1147 lines
29 KiB
C
1147 lines
29 KiB
C
/*
|
|
Copyright (C) 1999-2007 id Software, Inc. and contributors.
|
|
For a list of contributors, see the accompanying CONTRIBUTORS file.
|
|
|
|
This file is part of GtkRadiant.
|
|
|
|
GtkRadiant is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
GtkRadiant is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GtkRadiant; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "cmdlib.h"
|
|
#include "mathlib.h"
|
|
#include "inout.h"
|
|
#include "polylib.h"
|
|
#include "qfiles.h"
|
|
|
|
|
|
extern int numthreads;
|
|
|
|
// counters are only bumped when running single threaded,
|
|
// because they are an awefull coherence problem
|
|
int c_active_windings;
|
|
int c_peak_windings;
|
|
int c_winding_allocs;
|
|
int c_winding_points;
|
|
|
|
#define BOGUS_RANGE WORLD_SIZE
|
|
|
|
void pw( winding_t *w ){
|
|
int i;
|
|
for ( i = 0 ; i < w->numpoints ; i++ )
|
|
Sys_Printf( "(%5.1f, %5.1f, %5.1f)\n",w->p[i][0], w->p[i][1],w->p[i][2] );
|
|
}
|
|
|
|
|
|
/*
|
|
=============
|
|
AllocWinding
|
|
=============
|
|
*/
|
|
winding_t *AllocWinding( int points ){
|
|
winding_t *w;
|
|
int s;
|
|
|
|
if ( points >= MAX_POINTS_ON_WINDING ) {
|
|
Error( "AllocWinding failed: MAX_POINTS_ON_WINDING exceeded" );
|
|
}
|
|
|
|
if ( numthreads == 1 ) {
|
|
c_winding_allocs++;
|
|
c_winding_points += points;
|
|
c_active_windings++;
|
|
if ( c_active_windings > c_peak_windings ) {
|
|
c_peak_windings = c_active_windings;
|
|
}
|
|
}
|
|
s = sizeof( *w ) + ( points ? sizeof( w->p[0] ) * ( points - 1 ) : 0 );
|
|
w = safe_malloc( s );
|
|
memset( w, 0, s );
|
|
return w;
|
|
}
|
|
|
|
/*
|
|
=============
|
|
AllocWindingAccu
|
|
=============
|
|
*/
|
|
winding_accu_t *AllocWindingAccu( int points ){
|
|
winding_accu_t *w;
|
|
int s;
|
|
|
|
if ( points >= MAX_POINTS_ON_WINDING ) {
|
|
Error( "AllocWindingAccu failed: MAX_POINTS_ON_WINDING exceeded" );
|
|
}
|
|
|
|
if ( numthreads == 1 ) {
|
|
// At the time of this writing, these statistics were not used in any way.
|
|
c_winding_allocs++;
|
|
c_winding_points += points;
|
|
c_active_windings++;
|
|
if ( c_active_windings > c_peak_windings ) {
|
|
c_peak_windings = c_active_windings;
|
|
}
|
|
}
|
|
s = sizeof( *w ) + ( points ? sizeof( w->p[0] ) * ( points - 1 ) : 0 );
|
|
w = safe_malloc( s );
|
|
memset( w, 0, s );
|
|
return w;
|
|
}
|
|
|
|
/*
|
|
=============
|
|
FreeWinding
|
|
=============
|
|
*/
|
|
void FreeWinding( winding_t *w ){
|
|
if ( !w ) {
|
|
Error( "FreeWinding: winding is NULL" );
|
|
}
|
|
|
|
if ( *(unsigned *)w == 0xdeaddead ) {
|
|
Error( "FreeWinding: freed a freed winding" );
|
|
}
|
|
*(unsigned *)w = 0xdeaddead;
|
|
|
|
if ( numthreads == 1 ) {
|
|
c_active_windings--;
|
|
}
|
|
free( w );
|
|
}
|
|
|
|
/*
|
|
=============
|
|
FreeWindingAccu
|
|
=============
|
|
*/
|
|
void FreeWindingAccu( winding_accu_t *w ){
|
|
if ( !w ) {
|
|
Error( "FreeWindingAccu: winding is NULL" );
|
|
}
|
|
|
|
if ( *( (unsigned *) w ) == 0xdeaddead ) {
|
|
Error( "FreeWindingAccu: freed a freed winding" );
|
|
}
|
|
*( (unsigned *) w ) = 0xdeaddead;
|
|
|
|
if ( numthreads == 1 ) {
|
|
c_active_windings--;
|
|
}
|
|
free( w );
|
|
}
|
|
|
|
/*
|
|
============
|
|
RemoveColinearPoints
|
|
============
|
|
*/
|
|
int c_removed;
|
|
|
|
void RemoveColinearPoints( winding_t *w ){
|
|
int i, j, k;
|
|
vec3_t v1, v2;
|
|
int nump;
|
|
vec3_t p[MAX_POINTS_ON_WINDING];
|
|
|
|
nump = 0;
|
|
for ( i = 0 ; i < w->numpoints ; i++ )
|
|
{
|
|
j = ( i + 1 ) % w->numpoints;
|
|
k = ( i + w->numpoints - 1 ) % w->numpoints;
|
|
VectorSubtract( w->p[j], w->p[i], v1 );
|
|
VectorSubtract( w->p[i], w->p[k], v2 );
|
|
VectorNormalize( v1,v1 );
|
|
VectorNormalize( v2,v2 );
|
|
if ( DotProduct( v1, v2 ) < 0.999 ) {
|
|
VectorCopy( w->p[i], p[nump] );
|
|
nump++;
|
|
}
|
|
}
|
|
|
|
if ( nump == w->numpoints ) {
|
|
return;
|
|
}
|
|
|
|
if ( numthreads == 1 ) {
|
|
c_removed += w->numpoints - nump;
|
|
}
|
|
w->numpoints = nump;
|
|
memcpy( w->p, p, nump * sizeof( p[0] ) );
|
|
}
|
|
|
|
/*
|
|
============
|
|
WindingPlane
|
|
============
|
|
*/
|
|
void WindingPlane( winding_t *w, vec3_t normal, vec_t *dist ){
|
|
vec3_t v1, v2;
|
|
|
|
VectorSubtract( w->p[1], w->p[0], v1 );
|
|
VectorSubtract( w->p[2], w->p[0], v2 );
|
|
CrossProduct( v2, v1, normal );
|
|
VectorNormalize( normal, normal );
|
|
*dist = DotProduct( w->p[0], normal );
|
|
|
|
}
|
|
|
|
/*
|
|
=============
|
|
WindingArea
|
|
=============
|
|
*/
|
|
vec_t WindingArea( winding_t *w ){
|
|
int i;
|
|
vec3_t d1, d2, cross;
|
|
vec_t total;
|
|
|
|
total = 0;
|
|
for ( i = 2 ; i < w->numpoints ; i++ )
|
|
{
|
|
VectorSubtract( w->p[i - 1], w->p[0], d1 );
|
|
VectorSubtract( w->p[i], w->p[0], d2 );
|
|
CrossProduct( d1, d2, cross );
|
|
total += 0.5 * VectorLength( cross );
|
|
}
|
|
return total;
|
|
}
|
|
|
|
void WindingBounds( winding_t *w, vec3_t mins, vec3_t maxs ){
|
|
vec_t v;
|
|
int i,j;
|
|
|
|
mins[0] = mins[1] = mins[2] = 99999;
|
|
maxs[0] = maxs[1] = maxs[2] = -99999;
|
|
|
|
for ( i = 0 ; i < w->numpoints ; i++ )
|
|
{
|
|
for ( j = 0 ; j < 3 ; j++ )
|
|
{
|
|
v = w->p[i][j];
|
|
if ( v < mins[j] ) {
|
|
mins[j] = v;
|
|
}
|
|
if ( v > maxs[j] ) {
|
|
maxs[j] = v;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
=============
|
|
WindingCenter
|
|
=============
|
|
*/
|
|
void WindingCenter( winding_t *w, vec3_t center ){
|
|
int i;
|
|
float scale;
|
|
|
|
VectorCopy( vec3_origin, center );
|
|
for ( i = 0 ; i < w->numpoints ; i++ )
|
|
VectorAdd( w->p[i], center, center );
|
|
|
|
scale = 1.0 / w->numpoints;
|
|
VectorScale( center, scale, center );
|
|
}
|
|
|
|
/*
|
|
=================
|
|
BaseWindingForPlaneAccu
|
|
=================
|
|
*/
|
|
winding_accu_t *BaseWindingForPlaneAccu( vec3_t normal, vec_t dist ){
|
|
// The goal in this function is to replicate the behavior of the original BaseWindingForPlane()
|
|
// function (see below) but at the same time increasing accuracy substantially.
|
|
|
|
// The original code gave a preference for the vup vector to start out as (0, 0, 1), unless the
|
|
// normal had a dominant Z value, in which case vup started out as (1, 0, 0). After that, vup
|
|
// was "bent" [along the plane defined by normal and vup] to become perpendicular to normal.
|
|
// After that the vright vector was computed as the cross product of vup and normal.
|
|
|
|
// I'm constructing the winding polygon points in a fashion similar to the method used in the
|
|
// original function. Orientation is the same. The size of the winding polygon, however, is
|
|
// variable in this function (depending on the angle of normal), and is larger (by about a factor
|
|
// of 2) than the winding polygon in the original function.
|
|
|
|
int x, i;
|
|
vec_t max, v;
|
|
vec3_accu_t vright, vup, org, normalAccu;
|
|
winding_accu_t *w;
|
|
|
|
// One of the components of normal must have a magnitiude greater than this value,
|
|
// otherwise normal is not a unit vector. This is a little bit of inexpensive
|
|
// partial error checking we can do.
|
|
max = 0.56; // 1 / sqrt(1^2 + 1^2 + 1^2) = 0.577350269
|
|
|
|
x = -1;
|
|
for ( i = 0; i < 3; i++ ) {
|
|
v = (vec_t) fabs( normal[i] );
|
|
if ( v > max ) {
|
|
x = i;
|
|
max = v;
|
|
}
|
|
}
|
|
if ( x == -1 ) {
|
|
Error( "BaseWindingForPlaneAccu: no dominant axis found because normal is too short" );
|
|
}
|
|
|
|
switch ( x ) {
|
|
case 0: // Fall through to next case.
|
|
case 1:
|
|
vright[0] = (vec_accu_t) -normal[1];
|
|
vright[1] = (vec_accu_t) normal[0];
|
|
vright[2] = 0;
|
|
break;
|
|
case 2:
|
|
vright[0] = 0;
|
|
vright[1] = (vec_accu_t) -normal[2];
|
|
vright[2] = (vec_accu_t) normal[1];
|
|
break;
|
|
}
|
|
|
|
// vright and normal are now perpendicular; you can prove this by taking their
|
|
// dot product and seeing that it's always exactly 0 (with no error).
|
|
|
|
// NOTE: vright is NOT a unit vector at this point. vright will have length
|
|
// not exceeding 1.0. The minimum length that vright can achieve happens when,
|
|
// for example, the Z and X components of the normal input vector are equal,
|
|
// and when normal's Y component is zero. In that case Z and X of the normal
|
|
// vector are both approximately 0.70711. The resulting vright vector in this
|
|
// case will have a length of 0.70711.
|
|
|
|
// We're relying on the fact that MAX_WORLD_COORD is a power of 2 to keep
|
|
// our calculation precise and relatively free of floating point error.
|
|
// [However, the code will still work fine if that's not the case.]
|
|
VectorScaleAccu( vright, ( (vec_accu_t) MAX_WORLD_COORD ) * 4.0, vright );
|
|
|
|
// At time time of this writing, MAX_WORLD_COORD was 65536 (2^16). Therefore
|
|
// the length of vright at this point is at least 185364. In comparison, a
|
|
// corner of the world at location (65536, 65536, 65536) is distance 113512
|
|
// away from the origin.
|
|
|
|
VectorCopyRegularToAccu( normal, normalAccu );
|
|
CrossProductAccu( normalAccu, vright, vup );
|
|
|
|
// vup now has length equal to that of vright.
|
|
|
|
VectorScaleAccu( normalAccu, (vec_accu_t) dist, org );
|
|
|
|
// org is now a point on the plane defined by normal and dist. Furthermore,
|
|
// org, vright, and vup are pairwise perpendicular. Now, the 4 vectors
|
|
// { (+-)vright + (+-)vup } have length that is at least sqrt(185364^2 + 185364^2),
|
|
// which is about 262144. That length lies outside the world, since the furthest
|
|
// point in the world has distance 113512 from the origin as mentioned above.
|
|
// Also, these 4 vectors are perpendicular to the org vector. So adding them
|
|
// to org will only increase their length. Therefore the 4 points defined below
|
|
// all lie outside of the world. Furthermore, it can be easily seen that the
|
|
// edges connecting these 4 points (in the winding_accu_t below) lie completely
|
|
// outside the world. sqrt(262144^2 + 262144^2)/2 = 185363, which is greater than
|
|
// 113512.
|
|
|
|
w = AllocWindingAccu( 4 );
|
|
|
|
VectorSubtractAccu( org, vright, w->p[0] );
|
|
VectorAddAccu( w->p[0], vup, w->p[0] );
|
|
|
|
VectorAddAccu( org, vright, w->p[1] );
|
|
VectorAddAccu( w->p[1], vup, w->p[1] );
|
|
|
|
VectorAddAccu( org, vright, w->p[2] );
|
|
VectorSubtractAccu( w->p[2], vup, w->p[2] );
|
|
|
|
VectorSubtractAccu( org, vright, w->p[3] );
|
|
VectorSubtractAccu( w->p[3], vup, w->p[3] );
|
|
|
|
w->numpoints = 4;
|
|
|
|
return w;
|
|
}
|
|
|
|
/*
|
|
=================
|
|
BaseWindingForPlane
|
|
|
|
Original BaseWindingForPlane() function that has serious accuracy problems. Here is why.
|
|
The base winding is computed as a rectangle with very large coordinates. These coordinates
|
|
are in the range 2^17 or 2^18. "Epsilon" (meaning the distance between two adjacent numbers)
|
|
at these magnitudes in 32 bit floating point world is about 0.02. So for example, if things
|
|
go badly (by bad luck), then the whole plane could be shifted by 0.02 units (its distance could
|
|
be off by that much). Then if we were to compute the winding of this plane and another of
|
|
the brush's planes met this winding at a very acute angle, that error could multiply to around
|
|
0.1 or more when computing the final vertex coordinates of the winding. 0.1 is a very large
|
|
error, and can lead to all sorts of disappearing triangle problems.
|
|
=================
|
|
*/
|
|
winding_t *BaseWindingForPlane( vec3_t normal, vec_t dist ){
|
|
int i, x;
|
|
vec_t max, v;
|
|
vec3_t org, vright, vup;
|
|
winding_t *w;
|
|
|
|
// find the major axis
|
|
|
|
max = -BOGUS_RANGE;
|
|
x = -1;
|
|
for ( i = 0 ; i < 3; i++ )
|
|
{
|
|
v = fabs( normal[i] );
|
|
if ( v > max ) {
|
|
x = i;
|
|
max = v;
|
|
}
|
|
}
|
|
if ( x == -1 ) {
|
|
Error( "BaseWindingForPlane: no axis found" );
|
|
}
|
|
|
|
VectorCopy( vec3_origin, vup );
|
|
switch ( x )
|
|
{
|
|
case 0:
|
|
case 1:
|
|
vup[2] = 1;
|
|
break;
|
|
case 2:
|
|
vup[0] = 1;
|
|
break;
|
|
}
|
|
|
|
v = DotProduct( vup, normal );
|
|
VectorMA( vup, -v, normal, vup );
|
|
VectorNormalize( vup, vup );
|
|
|
|
VectorScale( normal, dist, org );
|
|
|
|
CrossProduct( vup, normal, vright );
|
|
|
|
// LordHavoc: this has to use *2 because otherwise some created points may
|
|
// be inside the world (think of a diagonal case), and any brush with such
|
|
// points should be removed, failure to detect such cases is disasterous
|
|
VectorScale( vup, MAX_WORLD_COORD * 2, vup );
|
|
VectorScale( vright, MAX_WORLD_COORD * 2, vright );
|
|
|
|
// project a really big axis aligned box onto the plane
|
|
w = AllocWinding( 4 );
|
|
|
|
VectorSubtract( org, vright, w->p[0] );
|
|
VectorAdd( w->p[0], vup, w->p[0] );
|
|
|
|
VectorAdd( org, vright, w->p[1] );
|
|
VectorAdd( w->p[1], vup, w->p[1] );
|
|
|
|
VectorAdd( org, vright, w->p[2] );
|
|
VectorSubtract( w->p[2], vup, w->p[2] );
|
|
|
|
VectorSubtract( org, vright, w->p[3] );
|
|
VectorSubtract( w->p[3], vup, w->p[3] );
|
|
|
|
w->numpoints = 4;
|
|
|
|
return w;
|
|
}
|
|
|
|
/*
|
|
==================
|
|
CopyWinding
|
|
==================
|
|
*/
|
|
winding_t *CopyWinding( winding_t *w ){
|
|
size_t size;
|
|
winding_t *c;
|
|
|
|
if ( !w ) {
|
|
Error( "CopyWinding: winding is NULL" );
|
|
}
|
|
|
|
c = AllocWinding( w->numpoints );
|
|
size = (size_t)( (winding_t *)NULL )->p[w->numpoints];
|
|
memcpy( c, w, size );
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
==================
|
|
CopyWindingAccuIncreaseSizeAndFreeOld
|
|
==================
|
|
*/
|
|
winding_accu_t *CopyWindingAccuIncreaseSizeAndFreeOld( winding_accu_t *w ){
|
|
int i;
|
|
winding_accu_t *c;
|
|
|
|
if ( !w ) {
|
|
Error( "CopyWindingAccuIncreaseSizeAndFreeOld: winding is NULL" );
|
|
}
|
|
|
|
c = AllocWindingAccu( w->numpoints + 1 );
|
|
c->numpoints = w->numpoints;
|
|
for ( i = 0; i < c->numpoints; i++ )
|
|
{
|
|
VectorCopyAccu( w->p[i], c->p[i] );
|
|
}
|
|
FreeWindingAccu( w );
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
==================
|
|
CopyWindingAccuToRegular
|
|
==================
|
|
*/
|
|
winding_t *CopyWindingAccuToRegular( winding_accu_t *w ){
|
|
int i;
|
|
winding_t *c;
|
|
|
|
if ( !w ) {
|
|
Error( "CopyWindingAccuToRegular: winding is NULL" );
|
|
}
|
|
|
|
c = AllocWinding( w->numpoints );
|
|
c->numpoints = w->numpoints;
|
|
for ( i = 0; i < c->numpoints; i++ )
|
|
{
|
|
VectorCopyAccuToRegular( w->p[i], c->p[i] );
|
|
}
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
==================
|
|
ReverseWinding
|
|
==================
|
|
*/
|
|
winding_t *ReverseWinding( winding_t *w ){
|
|
int i;
|
|
winding_t *c;
|
|
|
|
c = AllocWinding( w->numpoints );
|
|
for ( i = 0 ; i < w->numpoints ; i++ )
|
|
{
|
|
VectorCopy( w->p[w->numpoints - 1 - i], c->p[i] );
|
|
}
|
|
c->numpoints = w->numpoints;
|
|
return c;
|
|
}
|
|
|
|
|
|
/*
|
|
=============
|
|
ClipWindingEpsilon
|
|
=============
|
|
*/
|
|
void ClipWindingEpsilonStrict( winding_t *in, vec3_t normal, vec_t dist,
|
|
vec_t epsilon, winding_t **front, winding_t **back ){
|
|
vec_t dists[MAX_POINTS_ON_WINDING + 4];
|
|
int sides[MAX_POINTS_ON_WINDING + 4];
|
|
int counts[3];
|
|
static vec_t dot; // VC 4.2 optimizer bug if not static
|
|
int i, j;
|
|
vec_t *p1, *p2;
|
|
vec3_t mid;
|
|
winding_t *f, *b;
|
|
int maxpts;
|
|
|
|
counts[0] = counts[1] = counts[2] = 0;
|
|
|
|
// determine sides for each point
|
|
for ( i = 0 ; i < in->numpoints ; i++ )
|
|
{
|
|
|
|
dot = DotProduct( in->p[i], normal );
|
|
dot -= dist;
|
|
dists[i] = dot;
|
|
if ( dot > epsilon ) {
|
|
sides[i] = SIDE_FRONT;
|
|
}
|
|
else if ( dot < -epsilon ) {
|
|
sides[i] = SIDE_BACK;
|
|
}
|
|
else
|
|
{
|
|
sides[i] = SIDE_ON;
|
|
}
|
|
counts[sides[i]]++;
|
|
}
|
|
sides[i] = sides[0];
|
|
dists[i] = dists[0];
|
|
|
|
*front = *back = NULL;
|
|
|
|
if ( !counts[0] && !counts[1] ) {
|
|
return;
|
|
}
|
|
if ( !counts[0] ) {
|
|
*back = CopyWinding( in );
|
|
return;
|
|
}
|
|
if ( !counts[1] ) {
|
|
*front = CopyWinding( in );
|
|
return;
|
|
}
|
|
|
|
maxpts = in->numpoints + 4; // cant use counts[0]+2 because
|
|
// of fp grouping errors
|
|
|
|
*front = f = AllocWinding( maxpts );
|
|
*back = b = AllocWinding( maxpts );
|
|
|
|
for ( i = 0 ; i < in->numpoints ; i++ )
|
|
{
|
|
p1 = in->p[i];
|
|
|
|
if ( sides[i] == SIDE_ON ) {
|
|
VectorCopy( p1, f->p[f->numpoints] );
|
|
f->numpoints++;
|
|
VectorCopy( p1, b->p[b->numpoints] );
|
|
b->numpoints++;
|
|
continue;
|
|
}
|
|
|
|
if ( sides[i] == SIDE_FRONT ) {
|
|
VectorCopy( p1, f->p[f->numpoints] );
|
|
f->numpoints++;
|
|
}
|
|
if ( sides[i] == SIDE_BACK ) {
|
|
VectorCopy( p1, b->p[b->numpoints] );
|
|
b->numpoints++;
|
|
}
|
|
|
|
if ( sides[i + 1] == SIDE_ON || sides[i + 1] == sides[i] ) {
|
|
continue;
|
|
}
|
|
|
|
// generate a split point
|
|
p2 = in->p[( i + 1 ) % in->numpoints];
|
|
|
|
dot = dists[i] / ( dists[i] - dists[i + 1] );
|
|
for ( j = 0 ; j < 3 ; j++ )
|
|
{ // avoid round off error when possible
|
|
if ( normal[j] == 1 ) {
|
|
mid[j] = dist;
|
|
}
|
|
else if ( normal[j] == -1 ) {
|
|
mid[j] = -dist;
|
|
}
|
|
else{
|
|
mid[j] = p1[j] + dot * ( p2[j] - p1[j] );
|
|
}
|
|
}
|
|
|
|
VectorCopy( mid, f->p[f->numpoints] );
|
|
f->numpoints++;
|
|
VectorCopy( mid, b->p[b->numpoints] );
|
|
b->numpoints++;
|
|
}
|
|
|
|
if ( f->numpoints > maxpts || b->numpoints > maxpts ) {
|
|
Error( "ClipWinding: points exceeded estimate" );
|
|
}
|
|
if ( f->numpoints > MAX_POINTS_ON_WINDING || b->numpoints > MAX_POINTS_ON_WINDING ) {
|
|
Error( "ClipWinding: MAX_POINTS_ON_WINDING" );
|
|
}
|
|
}
|
|
|
|
void ClipWindingEpsilon( winding_t *in, vec3_t normal, vec_t dist,
|
|
vec_t epsilon, winding_t **front, winding_t **back ){
|
|
ClipWindingEpsilonStrict( in, normal, dist, epsilon, front, back );
|
|
/* apparently most code expects that in the winding-on-plane case, the back winding is the original winding */
|
|
if ( !*front && !*back ) {
|
|
*back = CopyWinding( in );
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
=============
|
|
ChopWindingInPlaceAccu
|
|
=============
|
|
*/
|
|
void ChopWindingInPlaceAccu( winding_accu_t **inout, vec3_t normal, vec_t dist, vec_t crudeEpsilon ){
|
|
vec_accu_t fineEpsilon;
|
|
winding_accu_t *in;
|
|
int counts[3];
|
|
int i, j;
|
|
vec_accu_t dists[MAX_POINTS_ON_WINDING + 1];
|
|
int sides[MAX_POINTS_ON_WINDING + 1];
|
|
int maxpts;
|
|
winding_accu_t *f;
|
|
vec_accu_t *p1, *p2;
|
|
vec_accu_t w;
|
|
vec3_accu_t mid, normalAccu;
|
|
|
|
// We require at least a very small epsilon. It's a good idea for several reasons.
|
|
// First, we will be dividing by a potentially very small distance below. We don't
|
|
// want that distance to be too small; otherwise, things "blow up" with little accuracy
|
|
// due to the division. (After a second look, the value w below is in range (0,1), but
|
|
// graininess problem remains.) Second, Having minimum epsilon also prevents the following
|
|
// situation. Say for example we have a perfect octagon defined by the input winding.
|
|
// Say our chopping plane (defined by normal and dist) is essentially the same plane
|
|
// that the octagon is sitting on. Well, due to rounding errors, it may be that point
|
|
// 1 of the octagon might be in front, point 2 might be in back, point 3 might be in
|
|
// front, point 4 might be in back, and so on. So we could end up with a very ugly-
|
|
// looking chopped winding, and this might be undesirable, and would at least lead to
|
|
// a possible exhaustion of MAX_POINTS_ON_WINDING. It's better to assume that points
|
|
// very very close to the plane are on the plane, using an infinitesimal epsilon amount.
|
|
|
|
// Now, the original ChopWindingInPlace() function used a vec_t-based winding_t.
|
|
// So this minimum epsilon is quite similar to casting the higher resolution numbers to
|
|
// the lower resolution and comparing them in the lower resolution mode. We explicitly
|
|
// choose the minimum epsilon as something around the vec_t epsilon of one because we
|
|
// want the resolution of vec_accu_t to have a large resolution around the epsilon.
|
|
// Some of that leftover resolution even goes away after we scale to points far away.
|
|
|
|
// Here is a further discussion regarding the choice of smallestEpsilonAllowed.
|
|
// In the 32 float world (we can assume vec_t is that), the "epsilon around 1.0" is
|
|
// 0.00000011921. In the 64 bit float world (we can assume vec_accu_t is that), the
|
|
// "epsilon around 1.0" is 0.00000000000000022204. (By the way these two epsilons
|
|
// are defined as VEC_SMALLEST_EPSILON_AROUND_ONE VEC_ACCU_SMALLEST_EPSILON_AROUND_ONE
|
|
// respectively.) If you divide the first by the second, you get approximately
|
|
// 536,885,246. Dividing that number by 200,000 (a typical base winding coordinate)
|
|
// gives 2684. So in other words, if our smallestEpsilonAllowed was chosen as exactly
|
|
// VEC_SMALLEST_EPSILON_AROUND_ONE, you would be guaranteed at least 2000 "ticks" in
|
|
// 64-bit land inside of the epsilon for all numbers we're dealing with.
|
|
|
|
static const vec_accu_t smallestEpsilonAllowed = ( (vec_accu_t) VEC_SMALLEST_EPSILON_AROUND_ONE ) * 0.5;
|
|
if ( crudeEpsilon < smallestEpsilonAllowed ) {
|
|
fineEpsilon = smallestEpsilonAllowed;
|
|
}
|
|
else{fineEpsilon = (vec_accu_t) crudeEpsilon; }
|
|
|
|
in = *inout;
|
|
counts[0] = counts[1] = counts[2] = 0;
|
|
VectorCopyRegularToAccu( normal, normalAccu );
|
|
|
|
for ( i = 0; i < in->numpoints; i++ )
|
|
{
|
|
dists[i] = DotProductAccu( in->p[i], normalAccu ) - dist;
|
|
if ( dists[i] > fineEpsilon ) {
|
|
sides[i] = SIDE_FRONT;
|
|
}
|
|
else if ( dists[i] < -fineEpsilon ) {
|
|
sides[i] = SIDE_BACK;
|
|
}
|
|
else{sides[i] = SIDE_ON; }
|
|
counts[sides[i]]++;
|
|
}
|
|
sides[i] = sides[0];
|
|
dists[i] = dists[0];
|
|
|
|
// I'm wondering if whatever code that handles duplicate planes is robust enough
|
|
// that we never get a case where two nearly equal planes result in 2 NULL windings
|
|
// due to the 'if' statement below. TODO: Investigate this.
|
|
if ( !counts[SIDE_FRONT] ) {
|
|
FreeWindingAccu( in );
|
|
*inout = NULL;
|
|
return;
|
|
}
|
|
if ( !counts[SIDE_BACK] ) {
|
|
return; // Winding is unmodified.
|
|
}
|
|
|
|
// NOTE: The least number of points that a winding can have at this point is 2.
|
|
// In that case, one point is SIDE_FRONT and the other is SIDE_BACK.
|
|
|
|
maxpts = counts[SIDE_FRONT] + 2; // We dynamically expand if this is too small.
|
|
f = AllocWindingAccu( maxpts );
|
|
|
|
for ( i = 0; i < in->numpoints; i++ )
|
|
{
|
|
p1 = in->p[i];
|
|
|
|
if ( sides[i] == SIDE_ON || sides[i] == SIDE_FRONT ) {
|
|
if ( f->numpoints >= MAX_POINTS_ON_WINDING ) {
|
|
Error( "ChopWindingInPlaceAccu: MAX_POINTS_ON_WINDING" );
|
|
}
|
|
if ( f->numpoints >= maxpts ) { // This will probably never happen.
|
|
Sys_FPrintf( SYS_VRB, "WARNING: estimate on chopped winding size incorrect (no problem)\n" );
|
|
f = CopyWindingAccuIncreaseSizeAndFreeOld( f );
|
|
maxpts++;
|
|
}
|
|
VectorCopyAccu( p1, f->p[f->numpoints] );
|
|
f->numpoints++;
|
|
if ( sides[i] == SIDE_ON ) {
|
|
continue;
|
|
}
|
|
}
|
|
if ( sides[i + 1] == SIDE_ON || sides[i + 1] == sides[i] ) {
|
|
continue;
|
|
}
|
|
|
|
// Generate a split point.
|
|
p2 = in->p[( ( i + 1 ) == in->numpoints ) ? 0 : ( i + 1 )];
|
|
|
|
// The divisor's absolute value is greater than the dividend's absolute value.
|
|
// w is in the range (0,1).
|
|
w = dists[i] / ( dists[i] - dists[i + 1] );
|
|
|
|
for ( j = 0; j < 3; j++ )
|
|
{
|
|
// Avoid round-off error when possible. Check axis-aligned normal.
|
|
if ( normal[j] == 1 ) {
|
|
mid[j] = dist;
|
|
}
|
|
else if ( normal[j] == -1 ) {
|
|
mid[j] = -dist;
|
|
}
|
|
else{mid[j] = p1[j] + ( w * ( p2[j] - p1[j] ) ); }
|
|
}
|
|
if ( f->numpoints >= MAX_POINTS_ON_WINDING ) {
|
|
Error( "ChopWindingInPlaceAccu: MAX_POINTS_ON_WINDING" );
|
|
}
|
|
if ( f->numpoints >= maxpts ) { // This will probably never happen.
|
|
Sys_FPrintf( SYS_VRB, "WARNING: estimate on chopped winding size incorrect (no problem)\n" );
|
|
f = CopyWindingAccuIncreaseSizeAndFreeOld( f );
|
|
maxpts++;
|
|
}
|
|
VectorCopyAccu( mid, f->p[f->numpoints] );
|
|
f->numpoints++;
|
|
}
|
|
|
|
FreeWindingAccu( in );
|
|
*inout = f;
|
|
}
|
|
|
|
/*
|
|
=============
|
|
ChopWindingInPlace
|
|
=============
|
|
*/
|
|
void ChopWindingInPlace( winding_t **inout, vec3_t normal, vec_t dist, vec_t epsilon ){
|
|
winding_t *in;
|
|
vec_t dists[MAX_POINTS_ON_WINDING + 4];
|
|
int sides[MAX_POINTS_ON_WINDING + 4];
|
|
int counts[3];
|
|
static vec_t dot; // VC 4.2 optimizer bug if not static
|
|
int i, j;
|
|
vec_t *p1, *p2;
|
|
vec3_t mid;
|
|
winding_t *f;
|
|
int maxpts;
|
|
|
|
in = *inout;
|
|
counts[0] = counts[1] = counts[2] = 0;
|
|
|
|
// determine sides for each point
|
|
for ( i = 0 ; i < in->numpoints ; i++ )
|
|
{
|
|
dot = DotProduct( in->p[i], normal );
|
|
dot -= dist;
|
|
dists[i] = dot;
|
|
if ( dot > epsilon ) {
|
|
sides[i] = SIDE_FRONT;
|
|
}
|
|
else if ( dot < -epsilon ) {
|
|
sides[i] = SIDE_BACK;
|
|
}
|
|
else
|
|
{
|
|
sides[i] = SIDE_ON;
|
|
}
|
|
counts[sides[i]]++;
|
|
}
|
|
sides[i] = sides[0];
|
|
dists[i] = dists[0];
|
|
|
|
if ( !counts[0] ) {
|
|
FreeWinding( in );
|
|
*inout = NULL;
|
|
return;
|
|
}
|
|
if ( !counts[1] ) {
|
|
return; // inout stays the same
|
|
|
|
}
|
|
maxpts = in->numpoints + 4; // cant use counts[0]+2 because
|
|
// of fp grouping errors
|
|
|
|
f = AllocWinding( maxpts );
|
|
|
|
for ( i = 0 ; i < in->numpoints ; i++ )
|
|
{
|
|
p1 = in->p[i];
|
|
|
|
if ( sides[i] == SIDE_ON ) {
|
|
VectorCopy( p1, f->p[f->numpoints] );
|
|
f->numpoints++;
|
|
continue;
|
|
}
|
|
|
|
if ( sides[i] == SIDE_FRONT ) {
|
|
VectorCopy( p1, f->p[f->numpoints] );
|
|
f->numpoints++;
|
|
}
|
|
|
|
if ( sides[i + 1] == SIDE_ON || sides[i + 1] == sides[i] ) {
|
|
continue;
|
|
}
|
|
|
|
// generate a split point
|
|
p2 = in->p[( i + 1 ) % in->numpoints];
|
|
|
|
dot = dists[i] / ( dists[i] - dists[i + 1] );
|
|
for ( j = 0 ; j < 3 ; j++ )
|
|
{ // avoid round off error when possible
|
|
if ( normal[j] == 1 ) {
|
|
mid[j] = dist;
|
|
}
|
|
else if ( normal[j] == -1 ) {
|
|
mid[j] = -dist;
|
|
}
|
|
else{
|
|
mid[j] = p1[j] + dot * ( p2[j] - p1[j] );
|
|
}
|
|
}
|
|
|
|
VectorCopy( mid, f->p[f->numpoints] );
|
|
f->numpoints++;
|
|
}
|
|
|
|
if ( f->numpoints > maxpts ) {
|
|
Error( "ClipWinding: points exceeded estimate" );
|
|
}
|
|
if ( f->numpoints > MAX_POINTS_ON_WINDING ) {
|
|
Error( "ClipWinding: MAX_POINTS_ON_WINDING" );
|
|
}
|
|
|
|
FreeWinding( in );
|
|
*inout = f;
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
ChopWinding
|
|
|
|
Returns the fragment of in that is on the front side
|
|
of the cliping plane. The original is freed.
|
|
=================
|
|
*/
|
|
winding_t *ChopWinding( winding_t *in, vec3_t normal, vec_t dist ){
|
|
winding_t *f, *b;
|
|
|
|
ClipWindingEpsilon( in, normal, dist, ON_EPSILON, &f, &b );
|
|
FreeWinding( in );
|
|
if ( b ) {
|
|
FreeWinding( b );
|
|
}
|
|
return f;
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
CheckWinding
|
|
|
|
=================
|
|
*/
|
|
void CheckWinding( winding_t *w ){
|
|
int i, j;
|
|
vec_t *p1, *p2;
|
|
vec_t d, edgedist;
|
|
vec3_t dir, edgenormal, facenormal;
|
|
vec_t area;
|
|
vec_t facedist;
|
|
|
|
if ( w->numpoints < 3 ) {
|
|
Error( "CheckWinding: %i points",w->numpoints );
|
|
}
|
|
|
|
area = WindingArea( w );
|
|
if ( area < 1 ) {
|
|
Error( "CheckWinding: %f area", area );
|
|
}
|
|
|
|
WindingPlane( w, facenormal, &facedist );
|
|
|
|
for ( i = 0 ; i < w->numpoints ; i++ )
|
|
{
|
|
p1 = w->p[i];
|
|
|
|
for ( j = 0 ; j < 3 ; j++ )
|
|
if ( p1[j] > MAX_WORLD_COORD || p1[j] < MIN_WORLD_COORD ) {
|
|
Error( "CheckFace: MAX_WORLD_COORD exceeded: %f",p1[j] );
|
|
}
|
|
|
|
j = i + 1 == w->numpoints ? 0 : i + 1;
|
|
|
|
// check the point is on the face plane
|
|
d = DotProduct( p1, facenormal ) - facedist;
|
|
if ( d < -ON_EPSILON || d > ON_EPSILON ) {
|
|
Error( "CheckWinding: point off plane" );
|
|
}
|
|
|
|
// check the edge isnt degenerate
|
|
p2 = w->p[j];
|
|
VectorSubtract( p2, p1, dir );
|
|
|
|
if ( VectorLength( dir ) < ON_EPSILON ) {
|
|
Error( "CheckWinding: degenerate edge" );
|
|
}
|
|
|
|
CrossProduct( facenormal, dir, edgenormal );
|
|
VectorNormalize( edgenormal, edgenormal );
|
|
edgedist = DotProduct( p1, edgenormal );
|
|
edgedist += ON_EPSILON;
|
|
|
|
// all other points must be on front side
|
|
for ( j = 0 ; j < w->numpoints ; j++ )
|
|
{
|
|
if ( j == i ) {
|
|
continue;
|
|
}
|
|
d = DotProduct( w->p[j], edgenormal );
|
|
if ( d > edgedist ) {
|
|
Error( "CheckWinding: non-convex" );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
============
|
|
WindingOnPlaneSide
|
|
============
|
|
*/
|
|
int WindingOnPlaneSide( winding_t *w, vec3_t normal, vec_t dist ){
|
|
qboolean front, back;
|
|
int i;
|
|
vec_t d;
|
|
|
|
front = qfalse;
|
|
back = qfalse;
|
|
for ( i = 0 ; i < w->numpoints ; i++ )
|
|
{
|
|
d = DotProduct( w->p[i], normal ) - dist;
|
|
if ( d < -ON_EPSILON ) {
|
|
if ( front ) {
|
|
return SIDE_CROSS;
|
|
}
|
|
back = qtrue;
|
|
continue;
|
|
}
|
|
if ( d > ON_EPSILON ) {
|
|
if ( back ) {
|
|
return SIDE_CROSS;
|
|
}
|
|
front = qtrue;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if ( back ) {
|
|
return SIDE_BACK;
|
|
}
|
|
if ( front ) {
|
|
return SIDE_FRONT;
|
|
}
|
|
return SIDE_ON;
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
AddWindingToConvexHull
|
|
|
|
Both w and *hull are on the same plane
|
|
=================
|
|
*/
|
|
#define MAX_HULL_POINTS 128
|
|
void AddWindingToConvexHull( winding_t *w, winding_t **hull, vec3_t normal ) {
|
|
int i, j, k;
|
|
float *p, *copy;
|
|
vec3_t dir;
|
|
float d;
|
|
int numHullPoints, numNew;
|
|
vec3_t hullPoints[MAX_HULL_POINTS];
|
|
vec3_t newHullPoints[MAX_HULL_POINTS];
|
|
vec3_t hullDirs[MAX_HULL_POINTS];
|
|
qboolean hullSide[MAX_HULL_POINTS];
|
|
qboolean outside;
|
|
|
|
if ( !*hull ) {
|
|
*hull = CopyWinding( w );
|
|
return;
|
|
}
|
|
|
|
numHullPoints = ( *hull )->numpoints;
|
|
memcpy( hullPoints, ( *hull )->p, numHullPoints * sizeof( vec3_t ) );
|
|
|
|
for ( i = 0 ; i < w->numpoints ; i++ ) {
|
|
p = w->p[i];
|
|
|
|
// calculate hull side vectors
|
|
for ( j = 0 ; j < numHullPoints ; j++ ) {
|
|
k = ( j + 1 ) % numHullPoints;
|
|
|
|
VectorSubtract( hullPoints[k], hullPoints[j], dir );
|
|
VectorNormalize( dir, dir );
|
|
CrossProduct( normal, dir, hullDirs[j] );
|
|
}
|
|
|
|
outside = qfalse;
|
|
for ( j = 0 ; j < numHullPoints ; j++ ) {
|
|
VectorSubtract( p, hullPoints[j], dir );
|
|
d = DotProduct( dir, hullDirs[j] );
|
|
if ( d >= ON_EPSILON ) {
|
|
outside = qtrue;
|
|
}
|
|
if ( d >= -ON_EPSILON ) {
|
|
hullSide[j] = qtrue;
|
|
}
|
|
else {
|
|
hullSide[j] = qfalse;
|
|
}
|
|
}
|
|
|
|
// if the point is effectively inside, do nothing
|
|
if ( !outside ) {
|
|
continue;
|
|
}
|
|
|
|
// find the back side to front side transition
|
|
for ( j = 0 ; j < numHullPoints ; j++ ) {
|
|
if ( !hullSide[ j % numHullPoints ] && hullSide[ ( j + 1 ) % numHullPoints ] ) {
|
|
break;
|
|
}
|
|
}
|
|
if ( j == numHullPoints ) {
|
|
continue;
|
|
}
|
|
|
|
// insert the point here
|
|
VectorCopy( p, newHullPoints[0] );
|
|
numNew = 1;
|
|
|
|
// copy over all points that aren't double fronts
|
|
j = ( j + 1 ) % numHullPoints;
|
|
for ( k = 0 ; k < numHullPoints ; k++ ) {
|
|
if ( hullSide[ ( j + k ) % numHullPoints ] && hullSide[ ( j + k + 1 ) % numHullPoints ] ) {
|
|
continue;
|
|
}
|
|
copy = hullPoints[ ( j + k + 1 ) % numHullPoints ];
|
|
VectorCopy( copy, newHullPoints[numNew] );
|
|
numNew++;
|
|
}
|
|
|
|
numHullPoints = numNew;
|
|
memcpy( hullPoints, newHullPoints, numHullPoints * sizeof( vec3_t ) );
|
|
}
|
|
|
|
FreeWinding( *hull );
|
|
w = AllocWinding( numHullPoints );
|
|
w->numpoints = numHullPoints;
|
|
*hull = w;
|
|
memcpy( w->p, hullPoints, numHullPoints * sizeof( vec3_t ) );
|
|
}
|