vmap/plugins/model/model.cpp
2020-11-17 12:16:16 +01:00

1024 lines
29 KiB
C++

/*
Copyright (C) 2001-2006, William Joseph.
All Rights Reserved.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "model.h"
#include "globaldefs.h"
#include "picomodel.h"
#include "iarchive.h"
#include "idatastream.h"
#include "imodel.h"
#include "modelskin.h"
#include "cullable.h"
#include "renderable.h"
#include "selectable.h"
#include "math/frustum.h"
#include "string/string.h"
#include "generic/static.h"
#include "shaderlib.h"
#include "scenelib.h"
#include "instancelib.h"
#include "transformlib.h"
#include "traverselib.h"
#include "render.h"
class VectorLightList : public LightList {
typedef std::vector<const RendererLight *> Lights;
Lights m_lights;
public:
void addLight(const RendererLight &light)
{
m_lights.push_back(&light);
}
void clear()
{
m_lights.clear();
}
void evaluateLights() const
{
}
void lightsChanged() const
{
}
void forEachLight(const RendererLightCallback &callback) const
{
for (Lights::const_iterator i = m_lights.begin(); i != m_lights.end(); ++i) {
callback(*(*i));
}
}
};
class PicoSurface :
public OpenGLRenderable {
AABB m_aabb_local;
CopiedString m_shader;
Shader *m_state;
Array<ArbitraryMeshVertex> m_vertices;
Array<RenderIndex> m_indices;
public:
PicoSurface()
{
constructNull();
CaptureShader();
}
PicoSurface(picoSurface_t *surface)
{
CopyPicoSurface(surface);
CaptureShader();
}
~PicoSurface()
{
ReleaseShader();
}
void render(RenderStateFlags state) const
{
if ((state & RENDER_BUMP) != 0) {
if (GlobalShaderCache().useShaderLanguage()) {
glNormalPointer(GL_FLOAT, sizeof(ArbitraryMeshVertex), &m_vertices.data()->normal);
glVertexAttribPointerARB(c_attr_TexCoord0, 2, GL_FLOAT, 0, sizeof(ArbitraryMeshVertex),
&m_vertices.data()->texcoord);
glVertexAttribPointerARB(c_attr_Tangent, 3, GL_FLOAT, 0, sizeof(ArbitraryMeshVertex),
&m_vertices.data()->tangent);
glVertexAttribPointerARB(c_attr_Binormal, 3, GL_FLOAT, 0, sizeof(ArbitraryMeshVertex),
&m_vertices.data()->bitangent);
} else {
glVertexAttribPointerARB(11, 3, GL_FLOAT, 0, sizeof(ArbitraryMeshVertex), &m_vertices.data()->normal);
glVertexAttribPointerARB(8, 2, GL_FLOAT, 0, sizeof(ArbitraryMeshVertex), &m_vertices.data()->texcoord);
glVertexAttribPointerARB(9, 3, GL_FLOAT, 0, sizeof(ArbitraryMeshVertex), &m_vertices.data()->tangent);
glVertexAttribPointerARB(10, 3, GL_FLOAT, 0, sizeof(ArbitraryMeshVertex),
&m_vertices.data()->bitangent);
}
} else {
glNormalPointer(GL_FLOAT, sizeof(ArbitraryMeshVertex), &m_vertices.data()->normal);
glTexCoordPointer(2, GL_FLOAT, sizeof(ArbitraryMeshVertex), &m_vertices.data()->texcoord);
}
glVertexPointer(3, GL_FLOAT, sizeof(ArbitraryMeshVertex), &m_vertices.data()->vertex);
glDrawElements(GL_TRIANGLES, GLsizei(m_indices.size()), RenderIndexTypeID, m_indices.data());
#if 0
GLfloat modelview[16];
glGetFloatv(GL_MODELVIEW_MATRIX, modelview); // I know this is slow as hell, but hey - we're in _DEBUG
Matrix4 modelview_inv(
modelview[0], modelview[1], modelview[2], modelview[3],
modelview[4], modelview[5], modelview[6], modelview[7],
modelview[8], modelview[9], modelview[10], modelview[11],
modelview[12], modelview[13], modelview[14], modelview[15]);
matrix4_full_invert(modelview_inv);
Matrix4 modelview_inv_transposed = matrix4_transposed(modelview_inv);
glBegin(GL_LINES);
for (Array<ArbitraryMeshVertex>::const_iterator i = m_vertices.begin(); i != m_vertices.end(); ++i) {
Vector3 normal = normal3f_to_vector3((*i).normal);
normal = matrix4_transformed_direction(modelview_inv, vector3_normalised(
matrix4_transformed_direction(modelview_inv_transposed, normal))); // do some magic
Vector3 normalTransformed = vector3_added(vertex3f_to_vector3((*i).vertex), vector3_scaled(normal, 8));
glVertex3fv(vertex3f_to_array((*i).vertex));
glVertex3fv(vector3_to_array(normalTransformed));
}
glEnd();
#endif
}
VolumeIntersectionValue intersectVolume(const VolumeTest &test, const Matrix4 &localToWorld) const
{
return test.TestAABB(m_aabb_local, localToWorld);
}
const AABB &localAABB() const
{
return m_aabb_local;
}
void render(Renderer &renderer, const Matrix4 &localToWorld, Shader *state) const
{
renderer.SetState(state, Renderer::eFullMaterials);
renderer.addRenderable(*this, localToWorld);
}
void render(Renderer &renderer, const Matrix4 &localToWorld) const
{
render(renderer, localToWorld, m_state);
}
void testSelect(Selector &selector, SelectionTest &test, const Matrix4 &localToWorld)
{
test.BeginMesh(localToWorld);
SelectionIntersection best;
testSelect(test, best);
if (best.valid()) {
selector.addIntersection(best);
}
}
const char *getShader() const
{
return m_shader.c_str();
}
Shader *getState() const
{
return m_state;
}
private:
void CaptureShader()
{
m_state = GlobalShaderCache().capture(m_shader.c_str());
}
void ReleaseShader()
{
GlobalShaderCache().release(m_shader.c_str());
}
void UpdateAABB()
{
m_aabb_local = AABB();
for (std::size_t i = 0; i < m_vertices.size(); ++i) {
aabb_extend_by_point_safe(m_aabb_local, reinterpret_cast<const Vector3 &>( m_vertices[i].vertex ));
}
for (Array<RenderIndex>::iterator i = m_indices.begin(); i != m_indices.end(); i += 3) {
ArbitraryMeshVertex &a = m_vertices[*(i + 0)];
ArbitraryMeshVertex &b = m_vertices[*(i + 1)];
ArbitraryMeshVertex &c = m_vertices[*(i + 2)];
ArbitraryMeshTriangle_sumTangents(a, b, c);
}
for (Array<ArbitraryMeshVertex>::iterator i = m_vertices.begin(); i != m_vertices.end(); ++i) {
vector3_normalise(reinterpret_cast<Vector3 &>((*i).tangent ));
vector3_normalise(reinterpret_cast<Vector3 &>((*i).bitangent ));
}
}
void testSelect(SelectionTest &test, SelectionIntersection &best)
{
test.TestTriangles(
VertexPointer(VertexPointer::pointer(&m_vertices.data()->vertex), sizeof(ArbitraryMeshVertex)),
IndexPointer(m_indices.data(), IndexPointer::index_type(m_indices.size())),
best
);
}
void CopyPicoSurface(picoSurface_t *surface)
{
picoShader_t *shader = PicoGetSurfaceShader(surface);
if (shader == 0) {
m_shader = "";
} else {
m_shader = PicoGetShaderName(shader);
}
m_vertices.resize(PicoGetSurfaceNumVertexes(surface));
m_indices.resize(PicoGetSurfaceNumIndexes(surface));
for (std::size_t i = 0; i < m_vertices.size(); ++i) {
picoVec_t *xyz = PicoGetSurfaceXYZ(surface, int(i));
m_vertices[i].vertex = vertex3f_from_array(xyz);
picoVec_t *normal = PicoGetSurfaceNormal(surface, int(i));
m_vertices[i].normal = normal3f_from_array(normal);
picoVec_t *st = PicoGetSurfaceST(surface, 0, int(i));
m_vertices[i].texcoord = TexCoord2f(st[0], st[1]);
#if 0
picoVec_t* color = PicoGetSurfaceColor( surface, 0, int(i) );
m_vertices[i].colour = Colour4b( color[0], color[1], color[2], color[3] );
#endif
}
picoIndex_t *indexes = PicoGetSurfaceIndexes(surface, 0);
for (std::size_t j = 0; j < m_indices.size(); ++j) {
m_indices[j] = indexes[j];
}
UpdateAABB();
}
void constructQuad(std::size_t index, const Vector3 &a, const Vector3 &b, const Vector3 &c, const Vector3 &d,
const Vector3 &normal)
{
m_vertices[index * 4 + 0] = ArbitraryMeshVertex(
vertex3f_for_vector3(a),
normal3f_for_vector3(normal),
texcoord2f_from_array(aabb_texcoord_topleft)
);
m_vertices[index * 4 + 1] = ArbitraryMeshVertex(
vertex3f_for_vector3(b),
normal3f_for_vector3(normal),
texcoord2f_from_array(aabb_texcoord_topright)
);
m_vertices[index * 4 + 2] = ArbitraryMeshVertex(
vertex3f_for_vector3(c),
normal3f_for_vector3(normal),
texcoord2f_from_array(aabb_texcoord_botright)
);
m_vertices[index * 4 + 3] = ArbitraryMeshVertex(
vertex3f_for_vector3(d),
normal3f_for_vector3(normal),
texcoord2f_from_array(aabb_texcoord_botleft)
);
}
void constructNull()
{
AABB aabb(Vector3(0, 0, 0), Vector3(8, 8, 8));
Vector3 points[8];
aabb_corners(aabb, points);
m_vertices.resize(24);
constructQuad(0, points[2], points[1], points[5], points[6], aabb_normals[0]);
constructQuad(1, points[1], points[0], points[4], points[5], aabb_normals[1]);
constructQuad(2, points[0], points[1], points[2], points[3], aabb_normals[2]);
constructQuad(3, points[0], points[3], points[7], points[4], aabb_normals[3]);
constructQuad(4, points[3], points[2], points[6], points[7], aabb_normals[4]);
constructQuad(5, points[7], points[6], points[5], points[4], aabb_normals[5]);
m_indices.resize(36);
RenderIndex indices[36] = {
0, 1, 2, 0, 2, 3,
4, 5, 6, 4, 6, 7,
8, 9, 10, 8, 10, 11,
12, 13, 14, 12, 14, 15,
16, 17, 18, 16, 18, 19,
20, 21, 22, 10, 22, 23,
};
Array<RenderIndex>::iterator j = m_indices.begin();
for (RenderIndex *i = indices; i != indices + (sizeof(indices) / sizeof(RenderIndex)); ++i) {
*j++ = *i;
}
m_shader = "";
UpdateAABB();
}
};
typedef std::pair<CopiedString, int> PicoModelKey;
class PicoModel :
public Cullable,
public Bounded {
typedef std::vector<PicoSurface *> surfaces_t;
surfaces_t m_surfaces;
AABB m_aabb_local;
public:
Callback<void()> m_lightsChanged;
PicoModel()
{
constructNull();
}
PicoModel(picoModel_t *model)
{
CopyPicoModel(model);
}
~PicoModel()
{
for (surfaces_t::iterator i = m_surfaces.begin(); i != m_surfaces.end(); ++i) {
delete *i;
}
}
typedef surfaces_t::const_iterator const_iterator;
const_iterator begin() const
{
return m_surfaces.begin();
}
const_iterator end() const
{
return m_surfaces.end();
}
std::size_t size() const
{
return m_surfaces.size();
}
VolumeIntersectionValue intersectVolume(const VolumeTest &test, const Matrix4 &localToWorld) const
{
return test.TestAABB(m_aabb_local, localToWorld);
}
virtual const AABB &localAABB() const
{
return m_aabb_local;
}
void render(Renderer &renderer, const VolumeTest &volume, const Matrix4 &localToWorld,
std::vector<Shader *> states) const
{
for (surfaces_t::const_iterator i = m_surfaces.begin(); i != m_surfaces.end(); ++i) {
if ((*i)->intersectVolume(volume, localToWorld) != c_volumeOutside) {
(*i)->render(renderer, localToWorld, states[i - m_surfaces.begin()]);
}
}
}
void testSelect(Selector &selector, SelectionTest &test, const Matrix4 &localToWorld)
{
for (surfaces_t::iterator i = m_surfaces.begin(); i != m_surfaces.end(); ++i) {
if ((*i)->intersectVolume(test.getVolume(), localToWorld) != c_volumeOutside) {
(*i)->testSelect(selector, test, localToWorld);
}
}
}
private:
void CopyPicoModel(picoModel_t *model)
{
m_aabb_local = AABB();
/* each surface on the model will become a new map drawsurface */
int numSurfaces = PicoGetModelNumSurfaces(model);
//% SYs_FPrintf( SYS_VRB, "Model %s has %d surfaces\n", name, numSurfaces );
for (int s = 0; s < numSurfaces; ++s) {
/* get surface */
picoSurface_t *surface = PicoGetModelSurface(model, s);
if (surface == 0) {
continue;
}
/* only handle triangle surfaces initially (fixme: support patches) */
if (PicoGetSurfaceType(surface) != PICO_TRIANGLES) {
continue;
}
/* fix the surface's normals */
PicoFixSurfaceNormals(surface);
PicoSurface *picosurface = new PicoSurface(surface);
aabb_extend_by_aabb_safe(m_aabb_local, picosurface->localAABB());
m_surfaces.push_back(picosurface);
}
}
void constructNull()
{
PicoSurface *picosurface = new PicoSurface();
m_aabb_local = picosurface->localAABB();
m_surfaces.push_back(picosurface);
}
};
inline void
Surface_addLight(PicoSurface &surface, VectorLightList &lights, const Matrix4 &localToWorld, const RendererLight &light)
{
if (light.testAABB(aabb_for_oriented_aabb(surface.localAABB(), localToWorld))) {
lights.addLight(light);
}
}
class PicoModelInstance :
public scene::Instance,
public Renderable,
public SelectionTestable,
public LightCullable,
public SkinnedModel {
class TypeCasts {
InstanceTypeCastTable m_casts;
public:
TypeCasts()
{
InstanceContainedCast<PicoModelInstance, Bounded>::install(m_casts);
InstanceContainedCast<PicoModelInstance, Cullable>::install(m_casts);
InstanceStaticCast<PicoModelInstance, Renderable>::install(m_casts);
InstanceStaticCast<PicoModelInstance, SelectionTestable>::install(m_casts);
InstanceStaticCast<PicoModelInstance, SkinnedModel>::install(m_casts);
}
InstanceTypeCastTable &get()
{
return m_casts;
}
};
PicoModel &m_picomodel;
const LightList *m_lightList;
typedef Array<VectorLightList> SurfaceLightLists;
SurfaceLightLists m_surfaceLightLists;
class Remap {
public:
CopiedString first;
Shader *second;
Remap() : second(0)
{
}
};
typedef Array<Remap> SurfaceRemaps;
SurfaceRemaps m_skins;
PicoModelInstance(const PicoModelInstance &);
PicoModelInstance operator=(const PicoModelInstance &);
public:
typedef LazyStatic<TypeCasts> StaticTypeCasts;
void *m_test;
Bounded &get(NullType<Bounded>)
{
return m_picomodel;
}
Cullable &get(NullType<Cullable>)
{
return m_picomodel;
}
void lightsChanged()
{
m_lightList->lightsChanged();
}
typedef MemberCaller<PicoModelInstance, void(), &PicoModelInstance::lightsChanged> LightsChangedCaller;
void constructRemaps()
{
ASSERT_MESSAGE(m_skins.size() == m_picomodel.size(), "ERROR");
ModelSkin *skin = NodeTypeCast<ModelSkin>::cast(path().parent());
if (skin != 0 && skin->realised()) {
SurfaceRemaps::iterator j = m_skins.begin();
for (PicoModel::const_iterator i = m_picomodel.begin(); i != m_picomodel.end(); ++i, ++j) {
const char *remap = skin->getRemap((*i)->getShader());
if (!string_empty(remap)) {
(*j).first = remap;
(*j).second = GlobalShaderCache().capture(remap);
} else {
(*j).second = 0;
}
}
SceneChangeNotify();
}
}
void destroyRemaps()
{
ASSERT_MESSAGE(m_skins.size() == m_picomodel.size(), "ERROR");
for (SurfaceRemaps::iterator i = m_skins.begin(); i != m_skins.end(); ++i) {
if ((*i).second != 0) {
GlobalShaderCache().release((*i).first.c_str());
(*i).second = 0;
}
}
}
void skinChanged()
{
destroyRemaps();
constructRemaps();
}
PicoModelInstance(const scene::Path &path, scene::Instance *parent, PicoModel &picomodel) :
Instance(path, parent, this, StaticTypeCasts::instance().get()),
m_picomodel(picomodel),
m_surfaceLightLists(m_picomodel.size()),
m_skins(m_picomodel.size())
{
m_lightList = &GlobalShaderCache().attach(*this);
m_picomodel.m_lightsChanged = LightsChangedCaller(*this);
Instance::setTransformChangedCallback(LightsChangedCaller(*this));
constructRemaps();
}
~PicoModelInstance()
{
destroyRemaps();
Instance::setTransformChangedCallback(Callback<void()>());
m_picomodel.m_lightsChanged = Callback<void()>();
GlobalShaderCache().detach(*this);
}
void render(Renderer &renderer, const VolumeTest &volume, const Matrix4 &localToWorld) const
{
SurfaceLightLists::const_iterator j = m_surfaceLightLists.begin();
SurfaceRemaps::const_iterator k = m_skins.begin();
for (PicoModel::const_iterator i = m_picomodel.begin(); i != m_picomodel.end(); ++i, ++j, ++k) {
if ((*i)->intersectVolume(volume, localToWorld) != c_volumeOutside) {
renderer.setLights(*j);
(*i)->render(renderer, localToWorld, (*k).second != 0 ? (*k).second : (*i)->getState());
}
}
}
void renderSolid(Renderer &renderer, const VolumeTest &volume) const
{
m_lightList->evaluateLights();
render(renderer, volume, Instance::localToWorld());
}
void renderWireframe(Renderer &renderer, const VolumeTest &volume) const
{
renderSolid(renderer, volume);
}
void testSelect(Selector &selector, SelectionTest &test)
{
m_picomodel.testSelect(selector, test, Instance::localToWorld());
}
bool testLight(const RendererLight &light) const
{
return light.testAABB(worldAABB());
}
void insertLight(const RendererLight &light)
{
const Matrix4 &localToWorld = Instance::localToWorld();
SurfaceLightLists::iterator j = m_surfaceLightLists.begin();
for (PicoModel::const_iterator i = m_picomodel.begin(); i != m_picomodel.end(); ++i) {
Surface_addLight(*(*i), *j++, localToWorld, light);
}
}
void clearLights()
{
for (SurfaceLightLists::iterator i = m_surfaceLightLists.begin(); i != m_surfaceLightLists.end(); ++i) {
(*i).clear();
}
}
};
class PicoModelNode : public scene::Node::Symbiot, public scene::Instantiable {
class TypeCasts {
NodeTypeCastTable m_casts;
public:
TypeCasts()
{
NodeStaticCast<PicoModelNode, scene::Instantiable>::install(m_casts);
}
NodeTypeCastTable &get()
{
return m_casts;
}
};
scene::Node m_node;
InstanceSet m_instances;
PicoModel m_picomodel;
public:
typedef LazyStatic<TypeCasts> StaticTypeCasts;
PicoModelNode() : m_node(this, this, StaticTypeCasts::instance().get())
{
}
PicoModelNode(picoModel_t *model) : m_node(this, this, StaticTypeCasts::instance().get()), m_picomodel(model)
{
}
void release()
{
delete this;
}
scene::Node &node()
{
return m_node;
}
scene::Instance *create(const scene::Path &path, scene::Instance *parent)
{
return new PicoModelInstance(path, parent, m_picomodel);
}
void forEachInstance(const scene::Instantiable::Visitor &visitor)
{
m_instances.forEachInstance(visitor);
}
void insert(scene::Instantiable::Observer *observer, const scene::Path &path, scene::Instance *instance)
{
m_instances.insert(observer, path, instance);
}
scene::Instance *erase(scene::Instantiable::Observer *observer, const scene::Path &path)
{
return m_instances.erase(observer, path);
}
};
#if 0
template<typename Key, typename Type>
class create_new
{
public:
static Type* construct( const Key& key ){
return new Type( key );
}
static void destroy( Type* value ){
delete value;
}
};
template<typename Key, typename Type, typename creation_policy = create_new<Key, Type> >
class cache_element : public creation_policy
{
public:
inline cache_element() : m_count( 0 ), m_value( 0 ) {}
inline ~cache_element(){
ASSERT_MESSAGE( m_count == 0, "destroyed a reference before it was released\n" );
if ( m_count > 0 ) {
destroy();
}
}
inline Type* capture( const Key& key ){
if ( ++m_count == 1 ) {
construct( key );
}
return m_value;
}
inline void release(){
ASSERT_MESSAGE( !empty(), "failed to release reference - not found in cache\n" );
if ( --m_count == 0 ) {
destroy();
}
}
inline bool empty(){
return m_count == 0;
}
inline void refresh( const Key& key ){
m_value->refresh( key );
}
private:
inline void construct( const Key& key ){
m_value = creation_policy::construct( key );
}
inline void destroy(){
creation_policy::destroy( m_value );
}
std::size_t m_count;
Type* m_value;
};
class create_picomodel
{
typedef PicoModelKey key_type;
typedef PicoModel value_type;
public:
static value_type* construct( const key_type& key ){
picoModel_t* picomodel = PicoLoadModel( const_cast<char*>( key.first.c_str() ), key.second );
value_type* value = new value_type( picomodel );
PicoFreeModel( picomodel );
return value;
}
static void destroy( value_type* value ){
delete value;
}
};
#include <map>
class ModelCache
{
typedef PicoModel value_type;
public:
typedef PicoModelKey key_type;
typedef cache_element<key_type, value_type, create_picomodel> elem_type;
typedef std::map<key_type, elem_type> cache_type;
value_type* capture( const key_type& key ){
return m_cache[key].capture( key );
}
void release( const key_type& key ){
m_cache[key].release();
}
private:
cache_type m_cache;
};
ModelCache g_model_cache;
typedef struct remap_s {
char m_remapbuff[64 + 1024];
char *original;
char *remap;
} remap_t;
class RemapWrapper :
public Cullable,
public Bounded
{
public:
RemapWrapper( const char* name ){
parse_namestr( name );
m_model = g_model_cache.capture( ModelCache::key_type( m_name, m_frame ) );
construct_shaders();
}
virtual ~RemapWrapper(){
g_model_cache.release( ModelCache::key_type( m_name, m_frame ) );
for ( shaders_t::iterator i = m_shaders.begin(); i != m_shaders.end(); ++i )
{
GlobalShaderCache().release( ( *i ).c_str() );
}
for ( remaps_t::iterator j = m_remaps.begin(); j != m_remaps.end(); ++j )
{
delete ( *j );
}
}
VolumeIntersectionValue intersectVolume( const VolumeTest& test, const Matrix4& localToWorld ) const {
return m_model->intersectVolume( test, localToWorld );
}
virtual const AABB& localAABB() const {
return m_model->localAABB();
}
void render( Renderer& renderer, const VolumeTest& volume, const Matrix4& localToWorld ) const {
m_model->render( renderer, volume, localToWorld, m_states );
}
void testSelect( Selector& selector, SelectionTest& test, const Matrix4& localToWorld ){
m_model->testSelect( selector, test, localToWorld );
}
private:
void add_remap( const char *remap ){
const char *ch;
remap_t *pRemap;
ch = remap;
while ( *ch && *ch != ';' )
ch++;
if ( *ch == '\0' ) {
// bad remap
globalErrorStream() << "WARNING: Shader _remap key found in a model entity without a ; character\n";
}
else {
pRemap = new remap_t;
strncpy( pRemap->m_remapbuff, remap, sizeof( pRemap->m_remapbuff ) );
pRemap->m_remapbuff[ch - remap] = '\0';
pRemap->original = pRemap->m_remapbuff;
pRemap->remap = pRemap->m_remapbuff + ( ch - remap ) + 1;
m_remaps.push_back( pRemap );
}
}
void parse_namestr( const char *name ){
const char *ptr, *s;
bool hasName, hasFrame;
hasName = hasFrame = false;
m_frame = 0;
for ( s = ptr = name; ; ++ptr )
{
if ( !hasName && ( *ptr == ':' || *ptr == '\0' ) ) {
// model name
hasName = true;
m_name = CopiedString( s, ptr );
s = ptr + 1;
}
else if ( *ptr == '?' || *ptr == '\0' ) {
// model frame
hasFrame = true;
m_frame = atoi( CopiedString( s, ptr ).c_str() );
s = ptr + 1;
}
else if ( *ptr == '&' || *ptr == '\0' ) {
// a remap
add_remap( CopiedString( s, ptr ).c_str() );
s = ptr + 1;
}
if ( *ptr == '\0' ) {
break;
}
}
}
void construct_shaders(){
const char* global_shader = shader_for_remap( "*" );
m_shaders.reserve( m_model->size() );
m_states.reserve( m_model->size() );
for ( PicoModel::iterator i = m_model->begin(); i != m_model->end(); ++i )
{
const char* shader = shader_for_remap( ( *i )->getShader() );
m_shaders.push_back(
( shader[0] != '\0' )
? shader
: ( global_shader[0] != '\0' )
? global_shader
: ( *i )->getShader() );
m_states.push_back( GlobalShaderCache().capture( m_shaders.back().c_str() ) );
}
}
inline const char* shader_for_remap( const char* remap ){
for ( remaps_t::iterator i = m_remaps.begin(); i != m_remaps.end(); ++i )
{
if ( shader_equal( remap, ( *i )->original ) ) {
return ( *i )->remap;
}
}
return "";
}
CopiedString m_name;
int m_frame;
PicoModel* m_model;
typedef std::vector<remap_t*> remaps_t;
remaps_t m_remaps;
typedef std::vector<CopiedString> shaders_t;
shaders_t m_shaders;
typedef std::vector<Shader*> states_t;
states_t m_states;
};
class RemapWrapperInstance : public scene::Instance, public Renderable, public SelectionTestable
{
RemapWrapper& m_remapwrapper;
public:
RemapWrapperInstance( const scene::Path& path, scene::Instance* parent, RemapWrapper& remapwrapper ) : Instance( path, parent ), m_remapwrapper( remapwrapper ){
scene::Instance::m_cullable = &m_remapwrapper;
scene::Instance::m_render = this;
scene::Instance::m_select = this;
}
void renderSolid( Renderer& renderer, const VolumeTest& volume ) const {
m_remapwrapper.render( renderer, volume, Instance::localToWorld() );
}
void renderWireframe( Renderer& renderer, const VolumeTest& volume ) const {
renderSolid( renderer, volume );
}
void testSelect( Selector& selector, SelectionTest& test ){
m_remapwrapper.testSelect( selector, test, Instance::localToWorld() );
}
};
class RemapWrapperNode : public scene::Node::Symbiot, public scene::Instantiable
{
scene::Node m_node;
typedef RemapWrapperInstance instance_type;
InstanceSet m_instances;
RemapWrapper m_remapwrapper;
public:
RemapWrapperNode( const char* name ) : m_node( this ), m_remapwrapper( name ){
m_node.m_instance = this;
}
void release(){
delete this;
}
scene::Node& node(){
return m_node;
}
scene::Instance* create( const scene::Path& path, scene::Instance* parent ){
return new instance_type( path, parent, m_remapwrapper );
}
void forEachInstance( const scene::Instantiable::Visitor& visitor ){
m_instances.forEachInstance( visitor );
}
void insert( scene::Instantiable::Observer* observer, const scene::Path& path, scene::Instance* instance ){
m_instances.insert( observer, path, instance );
}
scene::Instance* erase( scene::Instantiable::Observer* observer, const scene::Path& path ){
return m_instances.erase( observer, path );
}
};
scene::Node& LoadRemapModel( const char* name ){
return ( new RemapWrapperNode( name ) )->node();
}
#endif
size_t picoInputStreamReam(void *inputStream, unsigned char *buffer, size_t length)
{
return reinterpret_cast<InputStream *>( inputStream )->read(buffer, length);
}
scene::Node &loadPicoModel(const picoModule_t *module, ArchiveFile &file)
{
picoModel_t *model = PicoModuleLoadModelStream(module, &file.getInputStream(), picoInputStreamReam, file.size(), 0,
file.getName());
PicoModelNode *modelNode = new PicoModelNode(model);
PicoFreeModel(model);
return modelNode->node();
}