vmap/radiant/patch.cpp
2020-11-17 12:16:16 +01:00

2957 lines
101 KiB
C++

/*
Copyright (C) 2001-2006, William Joseph.
All Rights Reserved.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#define _USE_MATH_DEFINES
#include "patch.h"
#include <glib.h>
#include "preferences.h"
#include "brush_primit.h"
#include "signal/signal.h"
Signal0 g_patchTextureChangedCallbacks;
void Patch_addTextureChangedCallback(const SignalHandler &handler)
{
g_patchTextureChangedCallbacks.connectLast(handler);
}
void Patch_textureChanged()
{
g_patchTextureChangedCallbacks();
}
Shader *PatchInstance::m_state_selpoint;
Shader *Patch::m_state_ctrl;
Shader *Patch::m_state_lattice;
EPatchType Patch::m_type;
std::size_t MAX_PATCH_WIDTH = 0;
std::size_t MAX_PATCH_HEIGHT = 0;
int g_PatchSubdivideThreshold = 4;
void BezierCurveTree_Delete(BezierCurveTree *pCurve)
{
if (pCurve) {
BezierCurveTree_Delete(pCurve->left);
BezierCurveTree_Delete(pCurve->right);
delete pCurve;
}
}
std::size_t BezierCurveTree_Setup(BezierCurveTree *pCurve, std::size_t index, std::size_t stride)
{
if (pCurve) {
if (pCurve->left && pCurve->right) {
index = BezierCurveTree_Setup(pCurve->left, index, stride);
pCurve->index = index * stride;
index++;
index = BezierCurveTree_Setup(pCurve->right, index, stride);
} else {
pCurve->index = BEZIERCURVETREE_MAX_INDEX;
}
}
return index;
}
bool BezierCurve_IsCurved(BezierCurve *pCurve)
{
Vector3 vTemp(vector3_subtracted(pCurve->right, pCurve->left));
Vector3 v1(vector3_subtracted(pCurve->crd, pCurve->left));
Vector3 v2(vector3_subtracted(pCurve->right, pCurve->crd));
if (vector3_equal(v1, g_vector3_identity) || vector3_equal(vTemp, v1)) { // return 0 if 1->2 == 0 or 1->2 == 1->3
return false;
}
vector3_normalise(v1);
vector3_normalise(v2);
if (vector3_equal(v1, v2)) {
return false;
}
Vector3 v3(vTemp);
const double width = vector3_length(v3);
vector3_scale(v3, 1.0 / width);
if (vector3_equal(v1, v3) && vector3_equal(v2, v3)) {
return false;
}
const double angle = acos(vector3_dot(v1, v2)) / c_pi;
const double index = width * angle;
if (index > static_cast<double>( g_PatchSubdivideThreshold )) {
return true;
}
return false;
}
void BezierInterpolate(BezierCurve *pCurve)
{
pCurve->left = vector3_mid(pCurve->left, pCurve->crd);
pCurve->right = vector3_mid(pCurve->crd, pCurve->right);
pCurve->crd = vector3_mid(pCurve->left, pCurve->right);
}
const std::size_t PATCH_MAX_SUBDIVISION_DEPTH = 16;
void BezierCurveTree_FromCurveList(BezierCurveTree *pTree, GSList *pCurveList, std::size_t depth = 0)
{
GSList *pLeftList = 0;
GSList *pRightList = 0;
BezierCurve *pCurve, *pLeftCurve, *pRightCurve;
bool bSplit = false;
for (GSList *l = pCurveList; l; l = l->next) {
pCurve = (BezierCurve *) (l->data);
if (bSplit || BezierCurve_IsCurved(pCurve)) {
bSplit = true;
pLeftCurve = new BezierCurve;
pRightCurve = new BezierCurve;
pLeftCurve->left = pCurve->left;
pRightCurve->right = pCurve->right;
BezierInterpolate(pCurve);
pLeftCurve->crd = pCurve->left;
pRightCurve->crd = pCurve->right;
pLeftCurve->right = pCurve->crd;
pRightCurve->left = pCurve->crd;
pLeftList = g_slist_prepend(pLeftList, pLeftCurve);
pRightList = g_slist_prepend(pRightList, pRightCurve);
}
}
if (pLeftList != 0 && pRightList != 0 && depth != PATCH_MAX_SUBDIVISION_DEPTH) {
pTree->left = new BezierCurveTree;
pTree->right = new BezierCurveTree;
BezierCurveTree_FromCurveList(pTree->left, pLeftList, depth + 1);
BezierCurveTree_FromCurveList(pTree->right, pRightList, depth + 1);
for (GSList *l = pLeftList; l != 0; l = g_slist_next(l)) {
delete (BezierCurve *) l->data;
}
for (GSList *l = pRightList; l != 0; l = g_slist_next(l)) {
delete (BezierCurve *) l->data;
}
g_slist_free(pLeftList);
g_slist_free(pRightList);
} else {
pTree->left = 0;
pTree->right = 0;
}
}
int Patch::m_CycleCapIndex = 0;
void Patch::setDims(std::size_t w, std::size_t h)
{
if ((w % 2) == 0) {
w -= 1;
}
ASSERT_MESSAGE(w <= MAX_PATCH_WIDTH, "patch too wide");
if (w > MAX_PATCH_WIDTH) {
w = MAX_PATCH_WIDTH;
} else if (w < MIN_PATCH_WIDTH) {
w = MIN_PATCH_WIDTH;
}
if ((h % 2) == 0) {
m_height -= 1;
}
ASSERT_MESSAGE(h <= MAX_PATCH_HEIGHT, "patch too tall");
if (h > MAX_PATCH_HEIGHT) {
h = MAX_PATCH_HEIGHT;
} else if (h < MIN_PATCH_HEIGHT) {
h = MIN_PATCH_HEIGHT;
}
m_width = w;
m_height = h;
if (m_width * m_height != m_ctrl.size()) {
m_ctrl.resize(m_width * m_height);
onAllocate(m_ctrl.size());
}
}
inline const Colour4b &colour_for_index(std::size_t i, std::size_t width)
{
return (i % 2 || (i / width) % 2) ? colour_inside : colour_corner;
}
inline bool float_valid(float f)
{
return f == f;
}
bool Patch::isValid() const
{
if (!m_width || !m_height) {
return false;
}
for (const_iterator i = m_ctrl.begin(); i != m_ctrl.end(); ++i) {
if (!float_valid((*i).m_vertex.x())
|| !float_valid((*i).m_vertex.y())
|| !float_valid((*i).m_vertex.z())
|| !float_valid((*i).m_texcoord.x())
|| !float_valid((*i).m_texcoord.y())) {
globalErrorStream() << "patch has invalid control points\n";
return false;
}
}
return true;
}
void Patch::UpdateCachedData()
{
m_ctrl_vertices.clear();
m_lattice_indices.clear();
if (!isValid()) {
m_tess.m_numStrips = 0;
m_tess.m_lenStrips = 0;
m_tess.m_nArrayHeight = 0;
m_tess.m_nArrayWidth = 0;
m_tess.m_curveTreeU.resize(0);
m_tess.m_curveTreeV.resize(0);
m_tess.m_indices.resize(0);
m_tess.m_vertices.resize(0);
m_tess.m_arrayHeight.resize(0);
m_tess.m_arrayWidth.resize(0);
m_aabb_local = AABB();
return;
}
BuildTesselationCurves(ROW);
BuildTesselationCurves(COL);
BuildVertexArray();
AccumulateBBox();
IndexBuffer ctrl_indices;
m_lattice_indices.reserve(((m_width * (m_height - 1)) + (m_height * (m_width - 1))) << 1);
ctrl_indices.reserve(m_ctrlTransformed.size());
{
UniqueVertexBuffer<PointVertex> inserter(m_ctrl_vertices);
for (iterator i = m_ctrlTransformed.begin(); i != m_ctrlTransformed.end(); ++i) {
ctrl_indices.insert(inserter.insert(pointvertex_quantised(
PointVertex(reinterpret_cast<const Vertex3f &>((*i).m_vertex ),
colour_for_index(i - m_ctrlTransformed.begin(), m_width)))));
}
}
{
for (IndexBuffer::iterator i = ctrl_indices.begin(); i != ctrl_indices.end(); ++i) {
if (std::size_t(i - ctrl_indices.begin()) % m_width) {
m_lattice_indices.insert(*(i - 1));
m_lattice_indices.insert(*i);
}
if (std::size_t(i - ctrl_indices.begin()) >= m_width) {
m_lattice_indices.insert(*(i - m_width));
m_lattice_indices.insert(*i);
}
}
}
#if 0
{
Array<RenderIndex>::iterator first = m_tess.m_indices.begin();
for ( std::size_t s = 0; s < m_tess.m_numStrips; s++ )
{
Array<RenderIndex>::iterator last = first + m_tess.m_lenStrips;
for ( Array<RenderIndex>::iterator i( first ); i + 2 != last; i += 2 )
{
ArbitraryMeshTriangle_sumTangents( m_tess.m_vertices[*( i + 0 )], m_tess.m_vertices[*( i + 1 )], m_tess.m_vertices[*( i + 2 )] );
ArbitraryMeshTriangle_sumTangents( m_tess.m_vertices[*( i + 2 )], m_tess.m_vertices[*( i + 1 )], m_tess.m_vertices[*( i + 3 )] );
}
first = last;
}
for ( Array<ArbitraryMeshVertex>::iterator i = m_tess.m_vertices.begin(); i != m_tess.m_vertices.end(); ++i )
{
vector3_normalise( reinterpret_cast<Vector3&>( ( *i ).tangent ) );
vector3_normalise( reinterpret_cast<Vector3&>( ( *i ).bitangent ) );
}
}
#endif
SceneChangeNotify();
}
void Patch::InvertMatrix()
{
undoSave();
PatchControlArray_invert(m_ctrl, m_width, m_height);
controlPointsChanged();
}
void Patch::TransposeMatrix()
{
undoSave();
{
Array<PatchControl> tmp(m_width * m_height);
copy_ctrl(tmp.data(), m_ctrl.data(), m_ctrl.data() + m_width * m_height);
PatchControlIter from = tmp.data();
for (std::size_t h = 0; h != m_height; ++h) {
PatchControlIter to = m_ctrl.data() + h;
for (std::size_t w = 0; w != m_width; ++w, ++from, to += m_height) {
*to = *from;
}
}
}
{
std::size_t tmp = m_width;
m_width = m_height;
m_height = tmp;
}
controlPointsChanged();
}
void Patch::Redisperse(EMatrixMajor mt)
{
std::size_t w, h, width, height, row_stride, col_stride;
PatchControl *p1, *p2, *p3;
undoSave();
switch (mt) {
case COL:
width = (m_width - 1) >> 1;
height = m_height;
col_stride = 1;
row_stride = m_width;
break;
case ROW:
width = (m_height - 1) >> 1;
height = m_width;
col_stride = m_width;
row_stride = 1;
break;
default:
ERROR_MESSAGE("neither row-major nor column-major");
return;
}
for (h = 0; h < height; h++) {
p1 = m_ctrl.data() + (h * row_stride);
for (w = 0; w < width; w++) {
p2 = p1 + col_stride;
p3 = p2 + col_stride;
p2->m_vertex = vector3_mid(p1->m_vertex, p3->m_vertex);
p1 = p3;
}
}
controlPointsChanged();
}
void Patch::Smooth(EMatrixMajor mt)
{
std::size_t w, h, width, height, row_stride, col_stride;
bool wrap;
PatchControl *p1, *p2, *p3, *p2b;
undoSave();
switch (mt) {
case COL:
width = (m_width - 1) >> 1;
height = m_height;
col_stride = 1;
row_stride = m_width;
break;
case ROW:
width = (m_height - 1) >> 1;
height = m_width;
col_stride = m_width;
row_stride = 1;
break;
default:
ERROR_MESSAGE("neither row-major nor column-major");
return;
}
wrap = true;
for (h = 0; h < height; h++) {
p1 = m_ctrl.data() + (h * row_stride);
p2 = p1 + (2 * width) * col_stride;
//globalErrorStream() << "compare " << p1->m_vertex << " and " << p2->m_vertex << "\n";
if (vector3_length_squared(vector3_subtracted(p1->m_vertex, p2->m_vertex)) > 1.0) {
//globalErrorStream() << "too far\n";
wrap = false;
break;
}
}
for (h = 0; h < height; h++) {
p1 = m_ctrl.data() + (h * row_stride) + col_stride;
for (w = 0; w < width - 1; w++) {
p2 = p1 + col_stride;
p3 = p2 + col_stride;
p2->m_vertex = vector3_mid(p1->m_vertex, p3->m_vertex);
p1 = p3;
}
if (wrap) {
p1 = m_ctrl.data() + (h * row_stride) + (2 * width - 1) * col_stride;
p2 = m_ctrl.data() + (h * row_stride);
p2b = m_ctrl.data() + (h * row_stride) + (2 * width) * col_stride;
p3 = m_ctrl.data() + (h * row_stride) + col_stride;
p2->m_vertex = p2b->m_vertex = vector3_mid(p1->m_vertex, p3->m_vertex);
}
}
controlPointsChanged();
}
void Patch::InsertRemove(bool bInsert, bool bColumn, bool bFirst)
{
undoSave();
if (bInsert) {
if (bColumn && (m_width + 2 <= MAX_PATCH_WIDTH)) {
InsertPoints(COL, bFirst);
} else if (m_height + 2 <= MAX_PATCH_HEIGHT) {
InsertPoints(ROW, bFirst);
}
} else {
if (bColumn && (m_width - 2 >= MIN_PATCH_WIDTH)) {
RemovePoints(COL, bFirst);
} else if (m_height - 2 >= MIN_PATCH_HEIGHT) {
RemovePoints(ROW, bFirst);
}
}
controlPointsChanged();
}
Patch *Patch::MakeCap(Patch *patch, EPatchCap eType, EMatrixMajor mt, bool bFirst)
{
std::size_t i, width, height;
switch (mt) {
case ROW:
width = m_width;
height = m_height;
break;
case COL:
width = m_height;
height = m_width;
break;
default:
ERROR_MESSAGE("neither row-major nor column-major");
return 0;
}
Array<Vector3> p(width);
std::size_t nIndex = (bFirst) ? 0 : height - 1;
if (mt == ROW) {
for (i = 0; i < width; i++) {
p[(bFirst) ? i : (width - 1) - i] = ctrlAt(nIndex, i).m_vertex;
}
} else {
for (i = 0; i < width; i++) {
p[(bFirst) ? i : (width - 1) - i] = ctrlAt(i, nIndex).m_vertex;
}
}
patch->ConstructSeam(eType, p.data(), width);
return patch;
}
void Patch::FlipTexture(int nAxis)
{
undoSave();
for (PatchControlIter i = m_ctrl.data(); i != m_ctrl.data() + m_ctrl.size(); ++i) {
(*i).m_texcoord[nAxis] = -(*i).m_texcoord[nAxis];
}
controlPointsChanged();
}
void Patch::TranslateTexture(float s, float t)
{
undoSave();
s = -1 * s / m_state->getTexture().width;
t = t / m_state->getTexture().height;
for (PatchControlIter i = m_ctrl.data(); i != m_ctrl.data() + m_ctrl.size(); ++i) {
(*i).m_texcoord[0] += s;
(*i).m_texcoord[1] += t;
}
controlPointsChanged();
}
void Patch::ScaleTexture(float s, float t)
{
undoSave();
for (PatchControlIter i = m_ctrl.data(); i != m_ctrl.data() + m_ctrl.size(); ++i) {
(*i).m_texcoord[0] *= s;
(*i).m_texcoord[1] *= t;
}
controlPointsChanged();
}
void Patch::RotateTexture(float angle)
{
undoSave();
const float s = static_cast<float>( sin(degrees_to_radians(angle)));
const float c = static_cast<float>( cos(degrees_to_radians(angle)));
for (PatchControlIter i = m_ctrl.data(); i != m_ctrl.data() + m_ctrl.size(); ++i) {
const float x = (*i).m_texcoord[0];
const float y = (*i).m_texcoord[1];
(*i).m_texcoord[0] = (x * c) - (y * s);
(*i).m_texcoord[1] = (y * c) + (x * s);
}
controlPointsChanged();
}
void Patch::SetTextureRepeat(float s, float t)
{
std::size_t w, h;
float si, ti, sc, tc;
PatchControl *pDest;
undoSave();
si = s / (float) (m_width - 1);
ti = t / (float) (m_height - 1);
pDest = m_ctrl.data();
for (h = 0, tc = 0.0f; h < m_height; h++, tc += ti) {
for (w = 0, sc = 0.0f; w < m_width; w++, sc += si) {
pDest->m_texcoord[0] = sc;
pDest->m_texcoord[1] = tc;
pDest++;
}
}
controlPointsChanged();
}
/*
void Patch::SetTextureInfo(texdef_t *pt)
{
if(pt->getShift()[0] || pt->getShift()[1])
TranslateTexture (pt->getShift()[0], pt->getShift()[1]);
else if(pt->getScale()[0] || pt->getScale()[1])
{
if(pt->getScale()[0] == 0.0f) pt->setScale(0, 1.0f);
if(pt->getScale()[1] == 0.0f) pt->setScale(1, 1.0f);
ScaleTexture (pt->getScale()[0], pt->getScale()[1]);
}
else if(pt->rotate)
RotateTexture (pt->rotate);
}
*/
inline int texture_axis(const Vector3 &normal)
{
// axis dominance order: Z, X, Y
return (normal.x() >= normal.y()) ? (normal.x() > normal.z()) ? 0 : 2 : (normal.y() > normal.z()) ? 1 : 2;
}
void Patch::CapTexture()
{
const PatchControl &p1 = m_ctrl[m_width];
const PatchControl &p2 = m_ctrl[m_width * (m_height - 1)];
const PatchControl &p3 = m_ctrl[(m_width * m_height) - 1];
Vector3 normal(g_vector3_identity);
{
Vector3 tmp(vector3_cross(
vector3_subtracted(p2.m_vertex, m_ctrl[0].m_vertex),
vector3_subtracted(p3.m_vertex, m_ctrl[0].m_vertex)
));
if (!vector3_equal(tmp, g_vector3_identity)) {
vector3_add(normal, tmp);
}
}
{
Vector3 tmp(vector3_cross(
vector3_subtracted(p1.m_vertex, p3.m_vertex),
vector3_subtracted(m_ctrl[0].m_vertex, p3.m_vertex)
));
if (!vector3_equal(tmp, g_vector3_identity)) {
vector3_add(normal, tmp);
}
}
ProjectTexture(texture_axis(normal));
}
// uses longest parallel chord to calculate texture coords for each row/col
void Patch::NaturalTexture()
{
undoSave();
{
float fSize = (float) m_state->getTexture().width * Texdef_getDefaultTextureScale();
double texBest = 0;
double tex = 0;
PatchControl *pWidth = m_ctrl.data();
for (std::size_t w = 0; w < m_width; w++, pWidth++) {
{
PatchControl *pHeight = pWidth;
for (std::size_t h = 0; h < m_height; h++, pHeight += m_width) {
pHeight->m_texcoord[0] = static_cast<float>( tex );
}
}
if (w + 1 == m_width) {
break;
}
{
PatchControl *pHeight = pWidth;
for (std::size_t h = 0; h < m_height; h++, pHeight += m_width) {
Vector3 v(vector3_subtracted(pHeight->m_vertex, (pHeight + 1)->m_vertex));
double length = tex + (vector3_length(v) / fSize);
if (fabs(length) > texBest) {
texBest = length;
}
}
}
tex = texBest;
}
}
{
float fSize = -(float) m_state->getTexture().height * Texdef_getDefaultTextureScale();
double texBest = 0;
double tex = 0;
PatchControl *pHeight = m_ctrl.data();
for (std::size_t h = 0; h < m_height; h++, pHeight += m_width) {
{
PatchControl *pWidth = pHeight;
for (std::size_t w = 0; w < m_width; w++, pWidth++) {
pWidth->m_texcoord[1] = static_cast<float>( tex );
}
}
if (h + 1 == m_height) {
break;
}
{
PatchControl *pWidth = pHeight;
for (std::size_t w = 0; w < m_width; w++, pWidth++) {
Vector3 v(vector3_subtracted(pWidth->m_vertex, (pWidth + m_width)->m_vertex));
double length = tex + (vector3_length(v) / fSize);
if (fabs(length) > texBest) {
texBest = length;
}
}
}
tex = texBest;
}
}
controlPointsChanged();
}
void Patch::IdentityColour()
{
PatchControl *pCtrl = m_ctrl.data();
for (std::size_t h = 0; h < m_height; h++) {
for (std::size_t w = 0; w < m_width; w++, ++pCtrl) {
pCtrl->m_color = Vector4(1,1,1,1);
}
}
}
// private:
void Patch::AccumulateBBox()
{
m_aabb_local = AABB();
for (PatchControlArray::iterator i = m_ctrlTransformed.begin(); i != m_ctrlTransformed.end(); ++i) {
aabb_extend_by_point_safe(m_aabb_local, (*i).m_vertex);
}
m_boundsChanged();
m_lightsChanged();
}
void Patch::InsertPoints(EMatrixMajor mt, bool bFirst)
{
std::size_t width, height, row_stride, col_stride;
switch (mt) {
case ROW:
col_stride = 1;
row_stride = m_width;
width = m_width;
height = m_height;
break;
case COL:
col_stride = m_width;
row_stride = 1;
width = m_height;
height = m_width;
break;
default:
ERROR_MESSAGE("neither row-major nor column-major");
return;
}
std::size_t pos = 0;
{
PatchControl *p1 = m_ctrl.data();
/*
if(GlobalSelectionSystem().countSelected() != 0)
{
scene::Instance& instance = GlobalSelectionSystem().ultimateSelected();
PatchInstance* patch = Instance_getPatch(instance);
patch->m_selectable.isSelected();
}
*/
for (std::size_t w = 0; w != width; ++w, p1 += col_stride) {
{
PatchControl *p2 = p1;
for (std::size_t h = 1; h < height; h += 2, p2 += 2 * row_stride) {
if (0) { //p2->m_selectable.isSelected())
pos = h;
break;
}
}
if (pos != 0) {
break;
}
}
{
PatchControl *p2 = p1;
for (std::size_t h = 0; h < height; h += 2, p2 += 2 * row_stride) {
if (0) { //p2->m_selectable.isSelected())
pos = h;
break;
}
}
if (pos != 0) {
break;
}
}
}
}
Array<PatchControl> tmp(m_ctrl);
std::size_t row_stride2, col_stride2;
switch (mt) {
case ROW:
setDims(m_width, m_height + 2);
col_stride2 = 1;
row_stride2 = m_width;
break;
case COL:
setDims(m_width + 2, m_height);
col_stride2 = m_width;
row_stride2 = 1;
break;
default:
ERROR_MESSAGE("neither row-major nor column-major");
return;
}
if (bFirst) {
pos = height - 1;
} else {
pos = 2;
}
if (pos >= height) {
if (bFirst) {
pos = height - 1;
} else {
pos = 2;
}
} else if (pos == 0) {
pos = 2;
} else if (pos % 2) {
++pos;
}
for (std::size_t w = 0; w != width; ++w) {
PatchControl *p1 = tmp.data() + (w * col_stride);
PatchControl *p2 = m_ctrl.data() + (w * col_stride2);
for (std::size_t h = 0; h != height; ++h, p2 += row_stride2, p1 += row_stride) {
if (h == pos) {
p2 += 2 * row_stride2;
}
*p2 = *p1;
}
p1 = tmp.data() + (w * col_stride + pos * row_stride);
p2 = m_ctrl.data() + (w * col_stride2 + pos * row_stride2);
PatchControl *r2a = (p2 + row_stride2);
PatchControl *r2b = (p2 - row_stride2);
PatchControl *c2a = (p1 - 2 * row_stride);
PatchControl *c2b = (p1 - row_stride);
// set two new row points
*(p2 + 2 * row_stride2) = *p1;
*r2a = *c2b;
for (std::size_t i = 0; i != 3; ++i) {
r2a->m_vertex[i] = float_mid(c2b->m_vertex[i], p1->m_vertex[i]);
r2b->m_vertex[i] = float_mid(c2a->m_vertex[i], c2b->m_vertex[i]);
p2->m_vertex[i] = float_mid(r2a->m_vertex[i], r2b->m_vertex[i]);
}
for (std::size_t i = 0; i != 2; ++i) {
r2a->m_texcoord[i] = float_mid(c2b->m_texcoord[i], p1->m_texcoord[i]);
r2b->m_texcoord[i] = float_mid(c2a->m_texcoord[i], c2b->m_texcoord[i]);
p2->m_texcoord[i] = float_mid(r2a->m_texcoord[i], r2b->m_texcoord[i]);
}
for (std::size_t i = 0; i != 4; ++i) {
r2a->m_color[i] = float_mid(c2b->m_color[i], p1->m_color[i]);
r2b->m_color[i] = float_mid(c2a->m_color[i], c2b->m_color[i]);
p2->m_color[i] = float_mid(r2a->m_color[i], r2b->m_color[i]);
}
}
}
void Patch::RemovePoints(EMatrixMajor mt, bool bFirst)
{
std::size_t width, height, row_stride, col_stride;
switch (mt) {
case ROW:
col_stride = 1;
row_stride = m_width;
width = m_width;
height = m_height;
break;
case COL:
col_stride = m_width;
row_stride = 1;
width = m_height;
height = m_width;
break;
default:
ERROR_MESSAGE("neither row-major nor column-major");
return;
}
std::size_t pos = 0;
{
PatchControl *p1 = m_ctrl.data();
for (std::size_t w = 0; w != width; ++w, p1 += col_stride) {
{
PatchControl *p2 = p1;
for (std::size_t h = 1; h < height; h += 2, p2 += 2 * row_stride) {
if (0) { //p2->m_selectable.isSelected())
pos = h;
break;
}
}
if (pos != 0) {
break;
}
}
{
PatchControl *p2 = p1;
for (std::size_t h = 0; h < height; h += 2, p2 += 2 * row_stride) {
if (0) { //p2->m_selectable.isSelected())
pos = h;
break;
}
}
if (pos != 0) {
break;
}
}
}
}
Array<PatchControl> tmp(m_ctrl);
std::size_t row_stride2, col_stride2;
switch (mt) {
case ROW:
setDims(m_width, m_height - 2);
col_stride2 = 1;
row_stride2 = m_width;
break;
case COL:
setDims(m_width - 2, m_height);
col_stride2 = m_width;
row_stride2 = 1;
break;
default:
ERROR_MESSAGE("neither row-major nor column-major");
return;
}
if (bFirst) {
pos = height - 3;
} else {
pos = 2;
}
if (pos >= height) {
if (bFirst) {
pos = height - 3;
} else {
pos = 2;
}
} else if (pos == 0) {
pos = 2;
} else if (pos > height - 3) {
pos = height - 3;
} else if (pos % 2) {
++pos;
}
for (std::size_t w = 0; w != width; w++) {
PatchControl *p1 = tmp.data() + (w * col_stride);
PatchControl *p2 = m_ctrl.data() + (w * col_stride2);
for (std::size_t h = 0; h != height; ++h, p2 += row_stride2, p1 += row_stride) {
if (h == pos) {
p1 += 2 * row_stride2;
h += 2;
}
*p2 = *p1;
}
p1 = tmp.data() + (w * col_stride + pos * row_stride);
p2 = m_ctrl.data() + (w * col_stride2 + pos * row_stride2);
for (std::size_t i = 0; i < 3; i++) {
(p2 - row_stride2)->m_vertex[i] =
((p1 + 2 * row_stride)->m_vertex[i] + (p1 - 2 * row_stride)->m_vertex[i]) * 0.5f;
(p2 - row_stride2)->m_vertex[i] =
(p2 - row_stride2)->m_vertex[i] + (2.0f * ((p1)->m_vertex[i] - (p2 - row_stride2)->m_vertex[i]));
}
for (std::size_t i = 0; i < 2; i++) {
(p2 - row_stride2)->m_texcoord[i] =
((p1 + 2 * row_stride)->m_texcoord[i] + (p1 - 2 * row_stride)->m_texcoord[i]) * 0.5f;
(p2 - row_stride2)->m_texcoord[i] = (p2 - row_stride2)->m_texcoord[i] +
(2.0f * ((p1)->m_texcoord[i] - (p2 - row_stride2)->m_texcoord[i]));
}
}
}
void Patch::ConstructSeam(EPatchCap eType, Vector3 *p, std::size_t width)
{
switch (eType) {
case eCapIBevel: {
setDims(3, 3);
m_ctrl[0].m_vertex = p[0];
m_ctrl[1].m_vertex = p[1];
m_ctrl[2].m_vertex = p[1];
m_ctrl[3].m_vertex = p[1];
m_ctrl[4].m_vertex = p[1];
m_ctrl[5].m_vertex = p[1];
m_ctrl[6].m_vertex = p[2];
m_ctrl[7].m_vertex = p[1];
m_ctrl[8].m_vertex = p[1];
}
break;
case eCapBevel: {
setDims(3, 3);
Vector3 p3(vector3_added(p[2], vector3_subtracted(p[0], p[1])));
m_ctrl[0].m_vertex = p3;
m_ctrl[1].m_vertex = p3;
m_ctrl[2].m_vertex = p[2];
m_ctrl[3].m_vertex = p3;
m_ctrl[4].m_vertex = p3;
m_ctrl[5].m_vertex = p[1];
m_ctrl[6].m_vertex = p3;
m_ctrl[7].m_vertex = p3;
m_ctrl[8].m_vertex = p[0];
}
break;
case eCapEndCap: {
Vector3 p5(vector3_mid(p[0], p[4]));
setDims(3, 3);
m_ctrl[0].m_vertex = p[0];
m_ctrl[1].m_vertex = p5;
m_ctrl[2].m_vertex = p[4];
m_ctrl[3].m_vertex = p[1];
m_ctrl[4].m_vertex = p[2];
m_ctrl[5].m_vertex = p[3];
m_ctrl[6].m_vertex = p[2];
m_ctrl[7].m_vertex = p[2];
m_ctrl[8].m_vertex = p[2];
}
break;
case eCapIEndCap: {
setDims(5, 3);
m_ctrl[0].m_vertex = p[4];
m_ctrl[1].m_vertex = p[3];
m_ctrl[2].m_vertex = p[2];
m_ctrl[3].m_vertex = p[1];
m_ctrl[4].m_vertex = p[0];
m_ctrl[5].m_vertex = p[3];
m_ctrl[6].m_vertex = p[3];
m_ctrl[7].m_vertex = p[2];
m_ctrl[8].m_vertex = p[1];
m_ctrl[9].m_vertex = p[1];
m_ctrl[10].m_vertex = p[3];
m_ctrl[11].m_vertex = p[3];
m_ctrl[12].m_vertex = p[2];
m_ctrl[13].m_vertex = p[1];
m_ctrl[14].m_vertex = p[1];
}
break;
case eCapCylinder: {
std::size_t mid = (width - 1) >> 1;
bool degenerate = (mid % 2) != 0;
std::size_t newHeight = mid + (degenerate ? 2 : 1);
setDims(3, newHeight);
if (degenerate) {
++mid;
for (std::size_t i = width; i != width + 2; ++i) {
p[i] = p[width - 1];
}
}
{
PatchControl *pCtrl = m_ctrl.data();
for (std::size_t i = 0; i != m_height; ++i, pCtrl += m_width) {
pCtrl->m_vertex = p[i];
}
}
{
PatchControl *pCtrl = m_ctrl.data() + 2;
std::size_t h = m_height - 1;
for (std::size_t i = 0; i != m_height; ++i, pCtrl += m_width) {
pCtrl->m_vertex = p[h + (h - i)];
}
}
Redisperse(COL);
}
break;
default:
ERROR_MESSAGE("invalid patch-cap type");
return;
}
CapTexture();
controlPointsChanged();
}
void Patch::ProjectTexture(int nAxis)
{
undoSave();
int s, t;
switch (nAxis) {
case 2:
s = 0;
t = 1;
break;
case 0:
s = 1;
t = 2;
break;
case 1:
s = 0;
t = 2;
break;
default:
ERROR_MESSAGE("invalid axis");
return;
}
float fWidth = 1 / (m_state->getTexture().width * Texdef_getDefaultTextureScale());
float fHeight = 1 / (m_state->getTexture().height * -Texdef_getDefaultTextureScale());
for (PatchControlIter i = m_ctrl.data(); i != m_ctrl.data() + m_ctrl.size(); ++i) {
(*i).m_texcoord[0] = (*i).m_vertex[s] * fWidth;
(*i).m_texcoord[1] = (*i).m_vertex[t] * fHeight;
}
controlPointsChanged();
}
void Patch::constructPlane(const AABB &aabb, int axis, std::size_t width, std::size_t height)
{
setDims(width, height);
int x, y, z;
switch (axis) {
case 2:
x = 0;
y = 1;
z = 2;
break;
case 1:
x = 0;
y = 2;
z = 1;
break;
case 0:
x = 1;
y = 2;
z = 0;
break;
default:
ERROR_MESSAGE("invalid view-type");
return;
}
if (m_width < MIN_PATCH_WIDTH || m_width > MAX_PATCH_WIDTH) {
m_width = 3;
}
if (m_height < MIN_PATCH_HEIGHT || m_height > MAX_PATCH_HEIGHT) {
m_height = 3;
}
Vector3 vStart;
vStart[x] = aabb.origin[x] - aabb.extents[x];
vStart[y] = aabb.origin[y] - aabb.extents[y];
vStart[z] = aabb.origin[z];
float xAdj = fabsf((vStart[x] - (aabb.origin[x] + aabb.extents[x])) / (float) (m_width - 1));
float yAdj = fabsf((vStart[y] - (aabb.origin[y] + aabb.extents[y])) / (float) (m_height - 1));
Vector3 vTmp;
vTmp[z] = vStart[z];
PatchControl *pCtrl = m_ctrl.data();
vTmp[y] = vStart[y];
for (std::size_t h = 0; h < m_height; h++) {
vTmp[x] = vStart[x];
for (std::size_t w = 0; w < m_width; w++, ++pCtrl) {
pCtrl->m_vertex = vTmp;
vTmp[x] += xAdj;
}
vTmp[y] += yAdj;
}
IdentityColour();
NaturalTexture();
}
void Patch::ConstructPrefab(const AABB &aabb, EPatchPrefab eType, int axis, std::size_t width, std::size_t height)
{
Vector3 vPos[3];
if (eType != ePlane) {
vPos[0] = vector3_subtracted(aabb.origin, aabb.extents);
vPos[1] = aabb.origin;
vPos[2] = vector3_added(aabb.origin, aabb.extents);
}
if (eType == ePlane) {
constructPlane(aabb, axis, width, height);
} else if (eType == eSqCylinder
|| eType == eCylinder
|| eType == eDenseCylinder
|| eType == eVeryDenseCylinder
|| eType == eCone
|| eType == eSphere) {
unsigned char *pIndex;
unsigned char pCylIndex[] =
{
0, 0,
1, 0,
2, 0,
2, 1,
2, 2,
1, 2,
0, 2,
0, 1,
0, 0
};
PatchControl *pStart;
switch (eType) {
case eSqCylinder:
setDims(9, 3);
pStart = m_ctrl.data();
break;
case eDenseCylinder:
case eVeryDenseCylinder:
case eCylinder:
setDims(9, 3);
pStart = m_ctrl.data() + 1;
break;
case eCone:
setDims(9, 3);
pStart = m_ctrl.data() + 1;
break;
case eSphere:
setDims(9, 5);
pStart = m_ctrl.data() + (9 + 1);
break;
default:
ERROR_MESSAGE("this should be unreachable");
return;
}
for (std::size_t h = 0; h < 3; h++, pStart += 9) {
pIndex = pCylIndex;
PatchControl *pCtrl = pStart;
for (std::size_t w = 0; w < 8; w++, pCtrl++) {
pCtrl->m_vertex[0] = vPos[pIndex[0]][0];
pCtrl->m_vertex[1] = vPos[pIndex[1]][1];
pCtrl->m_vertex[2] = vPos[h][2];
pIndex += 2;
}
}
switch (eType) {
case eSqCylinder: {
PatchControl *pCtrl = m_ctrl.data();
for (std::size_t h = 0; h < 3; h++, pCtrl += 9) {
pCtrl[8].m_vertex = pCtrl[0].m_vertex;
}
}
break;
case eDenseCylinder:
case eVeryDenseCylinder:
case eCylinder: {
PatchControl *pCtrl = m_ctrl.data();
for (std::size_t h = 0; h < 3; h++, pCtrl += 9) {
pCtrl[0].m_vertex = pCtrl[8].m_vertex;
}
}
break;
case eCone: {
PatchControl *pCtrl = m_ctrl.data();
for (std::size_t h = 0; h < 2; h++, pCtrl += 9) {
pCtrl[0].m_vertex = pCtrl[8].m_vertex;
}
}
{
PatchControl *pCtrl = m_ctrl.data() + 9 * 2;
for (std::size_t w = 0; w < 9; w++, pCtrl++) {
pCtrl->m_vertex[0] = vPos[1][0];
pCtrl->m_vertex[1] = vPos[1][1];
pCtrl->m_vertex[2] = vPos[2][2];
}
}
break;
case eSphere: {
PatchControl *pCtrl = m_ctrl.data() + 9;
for (std::size_t h = 0; h < 3; h++, pCtrl += 9) {
pCtrl[0].m_vertex = pCtrl[8].m_vertex;
}
}
{
PatchControl *pCtrl = m_ctrl.data();
for (std::size_t w = 0; w < 9; w++, pCtrl++) {
pCtrl->m_vertex[0] = vPos[1][0];
pCtrl->m_vertex[1] = vPos[1][1];
pCtrl->m_vertex[2] = vPos[0][2];
}
}
{
PatchControl *pCtrl = m_ctrl.data() + (9 * 4);
for (std::size_t w = 0; w < 9; w++, pCtrl++) {
pCtrl->m_vertex[0] = vPos[1][0];
pCtrl->m_vertex[1] = vPos[1][1];
pCtrl->m_vertex[2] = vPos[2][2];
}
}
break;
default:
ERROR_MESSAGE("this should be unreachable");
return;
}
} else if (eType == eXactCylinder) {
int n = (width - 1) / 2; // n = number of segments
setDims(width, height);
// vPos[0] = vector3_subtracted(aabb.origin, aabb.extents);
// vPos[1] = aabb.origin;
// vPos[2] = vector3_added(aabb.origin, aabb.extents);
float f = 1 / cos(M_PI / n);
for (std::size_t i = 0; i < width; ++i) {
float angle = (M_PI * i) / n; // 0 to 2pi
float x = vPos[1][0] + (vPos[2][0] - vPos[1][0]) * cos(angle) * ((i & 1) ? f : 1.0f);
float y = vPos[1][1] + (vPos[2][1] - vPos[1][1]) * sin(angle) * ((i & 1) ? f : 1.0f);
for (std::size_t j = 0; j < height; ++j) {
float z = vPos[0][2] + (vPos[2][2] - vPos[0][2]) * (j / (float) (height - 1));
PatchControl *v;
v = &m_ctrl.data()[j * width + i];
v->m_vertex[0] = x;
v->m_vertex[1] = y;
v->m_vertex[2] = z;
}
}
} else if (eType == eXactCone) {
int n = (width - 1) / 2; // n = number of segments
setDims(width, height);
// vPos[0] = vector3_subtracted(aabb.origin, aabb.extents);
// vPos[1] = aabb.origin;
// vPos[2] = vector3_added(aabb.origin, aabb.extents);
float f = 1 / cos(M_PI / n);
for (std::size_t i = 0; i < width; ++i) {
float angle = (M_PI * i) / n;
for (std::size_t j = 0; j < height; ++j) {
float x = vPos[1][0] + (1.0f - (j / (float) (height - 1))) * (vPos[2][0] - vPos[1][0]) * cos(angle) *
((i & 1) ? f : 1.0f);
float y = vPos[1][1] + (1.0f - (j / (float) (height - 1))) * (vPos[2][1] - vPos[1][1]) * sin(angle) *
((i & 1) ? f : 1.0f);
float z = vPos[0][2] + (vPos[2][2] - vPos[0][2]) * (j / (float) (height - 1));
PatchControl *v;
v = &m_ctrl.data()[j * width + i];
v->m_vertex[0] = x;
v->m_vertex[1] = y;
v->m_vertex[2] = z;
}
}
} else if (eType == eXactSphere) {
int n = (width - 1) / 2; // n = number of segments (yaw)
int m = (height - 1) / 2; // m = number of segments (pitch)
setDims(width, height);
// vPos[0] = vector3_subtracted(aabb.origin, aabb.extents);
// vPos[1] = aabb.origin;
// vPos[2] = vector3_added(aabb.origin, aabb.extents);
float f = 1 / cos(M_PI / n);
float g = 1 / cos(M_PI / (2 * m));
for (std::size_t i = 0; i < width; ++i) {
float angle = (M_PI * i) / n;
for (std::size_t j = 0; j < height; ++j) {
float angle2 = (M_PI * j) / (2 * m);
float x = vPos[1][0] + (vPos[2][0] - vPos[1][0]) * sin(angle2) * ((j & 1) ? g : 1.0f) * cos(angle) *
((i & 1) ? f : 1.0f);
float y = vPos[1][1] + (vPos[2][1] - vPos[1][1]) * sin(angle2) * ((j & 1) ? g : 1.0f) * sin(angle) *
((i & 1) ? f : 1.0f);
float z = vPos[1][2] + (vPos[2][2] - vPos[1][2]) * -cos(angle2) * ((j & 1) ? g : 1.0f);
PatchControl *v;
v = &m_ctrl.data()[j * width + i];
v->m_vertex[0] = x;
v->m_vertex[1] = y;
v->m_vertex[2] = z;
}
}
} else if (eType == eBevel) {
unsigned char *pIndex;
unsigned char pBevIndex[] =
{
0, 0,
2, 0,
2, 2,
};
setDims(3, 3);
PatchControl *pCtrl = m_ctrl.data();
for (std::size_t h = 0; h < 3; h++) {
pIndex = pBevIndex;
for (std::size_t w = 0; w < 3; w++, pIndex += 2, pCtrl++) {
pCtrl->m_vertex[0] = vPos[pIndex[0]][0];
pCtrl->m_vertex[1] = vPos[pIndex[1]][1];
pCtrl->m_vertex[2] = vPos[h][2];
}
}
} else if (eType == eEndCap) {
unsigned char *pIndex;
unsigned char pEndIndex[] =
{
2, 0,
2, 2,
1, 2,
0, 2,
0, 0,
};
setDims(5, 3);
PatchControl *pCtrl = m_ctrl.data();
for (std::size_t h = 0; h < 3; h++) {
pIndex = pEndIndex;
for (std::size_t w = 0; w < 5; w++, pIndex += 2, pCtrl++) {
pCtrl->m_vertex[0] = vPos[pIndex[0]][0];
pCtrl->m_vertex[1] = vPos[pIndex[1]][1];
pCtrl->m_vertex[2] = vPos[h][2];
}
}
}
if (eType == eDenseCylinder) {
InsertRemove(true, false, true);
}
if (eType == eVeryDenseCylinder) {
InsertRemove(true, false, false);
InsertRemove(true, false, true);
}
IdentityColour();
NaturalTexture();
}
void Patch::RenderDebug(RenderStateFlags state) const
{
for (std::size_t i = 0; i < m_tess.m_numStrips; i++) {
glBegin(GL_QUAD_STRIP);
for (std::size_t j = 0; j < m_tess.m_lenStrips; j++) {
glNormal3fv(normal3f_to_array(
(m_tess.m_vertices.data() + m_tess.m_indices[i * m_tess.m_lenStrips + j])->normal));
glTexCoord2fv(texcoord2f_to_array(
(m_tess.m_vertices.data() + m_tess.m_indices[i * m_tess.m_lenStrips + j])->texcoord));
glVertex3fv(vertex3f_to_array(
(m_tess.m_vertices.data() + m_tess.m_indices[i * m_tess.m_lenStrips + j])->vertex));
}
glEnd();
}
}
#include "patchdialog.h"
bool PatchInspector_IsSelected(int x, int y);
void patch_draw_sphere(const Vector3 origin, float radius, int sides)
{
if (radius <= 0) {
return;
}
const double dt = c_2pi / static_cast<double>( sides );
const double dp = c_pi / static_cast<double>( sides );
for (int i = 0; i <= sides - 1; ++i) {
for (int j = 0; j <= sides - 2; ++j) {
const double t = i * dt;
const double p = (j * dp) - (c_pi / 2.0);
{
Vector3 v(vector3_added(origin, vector3_scaled(vector3_for_spherical(t, p), radius)));
glVertex3fv(vector3_to_array(v));
}
{
Vector3 v(vector3_added(origin, vector3_scaled(vector3_for_spherical(t, p + dp), radius)));
glVertex3fv(vector3_to_array(v));
}
{
Vector3 v(vector3_added(origin, vector3_scaled(vector3_for_spherical(t + dt, p + dp), radius)));
glVertex3fv(vector3_to_array(v));
}
{
Vector3 v(vector3_added(origin, vector3_scaled(vector3_for_spherical(t, p), radius)));
glVertex3fv(vector3_to_array(v));
}
{
Vector3 v(vector3_added(origin, vector3_scaled(vector3_for_spherical(t + dt, p + dp), radius)));
glVertex3fv(vector3_to_array(v));
}
{
Vector3 v(vector3_added(origin, vector3_scaled(vector3_for_spherical(t + dt, p), radius)));
glVertex3fv(vector3_to_array(v));
}
}
}
{
const double p = (sides - 1) * dp - (c_pi / 2.0);
for (int i = 0; i <= sides - 1; ++i) {
const double t = i * dt;
{
Vector3 v(vector3_added(origin, vector3_scaled(vector3_for_spherical(t, p), radius)));
glVertex3fv(vector3_to_array(v));
}
{
Vector3 v(vector3_added(origin, vector3_scaled(vector3_for_spherical(t + dt, p + dp), radius)));
glVertex3fv(vector3_to_array(v));
}
{
Vector3 v(vector3_added(origin, vector3_scaled(vector3_for_spherical(t + dt, p), radius)));
glVertex3fv(vector3_to_array(v));
}
}
}
}
void RenderablePatchFixedSolid::RenderNormals() const
{
const std::size_t width = m_tess.m_numStrips + 1;
const std::size_t height = m_tess.m_lenStrips >> 1;
glBegin(GL_TRIANGLES);
for (std::size_t i = 0; i < width; i++) {
for (std::size_t j = 0; j < height; j++) {
Vector3 pos = (m_tess.m_vertices.data() + (j * width + i))->vertex;
Vector4 colour = (m_tess.m_vertices.data() + (j * width + i))->colour;
/* color the currently selected bit */
if (PatchInspector_IsSelected((int)i, (int)j)) {
glColor3f(1,0,0);
patch_draw_sphere(pos, 8, 4);
} else {
glColor3f(1,1,1);
patch_draw_sphere(pos, 2, 4);
}
/*{
Vector3 vNormal(
vector3_added(
vertex3f_to_vector3((m_tess.m_vertices.data() + (j * width + i))->vertex),
vector3_scaled(
normal3f_to_vector3((m_tess.m_vertices.data() + (j * width + i))->normal), 8)
)
);
glVertex3fv(vertex3f_to_array((m_tess.m_vertices.data() + (j * width + i))->vertex));
glVertex3fv(&vNormal[0]);
}
{
Vector3 vNormal(
vector3_added(
vertex3f_to_vector3((m_tess.m_vertices.data() + (j * width + i))->vertex),
vector3_scaled(
normal3f_to_vector3((m_tess.m_vertices.data() + (j * width + i))->tangent), 8)
)
);
glVertex3fv(vertex3f_to_array((m_tess.m_vertices.data() + (j * width + i))->vertex));
glVertex3fv(&vNormal[0]);
}
{
Vector3 vNormal(
vector3_added(
vertex3f_to_vector3(),
vector3_scaled(
normal3f_to_vector3((m_tess.m_vertices.data() + (j * width + i))->bitangent), 8)
)
);
glVertex3fv(vertex3f_to_array((m_tess.m_vertices.data() + (j * width + i))->vertex));
glVertex3fv(&vNormal[0]);
}*/
}
}
glEnd();
glColor3f( 1, 1, 1 );
}
const int DEGEN_0a = 0x01;
const int DEGEN_1a = 0x02;
const int DEGEN_2a = 0x04;
const int DEGEN_0b = 0x08;
const int DEGEN_1b = 0x10;
const int DEGEN_2b = 0x20;
const int SPLIT = 0x40;
const int AVERAGE = 0x80;
unsigned int subarray_get_degen(PatchControlIter subarray, std::size_t strideU, std::size_t strideV)
{
unsigned int nDegen = 0;
const PatchControl *p1;
const PatchControl *p2;
p1 = subarray;
p2 = p1 + strideU;
if (vector3_equal(p1->m_vertex, p2->m_vertex)) {
nDegen |= DEGEN_0a;
}
p1 = p2;
p2 = p1 + strideU;
if (vector3_equal(p1->m_vertex, p2->m_vertex)) {
nDegen |= DEGEN_0b;
}
p1 = subarray + strideV;
p2 = p1 + strideU;
if (vector3_equal(p1->m_vertex, p2->m_vertex)) {
nDegen |= DEGEN_1a;
}
p1 = p2;
p2 = p1 + strideU;
if (vector3_equal(p1->m_vertex, p2->m_vertex)) {
nDegen |= DEGEN_1b;
}
p1 = subarray + (strideV << 1);
p2 = p1 + strideU;
if (vector3_equal(p1->m_vertex, p2->m_vertex)) {
nDegen |= DEGEN_2a;
}
p1 = p2;
p2 = p1 + strideU;
if (vector3_equal(p1->m_vertex, p2->m_vertex)) {
nDegen |= DEGEN_2b;
}
return nDegen;
}
inline void
deCasteljau3(const Vector3 &P0, const Vector3 &P1, const Vector3 &P2, Vector3 &P01, Vector3 &P12, Vector3 &P012)
{
P01 = vector3_mid(P0, P1);
P12 = vector3_mid(P1, P2);
P012 = vector3_mid(P01, P12);
}
inline void BezierInterpolate4(const Vector4 &start, Vector4 &left, Vector4 &mid, Vector4 &right, const Vector4 &end)
{
left = vector4_mid(start, mid);
right = vector4_mid(mid, end);
mid = vector4_mid(left, right);
}
inline void BezierInterpolate3(const Vector3 &start, Vector3 &left, Vector3 &mid, Vector3 &right, const Vector3 &end)
{
left = vector3_mid(start, mid);
right = vector3_mid(mid, end);
mid = vector3_mid(left, right);
}
inline void BezierInterpolate2(const Vector2 &start, Vector2 &left, Vector2 &mid, Vector2 &right, const Vector2 &end)
{
left[0] = float_mid(start[0], mid[0]);
left[1] = float_mid(start[1], mid[1]);
right[0] = float_mid(mid[0], end[0]);
right[1] = float_mid(mid[1], end[1]);
mid[0] = float_mid(left[0], right[0]);
mid[1] = float_mid(left[1], right[1]);
}
inline Vector2 &texcoord_for_index(Array<ArbitraryMeshVertex> &vertices, std::size_t index)
{
return reinterpret_cast<Vector2 &>( vertices[index].texcoord );
}
inline Vector4 &colour_for_index(Array<ArbitraryMeshVertex> &vertices, std::size_t index)
{
return reinterpret_cast<Vector4 &>( vertices[index].colour );
}
inline Vector3 &vertex_for_index(Array<ArbitraryMeshVertex> &vertices, std::size_t index)
{
return reinterpret_cast<Vector3 &>( vertices[index].vertex );
}
inline Vector3 &normal_for_index(Array<ArbitraryMeshVertex> &vertices, std::size_t index)
{
return reinterpret_cast<Vector3 &>( vertices[index].normal );
}
inline Vector3 &tangent_for_index(Array<ArbitraryMeshVertex> &vertices, std::size_t index)
{
return reinterpret_cast<Vector3 &>( vertices[index].tangent );
}
inline Vector3 &bitangent_for_index(Array<ArbitraryMeshVertex> &vertices, std::size_t index)
{
return reinterpret_cast<Vector3 &>( vertices[index].bitangent );
}
inline const Vector2 &texcoord_for_index(const Array<ArbitraryMeshVertex> &vertices, std::size_t index)
{
return reinterpret_cast<const Vector2 &>( vertices[index].texcoord );
}
inline const Vector4 &colour_for_index(const Array<ArbitraryMeshVertex> &vertices, std::size_t index)
{
return reinterpret_cast<const Vector4 &>( vertices[index].colour );
}
inline const Vector3 &vertex_for_index(const Array<ArbitraryMeshVertex> &vertices, std::size_t index)
{
return reinterpret_cast<const Vector3 &>( vertices[index].vertex );
}
inline const Vector3 &normal_for_index(const Array<ArbitraryMeshVertex> &vertices, std::size_t index)
{
return reinterpret_cast<const Vector3 &>( vertices[index].normal );
}
inline const Vector3 &tangent_for_index(const Array<ArbitraryMeshVertex> &vertices, std::size_t index)
{
return reinterpret_cast<const Vector3 &>( vertices[index].tangent );
}
inline const Vector3 &bitangent_for_index(const Array<ArbitraryMeshVertex> &vertices, std::size_t index)
{
return reinterpret_cast<const Vector3 &>( vertices[index].bitangent );
}
#include "math/curve.h"
inline PatchControl QuadraticBezier_evaluate(const PatchControl *firstPoint, double t)
{
PatchControl result = {Vector3(0, 0, 0), Vector2(0, 0), Vector4(0, 0, 0, 0)};
double denominator = 0;
{
double weight = BernsteinPolynomial<Zero, Two>::apply(t);
vector3_add(result.m_vertex, vector3_scaled(firstPoint[0].m_vertex, weight));
vector2_add(result.m_texcoord, vector2_scaled(firstPoint[0].m_texcoord, weight));
denominator += weight;
}
{
double weight = BernsteinPolynomial<One, Two>::apply(t);
vector3_add(result.m_vertex, vector3_scaled(firstPoint[1].m_vertex, weight));
vector2_add(result.m_texcoord, vector2_scaled(firstPoint[1].m_texcoord, weight));
denominator += weight;
}
{
double weight = BernsteinPolynomial<Two, Two>::apply(t);
vector3_add(result.m_vertex, vector3_scaled(firstPoint[2].m_vertex, weight));
vector2_add(result.m_texcoord, vector2_scaled(firstPoint[2].m_texcoord, weight));
denominator += weight;
}
vector3_divide(result.m_vertex, denominator);
vector2_divide(result.m_texcoord, denominator);
return result;
}
inline Vector3 vector3_linear_interpolated(const Vector3 &a, const Vector3 &b, double t)
{
return vector3_added(vector3_scaled(a, 1.0 - t), vector3_scaled(b, t));
}
inline Vector2 vector2_linear_interpolated(const Vector2 &a, const Vector2 &b, double t)
{
return vector2_added(vector2_scaled(a, 1.0 - t), vector2_scaled(b, t));
}
void normalise_safe(Vector3 &normal)
{
if (!vector3_equal(normal, g_vector3_identity)) {
vector3_normalise(normal);
}
}
inline void QuadraticBezier_evaluate(const PatchControl &a, const PatchControl &b, const PatchControl &c, double t,
PatchControl &point, PatchControl &left, PatchControl &right)
{
left.m_vertex = vector3_linear_interpolated(a.m_vertex, b.m_vertex, t);
left.m_texcoord = vector2_linear_interpolated(a.m_texcoord, b.m_texcoord, t);
right.m_vertex = vector3_linear_interpolated(b.m_vertex, c.m_vertex, t);
right.m_texcoord = vector2_linear_interpolated(b.m_texcoord, c.m_texcoord, t);
point.m_vertex = vector3_linear_interpolated(left.m_vertex, right.m_vertex, t);
point.m_texcoord = vector2_linear_interpolated(left.m_texcoord, right.m_texcoord, t);
}
void Patch::TesselateSubMatrixFixed(ArbitraryMeshVertex *vertices, std::size_t strideX, std::size_t strideY,
unsigned int nFlagsX, unsigned int nFlagsY, PatchControl *subMatrix[3][3])
{
double incrementU = 1.0 / m_subdivisions_x;
double incrementV = 1.0 / m_subdivisions_y;
const std::size_t width = m_subdivisions_x + 1;
const std::size_t height = m_subdivisions_y + 1;
for (std::size_t i = 0; i != width; ++i) {
double tU = (i + 1 == width) ? 1 : i * incrementU;
PatchControl pointX[3];
PatchControl leftX[3];
PatchControl rightX[3];
QuadraticBezier_evaluate(*subMatrix[0][0], *subMatrix[0][1], *subMatrix[0][2], tU, pointX[0], leftX[0],
rightX[0]);
QuadraticBezier_evaluate(*subMatrix[1][0], *subMatrix[1][1], *subMatrix[1][2], tU, pointX[1], leftX[1],
rightX[1]);
QuadraticBezier_evaluate(*subMatrix[2][0], *subMatrix[2][1], *subMatrix[2][2], tU, pointX[2], leftX[2],
rightX[2]);
ArbitraryMeshVertex *p = vertices + i * strideX;
for (std::size_t j = 0; j != height; ++j) {
if ((j == 0 || j + 1 == height) && (i == 0 || i + 1 == width)) {
} else {
double tV = (j + 1 == height) ? 1 : j * incrementV;
PatchControl pointY[3];
PatchControl leftY[3];
PatchControl rightY[3];
QuadraticBezier_evaluate(*subMatrix[0][0], *subMatrix[1][0], *subMatrix[2][0], tV, pointY[0], leftY[0],
rightY[0]);
QuadraticBezier_evaluate(*subMatrix[0][1], *subMatrix[1][1], *subMatrix[2][1], tV, pointY[1], leftY[1],
rightY[1]);
QuadraticBezier_evaluate(*subMatrix[0][2], *subMatrix[1][2], *subMatrix[2][2], tV, pointY[2], leftY[2],
rightY[2]);
PatchControl point;
PatchControl left;
PatchControl right;
QuadraticBezier_evaluate(pointX[0], pointX[1], pointX[2], tV, point, left, right);
PatchControl up;
PatchControl down;
QuadraticBezier_evaluate(pointY[0], pointY[1], pointY[2], tU, point, up, down);
vertex3f_to_vector3(p->vertex) = point.m_vertex;
texcoord2f_to_vector2(p->texcoord) = point.m_texcoord;
colour4f_to_vector4(p->colour) = point.m_color;
ArbitraryMeshVertex a, b, c;
a.vertex = vertex3f_for_vector3(left.m_vertex);
a.texcoord = texcoord2f_for_vector2(left.m_texcoord);
b.vertex = vertex3f_for_vector3(right.m_vertex);
b.texcoord = texcoord2f_for_vector2(right.m_texcoord);
if (i != 0) {
c.vertex = vertex3f_for_vector3(up.m_vertex);
c.texcoord = texcoord2f_for_vector2(up.m_texcoord);
} else {
c.vertex = vertex3f_for_vector3(down.m_vertex);
c.texcoord = texcoord2f_for_vector2(down.m_texcoord);
}
Vector3 normal = vector3_normalised(
vector3_cross(right.m_vertex - left.m_vertex, up.m_vertex - down.m_vertex));
Vector3 tangent, bitangent;
ArbitraryMeshTriangle_calcTangents(a, b, c, tangent, bitangent);
vector3_normalise(tangent);
vector3_normalise(bitangent);
if (((nFlagsX & AVERAGE) != 0 && i == 0) || ((nFlagsY & AVERAGE) != 0 && j == 0)) {
normal3f_to_vector3(p->normal) = vector3_normalised(
vector3_added(normal3f_to_vector3(p->normal), normal));
normal3f_to_vector3(p->tangent) = vector3_normalised(
vector3_added(normal3f_to_vector3(p->tangent), tangent));
normal3f_to_vector3(p->bitangent) = vector3_normalised(
vector3_added(normal3f_to_vector3(p->bitangent), bitangent));
} else {
normal3f_to_vector3(p->normal) = normal;
normal3f_to_vector3(p->tangent) = tangent;
normal3f_to_vector3(p->bitangent) = bitangent;
}
}
p += strideY;
}
}
}
void Patch::TesselateSubMatrix(const BezierCurveTree *BX, const BezierCurveTree *BY,
std::size_t offStartX, std::size_t offStartY,
std::size_t offEndX, std::size_t offEndY,
std::size_t nFlagsX, std::size_t nFlagsY,
Vector3 &left, Vector3 &mid, Vector3 &right,
Vector2 &texLeft, Vector2 &texMid, Vector2 &texRight,
Vector4 &colLeft, Vector4 &colMid, Vector4 &colRight,
bool bTranspose)
{
int newFlagsX, newFlagsY;
Vector3 tmp;
Vector3 vertex_0_0, vertex_0_1, vertex_1_0, vertex_1_1, vertex_2_0, vertex_2_1;
Vector2 texTmp;
Vector2 texcoord_0_0, texcoord_0_1, texcoord_1_0, texcoord_1_1, texcoord_2_0, texcoord_2_1;
Vector4 colTmp, colour_0_0, colour_0_1, colour_1_0, colour_1_1, colour_2_0, colour_2_1;
{
// texcoords
BezierInterpolate2(texcoord_for_index(m_tess.m_vertices, offStartX + offStartY),
texcoord_0_0,
texcoord_for_index(m_tess.m_vertices, BX->index + offStartY),
texcoord_0_1,
texcoord_for_index(m_tess.m_vertices, offEndX + offStartY));
BezierInterpolate2(texcoord_for_index(m_tess.m_vertices, offStartX + offEndY),
texcoord_2_0,
texcoord_for_index(m_tess.m_vertices, BX->index + offEndY),
texcoord_2_1,
texcoord_for_index(m_tess.m_vertices, offEndX + offEndY));
texTmp = texMid;
BezierInterpolate2(texLeft,
texcoord_1_0,
texTmp,
texcoord_1_1,
texRight);
if (!BezierCurveTree_isLeaf(BY)) {
texcoord_for_index(m_tess.m_vertices, BX->index + BY->index) = texTmp;
}
if (!BezierCurveTree_isLeaf(BX->left)) {
texcoord_for_index(m_tess.m_vertices, BX->left->index + offStartY) = texcoord_0_0;
texcoord_for_index(m_tess.m_vertices, BX->left->index + offEndY) = texcoord_2_0;
if (!BezierCurveTree_isLeaf(BY)) {
texcoord_for_index(m_tess.m_vertices, BX->left->index + BY->index) = texcoord_1_0;
}
}
if (!BezierCurveTree_isLeaf(BX->right)) {
texcoord_for_index(m_tess.m_vertices, BX->right->index + offStartY) = texcoord_0_1;
texcoord_for_index(m_tess.m_vertices, BX->right->index + offEndY) = texcoord_2_1;
if (!BezierCurveTree_isLeaf(BY)) {
texcoord_for_index(m_tess.m_vertices, BX->right->index + BY->index) = texcoord_1_1;
}
}
// colours
BezierInterpolate4(colour_for_index(m_tess.m_vertices, offStartX + offStartY),
colour_0_0,
colour_for_index(m_tess.m_vertices, BX->index + offStartY),
colour_0_1,
colour_for_index(m_tess.m_vertices, offEndX + offStartY));
BezierInterpolate4(colour_for_index(m_tess.m_vertices, offStartX + offEndY),
colour_2_0,
colour_for_index(m_tess.m_vertices, BX->index + offEndY),
colour_2_1,
colour_for_index(m_tess.m_vertices, offEndX + offEndY));
colTmp = colMid;
BezierInterpolate4(colLeft,
colour_1_0,
colTmp,
colour_1_1,
colRight);
if (!BezierCurveTree_isLeaf(BY)) {
colour_for_index(m_tess.m_vertices, BX->index + BY->index) = colTmp;
}
if (!BezierCurveTree_isLeaf(BX->left)) {
colour_for_index(m_tess.m_vertices, BX->left->index + offStartY) = colour_0_0;
colour_for_index(m_tess.m_vertices, BX->left->index + offEndY) = colour_2_0;
if (!BezierCurveTree_isLeaf(BY)) {
colour_for_index(m_tess.m_vertices, BX->left->index + BY->index) = colour_1_0;
}
}
if (!BezierCurveTree_isLeaf(BX->right)) {
colour_for_index(m_tess.m_vertices, BX->right->index + offStartY) = colour_0_1;
colour_for_index(m_tess.m_vertices, BX->right->index + offEndY) = colour_2_1;
if (!BezierCurveTree_isLeaf(BY)) {
colour_for_index(m_tess.m_vertices, BX->right->index + BY->index) = colour_1_1;
}
}
// verts
BezierInterpolate3(vertex_for_index(m_tess.m_vertices, offStartX + offStartY),
vertex_0_0,
vertex_for_index(m_tess.m_vertices, BX->index + offStartY),
vertex_0_1,
vertex_for_index(m_tess.m_vertices, offEndX + offStartY));
BezierInterpolate3(vertex_for_index(m_tess.m_vertices, offStartX + offEndY),
vertex_2_0,
vertex_for_index(m_tess.m_vertices, BX->index + offEndY),
vertex_2_1,
vertex_for_index(m_tess.m_vertices, offEndX + offEndY));
tmp = mid;
BezierInterpolate3(left,
vertex_1_0,
tmp,
vertex_1_1,
right);
if (!BezierCurveTree_isLeaf(BY)) {
vertex_for_index(m_tess.m_vertices, BX->index + BY->index) = tmp;
}
if (!BezierCurveTree_isLeaf(BX->left)) {
vertex_for_index(m_tess.m_vertices, BX->left->index + offStartY) = vertex_0_0;
vertex_for_index(m_tess.m_vertices, BX->left->index + offEndY) = vertex_2_0;
if (!BezierCurveTree_isLeaf(BY)) {
vertex_for_index(m_tess.m_vertices, BX->left->index + BY->index) = vertex_1_0;
}
}
if (!BezierCurveTree_isLeaf(BX->right)) {
vertex_for_index(m_tess.m_vertices, BX->right->index + offStartY) = vertex_0_1;
vertex_for_index(m_tess.m_vertices, BX->right->index + offEndY) = vertex_2_1;
if (!BezierCurveTree_isLeaf(BY)) {
vertex_for_index(m_tess.m_vertices, BX->right->index + BY->index) = vertex_1_1;
}
}
// normals
if (nFlagsX & SPLIT) {
ArbitraryMeshVertex a, b, c;
Vector3 tangentU;
if (!(nFlagsX & DEGEN_0a) || !(nFlagsX & DEGEN_0b)) {
tangentU = vector3_subtracted(vertex_0_1, vertex_0_0);
a.vertex = vertex3f_for_vector3(vertex_0_0);
a.texcoord = texcoord2f_for_vector2(texcoord_0_0);
c.vertex = vertex3f_for_vector3(vertex_0_1);
c.texcoord = texcoord2f_for_vector2(texcoord_0_1);
} else if (!(nFlagsX & DEGEN_1a) || !(nFlagsX & DEGEN_1b)) {
tangentU = vector3_subtracted(vertex_1_1, vertex_1_0);
a.vertex = vertex3f_for_vector3(vertex_1_0);
a.texcoord = texcoord2f_for_vector2(texcoord_1_0);
c.vertex = vertex3f_for_vector3(vertex_1_1);
c.texcoord = texcoord2f_for_vector2(texcoord_1_1);
} else {
tangentU = vector3_subtracted(vertex_2_1, vertex_2_0);
a.vertex = vertex3f_for_vector3(vertex_2_0);
a.texcoord = texcoord2f_for_vector2(texcoord_2_0);
c.vertex = vertex3f_for_vector3(vertex_2_1);
c.texcoord = texcoord2f_for_vector2(texcoord_2_1);
}
Vector3 tangentV;
if ((nFlagsY & DEGEN_0a) && (nFlagsY & DEGEN_1a) && (nFlagsY & DEGEN_2a)) {
tangentV = vector3_subtracted(vertex_for_index(m_tess.m_vertices, BX->index + offEndY), tmp);
b.vertex = vertex3f_for_vector3(tmp); //m_tess.m_vertices[BX->index + offEndY].vertex;
b.texcoord = texcoord2f_for_vector2(texTmp); //m_tess.m_vertices[BX->index + offEndY].texcoord;
} else {
tangentV = vector3_subtracted(tmp, vertex_for_index(m_tess.m_vertices, BX->index + offStartY));
b.vertex = vertex3f_for_vector3(tmp); //m_tess.m_vertices[BX->index + offStartY].vertex;
b.texcoord = texcoord2f_for_vector2(texTmp); //m_tess.m_vertices[BX->index + offStartY].texcoord;
}
Vector3 normal, s, t;
ArbitraryMeshVertex &v = m_tess.m_vertices[offStartY + BX->index];
Vector3 &p = normal3f_to_vector3(v.normal);
Vector3 &ps = normal3f_to_vector3(v.tangent);
Vector3 &pt = normal3f_to_vector3(v.bitangent);
if (bTranspose) {
normal = vector3_cross(tangentV, tangentU);
} else {
normal = vector3_cross(tangentU, tangentV);
}
normalise_safe(normal);
ArbitraryMeshTriangle_calcTangents(a, b, c, s, t);
normalise_safe(s);
normalise_safe(t);
if (nFlagsX & AVERAGE) {
p = vector3_normalised(vector3_added(p, normal));
ps = vector3_normalised(vector3_added(ps, s));
pt = vector3_normalised(vector3_added(pt, t));
} else {
p = normal;
ps = s;
pt = t;
}
}
{
ArbitraryMeshVertex a, b, c;
Vector3 tangentU;
if (!(nFlagsX & DEGEN_2a) || !(nFlagsX & DEGEN_2b)) {
tangentU = vector3_subtracted(vertex_2_1, vertex_2_0);
a.vertex = vertex3f_for_vector3(vertex_2_0);
a.texcoord = texcoord2f_for_vector2(texcoord_2_0);
c.vertex = vertex3f_for_vector3(vertex_2_1);
c.texcoord = texcoord2f_for_vector2(texcoord_2_1);
} else if (!(nFlagsX & DEGEN_1a) || !(nFlagsX & DEGEN_1b)) {
tangentU = vector3_subtracted(vertex_1_1, vertex_1_0);
a.vertex = vertex3f_for_vector3(vertex_1_0);
a.texcoord = texcoord2f_for_vector2(texcoord_1_0);
c.vertex = vertex3f_for_vector3(vertex_1_1);
c.texcoord = texcoord2f_for_vector2(texcoord_1_1);
} else {
tangentU = vector3_subtracted(vertex_0_1, vertex_0_0);
a.vertex = vertex3f_for_vector3(vertex_0_0);
a.texcoord = texcoord2f_for_vector2(texcoord_0_0);
c.vertex = vertex3f_for_vector3(vertex_0_1);
c.texcoord = texcoord2f_for_vector2(texcoord_0_1);
}
Vector3 tangentV;
if ((nFlagsY & DEGEN_0b) && (nFlagsY & DEGEN_1b) && (nFlagsY & DEGEN_2b)) {
tangentV = vector3_subtracted(tmp, vertex_for_index(m_tess.m_vertices, BX->index + offStartY));
b.vertex = vertex3f_for_vector3(tmp); //m_tess.m_vertices[BX->index + offStartY].vertex;
b.texcoord = texcoord2f_for_vector2(texTmp); //m_tess.m_vertices[BX->index + offStartY].texcoord;
} else {
tangentV = vector3_subtracted(vertex_for_index(m_tess.m_vertices, BX->index + offEndY), tmp);
b.vertex = vertex3f_for_vector3(tmp); //m_tess.m_vertices[BX->index + offEndY].vertex;
b.texcoord = texcoord2f_for_vector2(texTmp); //m_tess.m_vertices[BX->index + offEndY].texcoord;
}
ArbitraryMeshVertex &v = m_tess.m_vertices[offEndY + BX->index];
Vector3 &p = normal3f_to_vector3(v.normal);
Vector3 &ps = normal3f_to_vector3(v.tangent);
Vector3 &pt = normal3f_to_vector3(v.bitangent);
if (bTranspose) {
p = vector3_cross(tangentV, tangentU);
} else {
p = vector3_cross(tangentU, tangentV);
}
normalise_safe(p);
ArbitraryMeshTriangle_calcTangents(a, b, c, ps, pt);
normalise_safe(ps);
normalise_safe(pt);
}
}
newFlagsX = newFlagsY = 0;
if ((nFlagsX & DEGEN_0a) && (nFlagsX & DEGEN_0b)) {
newFlagsX |= DEGEN_0a;
newFlagsX |= DEGEN_0b;
}
if ((nFlagsX & DEGEN_1a) && (nFlagsX & DEGEN_1b)) {
newFlagsX |= DEGEN_1a;
newFlagsX |= DEGEN_1b;
}
if ((nFlagsX & DEGEN_2a) && (nFlagsX & DEGEN_2b)) {
newFlagsX |= DEGEN_2a;
newFlagsX |= DEGEN_2b;
}
if ((nFlagsY & DEGEN_0a) && (nFlagsY & DEGEN_1a) && (nFlagsY & DEGEN_2a)) {
newFlagsY |= DEGEN_0a;
newFlagsY |= DEGEN_1a;
newFlagsY |= DEGEN_2a;
}
if ((nFlagsY & DEGEN_0b) && (nFlagsY & DEGEN_1b) && (nFlagsY & DEGEN_2b)) {
newFlagsY |= DEGEN_0b;
newFlagsY |= DEGEN_1b;
newFlagsY |= DEGEN_2b;
}
//if((nFlagsX & DEGEN_0a) && (nFlagsX & DEGEN_1a) && (nFlagsX & DEGEN_2a)) { newFlagsX |= DEGEN_0a; newFlagsX |= DEGEN_1a; newFlagsX |= DEGEN_2a; }
//if((nFlagsX & DEGEN_0b) && (nFlagsX & DEGEN_1b) && (nFlagsX & DEGEN_2b)) { newFlagsX |= DEGEN_0b; newFlagsX |= DEGEN_1b; newFlagsX |= DEGEN_2b; }
newFlagsX |= (nFlagsX & SPLIT);
newFlagsX |= (nFlagsX & AVERAGE);
if (!BezierCurveTree_isLeaf(BY)) {
{
int nTemp = newFlagsY;
if ((nFlagsY & DEGEN_0a) && (nFlagsY & DEGEN_0b)) {
newFlagsY |= DEGEN_0a;
newFlagsY |= DEGEN_0b;
}
newFlagsY |= (nFlagsY & SPLIT);
newFlagsY |= (nFlagsY & AVERAGE);
Vector3 &p = vertex_for_index(m_tess.m_vertices, BX->index + BY->index);
Vector3 vTemp(p);
Vector2 &p2 = texcoord_for_index(m_tess.m_vertices, BX->index + BY->index);
Vector2 stTemp(p2);
TesselateSubMatrix(BY, BX->left,
offStartY, offStartX,
offEndY, BX->index,
newFlagsY, newFlagsX,
vertex_0_0, vertex_1_0, vertex_2_0,
texcoord_0_0, texcoord_1_0, texcoord_2_0,
colour_0_0, colour_1_0, colour_2_0,
!bTranspose);
newFlagsY = nTemp;
p = vTemp;
p2 = stTemp;
}
if ((nFlagsY & DEGEN_2a) && (nFlagsY & DEGEN_2b)) {
newFlagsY |= DEGEN_2a;
newFlagsY |= DEGEN_2b;
}
TesselateSubMatrix(BY, BX->right,
offStartY, BX->index,
offEndY, offEndX,
newFlagsY, newFlagsX,
vertex_0_1, vertex_1_1, vertex_2_1,
texcoord_0_1, texcoord_1_1, texcoord_2_1,
colour_0_1, colour_1_1, colour_2_1,
!bTranspose);
} else {
if (!BezierCurveTree_isLeaf(BX->left)) {
TesselateSubMatrix(BX->left, BY,
offStartX, offStartY,
BX->index, offEndY,
newFlagsX, newFlagsY,
left, vertex_1_0, tmp,
texLeft, texcoord_1_0, texTmp,
colLeft, colour_1_0, colTmp,
bTranspose);
}
if (!BezierCurveTree_isLeaf(BX->right)) {
TesselateSubMatrix(BX->right, BY,
BX->index, offStartY,
offEndX, offEndY,
newFlagsX, newFlagsY,
tmp, vertex_1_1, right,
texTmp, texcoord_1_1, texRight,
colTmp, colour_1_1, colRight,
bTranspose);
}
}
}
void Patch::BuildTesselationCurves(EMatrixMajor major)
{
std::size_t nArrayStride, length, cross, strideU, strideV;
switch (major) {
case ROW:
nArrayStride = 1;
length = (m_width - 1) >> 1;
cross = m_height;
strideU = 1;
strideV = m_width;
if (!m_patchDef3) {
BezierCurveTreeArray_deleteAll(m_tess.m_curveTreeU);
}
break;
case COL:
nArrayStride = m_tess.m_nArrayWidth;
length = (m_height - 1) >> 1;
cross = m_width;
strideU = m_width;
strideV = 1;
if (!m_patchDef3) {
BezierCurveTreeArray_deleteAll(m_tess.m_curveTreeV);
}
break;
default:
ERROR_MESSAGE("neither row-major nor column-major");
return;
}
Array<std::size_t> arrayLength(length);
Array<BezierCurveTree *> pCurveTree(length);
std::size_t nArrayLength = 1;
if (m_patchDef3) {
if (!m_subdivisions_x && !m_subdivisions_y) {
for (Array<std::size_t>::iterator i = arrayLength.begin(); i != arrayLength.end(); ++i) {
*i = 2;
nArrayLength += *i;
}
} else {
for (Array<std::size_t>::iterator i = arrayLength.begin(); i != arrayLength.end(); ++i) {
*i = Array<std::size_t>::value_type((major == ROW) ? m_subdivisions_x : m_subdivisions_y);
nArrayLength += *i;
}
}
} else {
// create a list of the horizontal control curves in each column of sub-patches
// adaptively tesselate each horizontal control curve in the list
// create a binary tree representing the combined tesselation of the list
for (std::size_t i = 0; i != length; ++i) {
PatchControl *p1 = m_ctrlTransformed.data() + (i * 2 * strideU);
GSList *pCurveList = 0;
for (std::size_t j = 0; j < cross; j += 2) {
PatchControl *p2 = p1 + strideV;
PatchControl *p3 = p2 + strideV;
// directly taken from one row of control points
{
BezierCurve *pCurve = new BezierCurve;
pCurve->crd = (p1 + strideU)->m_vertex;
pCurve->left = p1->m_vertex;
pCurve->right = (p1 + (strideU << 1))->m_vertex;
pCurveList = g_slist_prepend(pCurveList, pCurve);
}
if (j + 2 >= cross) {
break;
}
// interpolated from three columns of control points
{
BezierCurve *pCurve = new BezierCurve;
pCurve->crd = vector3_mid((p1 + strideU)->m_vertex, (p3 + strideU)->m_vertex);
pCurve->left = vector3_mid(p1->m_vertex, p3->m_vertex);
pCurve->right = vector3_mid((p1 + (strideU << 1))->m_vertex, (p3 + (strideU << 1))->m_vertex);
pCurve->crd = vector3_mid(pCurve->crd, (p2 + strideU)->m_vertex);
pCurve->left = vector3_mid(pCurve->left, p2->m_vertex);
pCurve->right = vector3_mid(pCurve->right, (p2 + (strideU << 1))->m_vertex);
pCurveList = g_slist_prepend(pCurveList, pCurve);
}
p1 = p3;
}
pCurveTree[i] = new BezierCurveTree;
BezierCurveTree_FromCurveList(pCurveTree[i], pCurveList);
for (GSList *l = pCurveList; l != 0; l = g_slist_next(l)) {
delete static_cast<BezierCurve *>((*l).data );
}
g_slist_free(pCurveList);
// set up array indices for binary tree
// accumulate subarray width
arrayLength[i] = Array<std::size_t>::value_type(
BezierCurveTree_Setup(pCurveTree[i], nArrayLength, nArrayStride) - (nArrayLength - 1));
// accumulate total array width
nArrayLength += arrayLength[i];
}
}
switch (major) {
case ROW:
m_tess.m_nArrayWidth = nArrayLength;
std::swap(m_tess.m_arrayWidth, arrayLength);
if (!m_patchDef3) {
std::swap(m_tess.m_curveTreeU, pCurveTree);
}
break;
case COL:
m_tess.m_nArrayHeight = nArrayLength;
std::swap(m_tess.m_arrayHeight, arrayLength);
if (!m_patchDef3) {
std::swap(m_tess.m_curveTreeV, pCurveTree);
}
break;
}
}
inline void vertex_assign_ctrl(ArbitraryMeshVertex &vertex, const PatchControl &ctrl)
{
vertex.vertex = vertex3f_for_vector3(ctrl.m_vertex);
vertex.texcoord = texcoord2f_for_vector2(ctrl.m_texcoord);
}
inline void vertex_clear_normal(ArbitraryMeshVertex &vertex)
{
vertex.normal = Normal3f(0, 0, 0);
vertex.tangent = Normal3f(0, 0, 0);
vertex.bitangent = Normal3f(0, 0, 0);
}
inline void tangents_remove_degenerate(Vector3 tangents[6], Vector2 textureTangents[6], unsigned int flags)
{
if (flags & DEGEN_0a) {
const std::size_t i =
(flags & DEGEN_0b)
? (flags & DEGEN_1a)
? (flags & DEGEN_1b)
? (flags & DEGEN_2a)
? 5
: 4
: 3
: 2
: 1;
tangents[0] = tangents[i];
textureTangents[0] = textureTangents[i];
}
if (flags & DEGEN_0b) {
const std::size_t i =
(flags & DEGEN_0a)
? (flags & DEGEN_1b)
? (flags & DEGEN_1a)
? (flags & DEGEN_2b)
? 4
: 5
: 2
: 3
: 0;
tangents[1] = tangents[i];
textureTangents[1] = textureTangents[i];
}
if (flags & DEGEN_2a) {
const std::size_t i =
(flags & DEGEN_2b)
? (flags & DEGEN_1a)
? (flags & DEGEN_1b)
? (flags & DEGEN_0a)
? 1
: 0
: 3
: 2
: 5;
tangents[4] = tangents[i];
textureTangents[4] = textureTangents[i];
}
if (flags & DEGEN_2b) {
const std::size_t i =
(flags & DEGEN_2a)
? (flags & DEGEN_1b)
? (flags & DEGEN_1a)
? (flags & DEGEN_0b)
? 0
: 1
: 2
: 3
: 4;
tangents[5] = tangents[i];
textureTangents[5] = textureTangents[i];
}
}
void bestTangents00(unsigned int degenerateFlags, double dot, double length, std::size_t &index0, std::size_t &index1)
{
if (fabs(dot + length) < 0.001) { // opposing direction = degenerate
if (!(degenerateFlags & DEGEN_1a)) { // if this tangent is degenerate we cannot use it
index0 = 2;
index1 = 0;
} else if (!(degenerateFlags & DEGEN_0b)) {
index0 = 0;
index1 = 1;
} else {
index0 = 1;
index1 = 0;
}
} else if (fabs(dot - length) < 0.001) { // same direction = degenerate
if (degenerateFlags & DEGEN_0b) {
index0 = 0;
index1 = 1;
} else {
index0 = 1;
index1 = 0;
}
}
}
void bestTangents01(unsigned int degenerateFlags, double dot, double length, std::size_t &index0, std::size_t &index1)
{
if (fabs(dot - length) < 0.001) { // same direction = degenerate
if (!(degenerateFlags & DEGEN_1a)) { // if this tangent is degenerate we cannot use it
index0 = 2;
index1 = 1;
} else if (!(degenerateFlags & DEGEN_2b)) {
index0 = 4;
index1 = 0;
} else {
index0 = 5;
index1 = 1;
}
} else if (fabs(dot + length) < 0.001) { // opposing direction = degenerate
if (degenerateFlags & DEGEN_2b) {
index0 = 4;
index1 = 0;
} else {
index0 = 5;
index1 = 1;
}
}
}
void bestTangents10(unsigned int degenerateFlags, double dot, double length, std::size_t &index0, std::size_t &index1)
{
if (fabs(dot - length) < 0.001) { // same direction = degenerate
if (!(degenerateFlags & DEGEN_1b)) { // if this tangent is degenerate we cannot use it
index0 = 3;
index1 = 4;
} else if (!(degenerateFlags & DEGEN_0a)) {
index0 = 1;
index1 = 5;
} else {
index0 = 0;
index1 = 4;
}
} else if (fabs(dot + length) < 0.001) { // opposing direction = degenerate
if (degenerateFlags & DEGEN_0a) {
index0 = 1;
index1 = 5;
} else {
index0 = 0;
index1 = 4;
}
}
}
void bestTangents11(unsigned int degenerateFlags, double dot, double length, std::size_t &index0, std::size_t &index1)
{
if (fabs(dot + length) < 0.001) { // opposing direction = degenerate
if (!(degenerateFlags & DEGEN_1b)) { // if this tangent is degenerate we cannot use it
index0 = 3;
index1 = 5;
} else if (!(degenerateFlags & DEGEN_2a)) {
index0 = 5;
index1 = 4;
} else {
index0 = 4;
index1 = 5;
}
} else if (fabs(dot - length) < 0.001) { // same direction = degenerate
if (degenerateFlags & DEGEN_2a) {
index0 = 5;
index1 = 4;
} else {
index0 = 4;
index1 = 5;
}
}
}
void
Patch::accumulateVertexTangentSpace(std::size_t index, Vector3 tangentX[6], Vector3 tangentY[6], Vector2 tangentS[6],
Vector2 tangentT[6], std::size_t index0, std::size_t index1)
{
{
Vector3 normal(vector3_cross(tangentX[index0], tangentY[index1]));
if (!vector3_equal(normal, g_vector3_identity)) {
vector3_add(normal_for_index(m_tess.m_vertices, index), vector3_normalised(normal));
}
}
{
ArbitraryMeshVertex a, b, c;
a.vertex = Vertex3f(0, 0, 0);
a.texcoord = TexCoord2f(0, 0);
b.vertex = vertex3f_for_vector3(tangentX[index0]);
b.texcoord = texcoord2f_for_vector2(tangentS[index0]);
c.vertex = vertex3f_for_vector3(tangentY[index1]);
c.texcoord = texcoord2f_for_vector2(tangentT[index1]);
Vector3 s, t;
ArbitraryMeshTriangle_calcTangents(a, b, c, s, t);
if (!vector3_equal(s, g_vector3_identity)) {
vector3_add(tangent_for_index(m_tess.m_vertices, index), vector3_normalised(s));
}
if (!vector3_equal(t, g_vector3_identity)) {
vector3_add(bitangent_for_index(m_tess.m_vertices, index), vector3_normalised(t));
}
}
}
const std::size_t PATCH_MAX_VERTEX_ARRAY = 1048576;
void Patch::BuildVertexArray()
{
const std::size_t strideU = 1;
const std::size_t strideV = m_width;
const std::size_t numElems =
m_tess.m_nArrayWidth * m_tess.m_nArrayHeight; // total number of elements in vertex array
const bool bWidthStrips = (m_tess.m_nArrayWidth >=
m_tess.m_nArrayHeight); // decide if horizontal strips are longer than vertical
// allocate vertex, normal, texcoord and primitive-index arrays
m_tess.m_vertices.resize(numElems);
m_tess.m_indices.resize(m_tess.m_nArrayWidth * 2 * (m_tess.m_nArrayHeight - 1));
// set up strip indices
if (bWidthStrips) {
m_tess.m_numStrips = m_tess.m_nArrayHeight - 1;
m_tess.m_lenStrips = m_tess.m_nArrayWidth * 2;
for (std::size_t i = 0; i < m_tess.m_nArrayWidth; i++) {
for (std::size_t j = 0; j < m_tess.m_numStrips; j++) {
m_tess.m_indices[(j * m_tess.m_lenStrips) + i * 2] = RenderIndex(j * m_tess.m_nArrayWidth + i);
m_tess.m_indices[(j * m_tess.m_lenStrips) + i * 2 + 1] = RenderIndex(
(j + 1) * m_tess.m_nArrayWidth + i);
// reverse because radiant uses CULL_FRONT
//m_tess.m_indices[(j*m_tess.m_lenStrips)+i*2+1] = RenderIndex(j*m_tess.m_nArrayWidth+i);
//m_tess.m_indices[(j*m_tess.m_lenStrips)+i*2] = RenderIndex((j+1)*m_tess.m_nArrayWidth+i);
}
}
} else {
m_tess.m_numStrips = m_tess.m_nArrayWidth - 1;
m_tess.m_lenStrips = m_tess.m_nArrayHeight * 2;
for (std::size_t i = 0; i < m_tess.m_nArrayHeight; i++) {
for (std::size_t j = 0; j < m_tess.m_numStrips; j++) {
m_tess.m_indices[(j * m_tess.m_lenStrips) + i * 2] = RenderIndex(
((m_tess.m_nArrayHeight - 1) - i) * m_tess.m_nArrayWidth + j);
m_tess.m_indices[(j * m_tess.m_lenStrips) + i * 2 + 1] = RenderIndex(
((m_tess.m_nArrayHeight - 1) - i) * m_tess.m_nArrayWidth + j + 1);
// reverse because radiant uses CULL_FRONT
//m_tess.m_indices[(j*m_tess.m_lenStrips)+i*2+1] = RenderIndex(((m_tess.m_nArrayHeight-1)-i)*m_tess.m_nArrayWidth+j);
//m_tess.m_indices[(j*m_tess.m_lenStrips)+i*2] = RenderIndex(((m_tess.m_nArrayHeight-1)-i)*m_tess.m_nArrayWidth+j+1);
}
}
}
if (m_patchDef3 && !m_subdivisions_x && !m_subdivisions_y)
{
for (std::size_t i = 0; i < m_width*m_height; i++)
{
ArbitraryMeshVertex &p = m_tess.m_vertices[i];
PatchControl &cp = m_ctrlTransformed[i];
p.vertex = vertex3f_for_vector3(cp.m_vertex);
p.texcoord = texcoord2f_for_vector2(cp.m_texcoord);
p.colour = colour4f_for_vector4(cp.m_color);
}
}
else
{
PatchControlIter pCtrl = m_ctrlTransformed.data();
for (std::size_t j = 0, offStartY = 0; j + 1 < m_height; j += 2, pCtrl += (strideU + strideV)) {
// set up array offsets for this sub-patch
const bool leafY = (m_patchDef3) ? false : BezierCurveTree_isLeaf(m_tess.m_curveTreeV[j >> 1]);
const std::size_t offMidY = (m_patchDef3) ? 0 : m_tess.m_curveTreeV[j >> 1]->index;
const std::size_t widthY = m_tess.m_arrayHeight[j >> 1] * m_tess.m_nArrayWidth;
const std::size_t offEndY = offStartY + widthY;
for (std::size_t i = 0, offStartX = 0; i + 1 < m_width; i += 2, pCtrl += (strideU << 1)) {
const bool leafX = (m_patchDef3) ? false : BezierCurveTree_isLeaf(m_tess.m_curveTreeU[i >> 1]);
const std::size_t offMidX = (m_patchDef3) ? 0 : m_tess.m_curveTreeU[i >> 1]->index;
const std::size_t widthX = m_tess.m_arrayWidth[i >> 1];
const std::size_t offEndX = offStartX + widthX;
PatchControl *subMatrix[3][3];
subMatrix[0][0] = pCtrl;
subMatrix[0][1] = subMatrix[0][0] + strideU;
subMatrix[0][2] = subMatrix[0][1] + strideU;
subMatrix[1][0] = subMatrix[0][0] + strideV;
subMatrix[1][1] = subMatrix[1][0] + strideU;
subMatrix[1][2] = subMatrix[1][1] + strideU;
subMatrix[2][0] = subMatrix[1][0] + strideV;
subMatrix[2][1] = subMatrix[2][0] + strideU;
subMatrix[2][2] = subMatrix[2][1] + strideU;
// assign on-patch control points to vertex array
if (i == 0 && j == 0) {
vertex_clear_normal(m_tess.m_vertices[offStartX + offStartY]);
}
vertex_assign_ctrl(m_tess.m_vertices[offStartX + offStartY], *subMatrix[0][0]);
if (j == 0) {
vertex_clear_normal(m_tess.m_vertices[offEndX + offStartY]);
}
vertex_assign_ctrl(m_tess.m_vertices[offEndX + offStartY], *subMatrix[0][2]);
if (i == 0) {
vertex_clear_normal(m_tess.m_vertices[offStartX + offEndY]);
}
vertex_assign_ctrl(m_tess.m_vertices[offStartX + offEndY], *subMatrix[2][0]);
vertex_clear_normal(m_tess.m_vertices[offEndX + offEndY]);
vertex_assign_ctrl(m_tess.m_vertices[offEndX + offEndY], *subMatrix[2][2]);
if (!m_patchDef3) {
// assign remaining control points to vertex array
if (!leafX) {
vertex_assign_ctrl(m_tess.m_vertices[offMidX + offStartY], *subMatrix[0][1]);
vertex_assign_ctrl(m_tess.m_vertices[offMidX + offEndY], *subMatrix[2][1]);
}
if (!leafY) {
vertex_assign_ctrl(m_tess.m_vertices[offStartX + offMidY], *subMatrix[1][0]);
vertex_assign_ctrl(m_tess.m_vertices[offEndX + offMidY], *subMatrix[1][2]);
if (!leafX) {
vertex_assign_ctrl(m_tess.m_vertices[offMidX + offMidY], *subMatrix[1][1]);
}
}
}
// test all 12 edges for degeneracy
unsigned int nFlagsX = subarray_get_degen(pCtrl, strideU, strideV);
unsigned int nFlagsY = subarray_get_degen(pCtrl, strideV, strideU);
Vector3 tangentX[6], tangentY[6];
Vector2 tangentS[6], tangentT[6];
// set up tangents for each of the 12 edges if they were not degenerate
if (!(nFlagsX & DEGEN_0a)) {
tangentX[0] = vector3_subtracted(subMatrix[0][1]->m_vertex, subMatrix[0][0]->m_vertex);
tangentS[0] = vector2_subtracted(subMatrix[0][1]->m_texcoord, subMatrix[0][0]->m_texcoord);
}
if (!(nFlagsX & DEGEN_0b)) {
tangentX[1] = vector3_subtracted(subMatrix[0][2]->m_vertex, subMatrix[0][1]->m_vertex);
tangentS[1] = vector2_subtracted(subMatrix[0][2]->m_texcoord, subMatrix[0][1]->m_texcoord);
}
if (!(nFlagsX & DEGEN_1a)) {
tangentX[2] = vector3_subtracted(subMatrix[1][1]->m_vertex, subMatrix[1][0]->m_vertex);
tangentS[2] = vector2_subtracted(subMatrix[1][1]->m_texcoord, subMatrix[1][0]->m_texcoord);
}
if (!(nFlagsX & DEGEN_1b)) {
tangentX[3] = vector3_subtracted(subMatrix[1][2]->m_vertex, subMatrix[1][1]->m_vertex);
tangentS[3] = vector2_subtracted(subMatrix[1][2]->m_texcoord, subMatrix[1][1]->m_texcoord);
}
if (!(nFlagsX & DEGEN_2a)) {
tangentX[4] = vector3_subtracted(subMatrix[2][1]->m_vertex, subMatrix[2][0]->m_vertex);
tangentS[4] = vector2_subtracted(subMatrix[2][1]->m_texcoord, subMatrix[2][0]->m_texcoord);
}
if (!(nFlagsX & DEGEN_2b)) {
tangentX[5] = vector3_subtracted(subMatrix[2][2]->m_vertex, subMatrix[2][1]->m_vertex);
tangentS[5] = vector2_subtracted(subMatrix[2][2]->m_texcoord, subMatrix[2][1]->m_texcoord);
}
if (!(nFlagsY & DEGEN_0a)) {
tangentY[0] = vector3_subtracted(subMatrix[1][0]->m_vertex, subMatrix[0][0]->m_vertex);
tangentT[0] = vector2_subtracted(subMatrix[1][0]->m_texcoord, subMatrix[0][0]->m_texcoord);
}
if (!(nFlagsY & DEGEN_0b)) {
tangentY[1] = vector3_subtracted(subMatrix[2][0]->m_vertex, subMatrix[1][0]->m_vertex);
tangentT[1] = vector2_subtracted(subMatrix[2][0]->m_texcoord, subMatrix[1][0]->m_texcoord);
}
if (!(nFlagsY & DEGEN_1a)) {
tangentY[2] = vector3_subtracted(subMatrix[1][1]->m_vertex, subMatrix[0][1]->m_vertex);
tangentT[2] = vector2_subtracted(subMatrix[1][1]->m_texcoord, subMatrix[0][1]->m_texcoord);
}
if (!(nFlagsY & DEGEN_1b)) {
tangentY[3] = vector3_subtracted(subMatrix[2][1]->m_vertex, subMatrix[1][1]->m_vertex);
tangentT[3] = vector2_subtracted(subMatrix[2][1]->m_texcoord, subMatrix[1][1]->m_texcoord);
}
if (!(nFlagsY & DEGEN_2a)) {
tangentY[4] = vector3_subtracted(subMatrix[1][2]->m_vertex, subMatrix[0][2]->m_vertex);
tangentT[4] = vector2_subtracted(subMatrix[1][2]->m_texcoord, subMatrix[0][2]->m_texcoord);
}
if (!(nFlagsY & DEGEN_2b)) {
tangentY[5] = vector3_subtracted(subMatrix[2][2]->m_vertex, subMatrix[1][2]->m_vertex);
tangentT[5] = vector2_subtracted(subMatrix[2][2]->m_texcoord, subMatrix[1][2]->m_texcoord);
}
// set up remaining edge tangents by borrowing the tangent from the closest parallel non-degenerate edge
tangents_remove_degenerate(tangentX, tangentS, nFlagsX);
tangents_remove_degenerate(tangentY, tangentT, nFlagsY);
{
// x=0, y=0
std::size_t index = offStartX + offStartY;
std::size_t index0 = 0;
std::size_t index1 = 0;
double dot = vector3_dot(tangentX[index0], tangentY[index1]);
double length = vector3_length(tangentX[index0]) * vector3_length(tangentY[index1]);
bestTangents00(nFlagsX, dot, length, index0, index1);
accumulateVertexTangentSpace(index, tangentX, tangentY, tangentS, tangentT, index0, index1);
}
{
// x=1, y=0
std::size_t index = offEndX + offStartY;
std::size_t index0 = 1;
std::size_t index1 = 4;
double dot = vector3_dot(tangentX[index0], tangentY[index1]);
double length = vector3_length(tangentX[index0]) * vector3_length(tangentY[index1]);
bestTangents10(nFlagsX, dot, length, index0, index1);
accumulateVertexTangentSpace(index, tangentX, tangentY, tangentS, tangentT, index0, index1);
}
{
// x=0, y=1
std::size_t index = offStartX + offEndY;
std::size_t index0 = 4;
std::size_t index1 = 1;
double dot = vector3_dot(tangentX[index0], tangentY[index1]);
double length = vector3_length(tangentX[index1]) * vector3_length(tangentY[index1]);
bestTangents01(nFlagsX, dot, length, index0, index1);
accumulateVertexTangentSpace(index, tangentX, tangentY, tangentS, tangentT, index0, index1);
}
{
// x=1, y=1
std::size_t index = offEndX + offEndY;
std::size_t index0 = 5;
std::size_t index1 = 5;
double dot = vector3_dot(tangentX[index0], tangentY[index1]);
double length = vector3_length(tangentX[index0]) * vector3_length(tangentY[index1]);
bestTangents11(nFlagsX, dot, length, index0, index1);
accumulateVertexTangentSpace(index, tangentX, tangentY, tangentS, tangentT, index0, index1);
}
//normalise normals that won't be accumulated again
if (i != 0 || j != 0) {
normalise_safe(normal_for_index(m_tess.m_vertices, offStartX + offStartY));
normalise_safe(tangent_for_index(m_tess.m_vertices, offStartX + offStartY));
normalise_safe(bitangent_for_index(m_tess.m_vertices, offStartX + offStartY));
}
if (i + 3 == m_width) {
normalise_safe(normal_for_index(m_tess.m_vertices, offEndX + offStartY));
normalise_safe(tangent_for_index(m_tess.m_vertices, offEndX + offStartY));
normalise_safe(bitangent_for_index(m_tess.m_vertices, offEndX + offStartY));
}
if (j + 3 == m_height) {
normalise_safe(normal_for_index(m_tess.m_vertices, offStartX + offEndY));
normalise_safe(tangent_for_index(m_tess.m_vertices, offStartX + offEndY));
normalise_safe(bitangent_for_index(m_tess.m_vertices, offStartX + offEndY));
}
if (i + 3 == m_width && j + 3 == m_height) {
normalise_safe(normal_for_index(m_tess.m_vertices, offEndX + offEndY));
normalise_safe(tangent_for_index(m_tess.m_vertices, offEndX + offEndY));
normalise_safe(bitangent_for_index(m_tess.m_vertices, offEndX + offEndY));
}
// set flags to average normals between shared edges
if (j != 0) {
nFlagsX |= AVERAGE;
}
if (i != 0) {
nFlagsY |= AVERAGE;
}
// set flags to save evaluating shared edges twice
nFlagsX |= SPLIT;
nFlagsY |= SPLIT;
// if the patch is curved.. tesselate recursively
// use the relevant control curves for this sub-patch
if (m_patchDef3) {
TesselateSubMatrixFixed(m_tess.m_vertices.data() + offStartX + offStartY, 1, m_tess.m_nArrayWidth,
nFlagsX, nFlagsY, subMatrix);
} else {
if (!leafX) {
TesselateSubMatrix(m_tess.m_curveTreeU[i >> 1], m_tess.m_curveTreeV[j >> 1],
offStartX, offStartY, offEndX, offEndY, // array offsets
nFlagsX, nFlagsY,
subMatrix[1][0]->m_vertex, subMatrix[1][1]->m_vertex,
subMatrix[1][2]->m_vertex,
subMatrix[1][0]->m_texcoord, subMatrix[1][1]->m_texcoord,
subMatrix[1][2]->m_texcoord,
subMatrix[1][0]->m_color, subMatrix[1][1]->m_color,
subMatrix[1][2]->m_color,
false);
} else if (!leafY) {
TesselateSubMatrix(m_tess.m_curveTreeV[j >> 1], m_tess.m_curveTreeU[i >> 1],
offStartY, offStartX, offEndY, offEndX, // array offsets
nFlagsY, nFlagsX,
subMatrix[0][1]->m_vertex, subMatrix[1][1]->m_vertex,
subMatrix[2][1]->m_vertex,
subMatrix[0][1]->m_texcoord, subMatrix[1][1]->m_texcoord,
subMatrix[2][1]->m_texcoord,
subMatrix[0][1]->m_color, subMatrix[1][1]->m_color,
subMatrix[2][1]->m_color,
true);
}
}
offStartX = offEndX;
}
offStartY = offEndY;
}
}
}
class PatchFilterWrapper : public Filter {
bool m_active;
bool m_invert;
PatchFilter &m_filter;
public:
PatchFilterWrapper(PatchFilter &filter, bool invert) : m_invert(invert), m_filter(filter)
{
}
void setActive(bool active)
{
m_active = active;
}
bool active()
{
return m_active;
}
bool filter(const Patch &patch)
{
return m_invert ^ m_filter.filter(patch);
}
};
typedef std::list<PatchFilterWrapper> PatchFilters;
PatchFilters g_patchFilters;
void add_patch_filter(PatchFilter &filter, int mask, bool invert)
{
g_patchFilters.push_back(PatchFilterWrapper(filter, invert));
GlobalFilterSystem().addFilter(g_patchFilters.back(), mask);
}
bool patch_filtered(Patch &patch)
{
for (PatchFilters::iterator i = g_patchFilters.begin(); i != g_patchFilters.end(); ++i) {
if ((*i).active() && (*i).filter(patch)) {
return true;
}
}
return false;
}