, 0, m_vertices.size() );
}
};
class RenderableIndexBuffer : public OpenGLRenderable
{
const GLenum m_mode;
const IndexBuffer& m_indices;
const VertexBuffer<PointVertex>& m_vertices;
public:
RenderableIndexBuffer( GLenum mode, const IndexBuffer& indices, const VertexBuffer<PointVertex>& vertices )
: m_mode( mode ), m_indices( indices ), m_vertices( vertices ){
}
void render( RenderStateFlags state ) const {
#if 1
pointvertex_gl_array( m_vertices.data() );
glDrawElements( m_mode, GLsizei( m_indices.size() ), RenderIndexTypeID, m_indices.data() );
#else
glBegin( m_mode );
if ( state & RENDER_COLOURARRAY != 0 ) {
for ( std::size_t i = 0; i < m_indices.size(); ++i )
{
glColor4ubv( &m_vertices[m_indices[i]].colour.r );
glVertex3fv( &m_vertices[m_indices[i]].vertex.x );
}
}
else
{
for ( std::size_t i = 0; i < m_indices.size(); ++i )
{
glVertex3fv( &m_vertices[m_indices[i]].vertex.x );
}
}
glEnd();
#endif
}
};
class RemapXYZ
{
public:
static void set( Vertex3f& vertex, float x, float y, float z ){
vertex.x() = x;
vertex.y() = y;
vertex.z() = z;
}
};
class RemapYZX
{
public:
static void set( Vertex3f& vertex, float x, float y, float z ){
vertex.x() = z;
vertex.y() = x;
vertex.z() = y;
}
};
class RemapZXY
{
public:
static void set( Vertex3f& vertex, float x, float y, float z ){
vertex.x() = y;
vertex.y() = z;
vertex.z() = x;
}
};
template<typename remap_policy>
inline void draw_circle( const std::size_t segments, const float radius, PointVertex* vertices, remap_policy remap ){
const double increment = c_pi / double(segments << 2);
std::size_t count = 0;
float x = radius;
float y = 0;
while ( count < segments )
{
PointVertex* i = vertices + count;
PointVertex* j = vertices + ( ( segments << 1 ) - ( count + 1 ) );
PointVertex* k = i + ( segments << 1 );
PointVertex* l = j + ( segments << 1 );
PointVertex* m = i + ( segments << 2 );
PointVertex* n = j + ( segments << 2 );
PointVertex* o = k + ( segments << 2 );
PointVertex* p = l + ( segments << 2 );
remap_policy::set( i->vertex, x,-y, 0 );
remap_policy::set( k->vertex,-y,-x, 0 );
remap_policy::set( m->vertex,-x, y, 0 );
remap_policy::set( o->vertex, y, x, 0 );
++count;
{
const double theta = increment * count;
x = static_cast<float>( radius * cos( theta ) );
y = static_cast<float>( radius * sin( theta ) );
}
remap_policy::set( j->vertex, y,-x, 0 );
remap_policy::set( l->vertex,-x,-y, 0 );
remap_policy::set( n->vertex,-y, x, 0 );
remap_policy::set( p->vertex, x, y, 0 );
}
}
#if 0
class PointVertexArrayIterator
{
PointVertex* m_point;
public:
PointVertexArrayIterator( PointVertex* point )
: m_point( point ){
}
PointVertexArrayIterator& operator++(){
++m_point;
return *this;
}
PointVertexArrayIterator operator++( int ){
PointVertexArrayIterator tmp( *this );
++m_point;
return tmp;
}
Vertex3f& operator*(){
return m_point.vertex;
}
Vertex3f* operator->(){
return &( operator*() );
}
}
template<typename remap_policy, typename iterator_type
inline void draw_circle( const std::size_t segments, const float radius, iterator_type start, remap_policy remap ){
const float increment = c_pi / (double)( segments << 2 );
std::size_t count = 0;
iterator_type pxpy( start );
iterator_type pypx( pxpy + ( segments << 1 ) );
iterator_type pynx( pxpy + ( segments << 1 ) );
iterator_type nxpy( pypx + ( segments << 1 ) );
iterator_type nxny( pypx + ( segments << 1 ) );
iterator_type nynx( nxpy + ( segments << 1 ) );
iterator_type nypx( nxpy + ( segments << 1 ) );
iterator_type pxny( start );
while ( count < segments )
{
const float theta = increment * count;
const float x = radius * cos( theta );
const float y = radius * sin( theta );
remap_policy::set( ( *pxpy ), x, y, 0 );
remap_policy::set( ( *pxny ), x,-y, 0 );
remap_policy::set( ( *nxpy ),-x, y, 0 );
remap_policy::set( ( *nxny ),-x,-y, 0 );
remap_policy::set( ( *pypx ), y, x, 0 );
remap_policy::set( ( *pynx ), y,-x, 0 );
remap_policy::set( ( *nypx ),-y, x, 0 );
remap_policy::set( ( *nynx ),-y,-x, 0 );
}
}
template<typename remap_policy, typename iterator_type
inline void draw_semicircle( const std::size_t segments, const float radius, iterator_type start, remap_policy remap )
{
const float increment = c_pi / (double)( segments << 2 );
std::size_t count = 0;
iterator_type pxpy( start );
iterator_type pypx( pxpy + ( segments << 1 ) );
iterator_type pynx( pxpy + ( segments << 1 ) );
iterator_type nxpy( pypx + ( segments << 1 ) );
iterator_type nxny( pypx + ( segments << 1 ) );
iterator_type nynx( nxpy + ( segments << 1 ) );
iterator_type nypx( nxpy + ( segments << 1 ) );
iterator_type pxny( start );
while ( count < segments )
{
const float theta = increment * count;
const float x = radius * cos( theta );
const float y = radius * sin( theta );
remap_policy::set( ( *pxpy ), x, y, 0 );
remap_policy::set( ( *pxny ), x,-y, 0 );
remap_policy::set( ( *nxpy ),-x, y, 0 );
remap_policy::set( ( *nxny ),-x,-y, 0 );
//remap_policy::set((*pypx), y, x, 0);
//remap_policy::set((*pynx), y,-x, 0);
//remap_policy::set((*nypx),-y, x, 0);
//remap_policy::set((*nynx),-y,-x, 0);
}
}
#endif
inline void draw_quad( const float radius, PointVertex* quad ){
( *quad ++ ).vertex = Vertex3f( -radius, radius, 0 );
( *quad ++ ).vertex = Vertex3f( radius, radius, 0 );
( *quad ++ ).vertex = Vertex3f( radius, -radius, 0 );
( *quad ++ ).vertex = Vertex3f( -radius, -radius, 0 );
}
inline void draw_cube( const float radius, PointVertex* cube ){
( *cube ++ ).vertex = Vertex3f( -radius, -radius, -radius );
( *cube ++ ).vertex = Vertex3f( radius, -radius, -radius );
( *cube ++ ).vertex = Vertex3f( -radius, radius, -radius );
( *cube ++ ).vertex = Vertex3f( radius, radius, -radius );
( *cube ++ ).vertex = Vertex3f( -radius, -radius, radius );
( *cube ++ ).vertex = Vertex3f( radius, -radius, radius );
( *cube ++ ).vertex = Vertex3f( -radius, radius, radius );
( *cube ++ ).vertex = Vertex3f( radius, radius, radius );
}
/// \brief Calculates the tangent vectors for a triangle \p a, \p b, \p c and stores the tangent in \p s and the bitangent in \p t.
inline void ArbitraryMeshTriangle_calcTangents( const ArbitraryMeshVertex& a, const ArbitraryMeshVertex& b, const ArbitraryMeshVertex& c, Vector3& s, Vector3& t ){
s = Vector3( 0, 0, 0 );
t = Vector3( 0, 0, 0 );
{
Vector3 cross(
vector3_cross(
vector3_subtracted(
Vector3( b.vertex.x(), b.texcoord.s(), b.texcoord.t() ),
Vector3( a.vertex.x(), a.texcoord.s(), a.texcoord.t() )
),
vector3_subtracted(
Vector3( c.vertex.x(), c.texcoord.s(), c.texcoord.t() ),
Vector3( a.vertex.x(), a.texcoord.s(), a.texcoord.t() )
)
)
);
if ( fabs( cross.x() ) > 0.000001f ) {
s.x() = -cross.y() / cross.x();
}
if ( fabs( cross.x() ) > 0.000001f ) {
t.x() = -cross.z() / cross.x();
}
}
{
Vector3 cross(
vector3_cross(
vector3_subtracted(
Vector3( b.vertex.y(), b.texcoord.s(), b.texcoord.t() ),
Vector3( a.vertex.y(), a.texcoord.s(), a.texcoord.t() )
),
vector3_subtracted(
Vector3( c.vertex.y(), c.texcoord.s(), c.texcoord.t() ),
Vector3( a.vertex.y(), a.texcoord.s(), a.texcoord.t() )
)
)
);
if ( fabs( cross.x() ) > 0.000001f ) {
s.y() = -cross.y() / cross.x();
}
if ( fabs( cross.x() ) > 0.000001f ) {
t.y() = -cross.z() / cross.x();
}
}
{
Vector3 cross(
vector3_cross(
vector3_subtracted(
Vector3( b.vertex.z(), b.texcoord.s(), b.texcoord.t() ),
Vector3( a.vertex.z(), a.texcoord.s(), a.texcoord.t() )
),
vector3_subtracted(
Vector3( c.vertex.z(), c.texcoord.s(), c.texcoord.t() ),
Vector3( a.vertex.z(), a.texcoord.s(), a.texcoord.t() )
)
)
);
if ( fabs( cross.x() ) > 0.000001f ) {
s.z() = -cross.y() / cross.x();
}
if ( fabs( cross.x() ) > 0.000001f ) {
t.z() = -cross.z() / cross.x();
}
}
}
inline void ArbitraryMeshTriangle_sumTangents( ArbitraryMeshVertex& a, ArbitraryMeshVertex& b, ArbitraryMeshVertex& c ){
Vector3 s, t;
ArbitraryMeshTriangle_calcTangents( a, b, c, s, t );
reinterpret_cast<Vector3&>( a.tangent ) += s;
reinterpret_cast<Vector3&>( b.tangent ) += s;
reinterpret_cast<Vector3&>( c.tangent ) += s;
reinterpret_cast<Vector3&>( a.bitangent ) += t;
reinterpret_cast<Vector3&>( b.bitangent ) += t;
reinterpret_cast<Vector3&>( c.bitangent ) += t;
}
#endif