vmap/libs/dragplanes.h
2020-11-17 12:16:16 +01:00

228 lines
8 KiB
C++

/*
Copyright (C) 2001-2006, William Joseph.
All Rights Reserved.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#if !defined( INCLUDED_DRAGPLANES_H )
#define INCLUDED_DRAGPLANES_H
#include "selectable.h"
#include "selectionlib.h"
#include "math/aabb.h"
#include "math/line.h"
// local must be a pure rotation
inline Vector3 translation_to_local( const Vector3& translation, const Matrix4& local ){
return matrix4_get_translation_vec3(
matrix4_multiplied_by_matrix4(
matrix4_translated_by_vec3( matrix4_transposed( local ), translation ),
local
)
);
}
// local must be a pure rotation
inline Vector3 translation_from_local( const Vector3& translation, const Matrix4& local ){
return matrix4_get_translation_vec3(
matrix4_multiplied_by_matrix4(
matrix4_translated_by_vec3( local, translation ),
matrix4_transposed( local )
)
);
}
class DragPlanes
{
public:
ObservedSelectable m_selectable_right; // +x
ObservedSelectable m_selectable_left; // -x
ObservedSelectable m_selectable_front; // +y
ObservedSelectable m_selectable_back; // -y
ObservedSelectable m_selectable_top; // +z
ObservedSelectable m_selectable_bottom; // -z
AABB m_bounds;
DragPlanes( const SelectionChangeCallback& onchanged ) :
m_selectable_right( onchanged ),
m_selectable_left( onchanged ),
m_selectable_front( onchanged ),
m_selectable_back( onchanged ),
m_selectable_top( onchanged ),
m_selectable_bottom( onchanged ){
}
bool isSelected() const {
return m_selectable_right.isSelected()
|| m_selectable_left.isSelected()
|| m_selectable_front.isSelected()
|| m_selectable_back.isSelected()
|| m_selectable_top.isSelected()
|| m_selectable_bottom.isSelected();
}
void setSelected( bool selected ){
m_selectable_right.setSelected( selected );
m_selectable_left.setSelected( selected );
m_selectable_front.setSelected( selected );
m_selectable_back.setSelected( selected );
m_selectable_top.setSelected( selected );
m_selectable_bottom.setSelected( selected );
}
void selectPlanes( const AABB& aabb, Selector& selector, SelectionTest& test, const PlaneCallback& selectedPlaneCallback, const Matrix4& rotation = g_matrix4_identity ){
Line line( test.getNear(), test.getFar() );
Vector3 corners[8];
aabb_corners_oriented( aabb, rotation, corners );
Plane3 planes[6];
aabb_planes_oriented( aabb, rotation, planes );
for ( Vector3* i = corners; i != corners + 8; ++i )
{
*i = vector3_subtracted( line_closest_point( line, *i ), *i );
}
if ( vector3_dot( planes[0].normal(), corners[1] ) > 0
&& vector3_dot( planes[0].normal(), corners[2] ) > 0
&& vector3_dot( planes[0].normal(), corners[5] ) > 0
&& vector3_dot( planes[0].normal(), corners[6] ) > 0 ) {
Selector_add( selector, m_selectable_right );
selectedPlaneCallback( planes[0] );
//globalOutputStream() << "right\n";
}
if ( vector3_dot( planes[1].normal(), corners[0] ) > 0
&& vector3_dot( planes[1].normal(), corners[3] ) > 0
&& vector3_dot( planes[1].normal(), corners[4] ) > 0
&& vector3_dot( planes[1].normal(), corners[7] ) > 0 ) {
Selector_add( selector, m_selectable_left );
selectedPlaneCallback( planes[1] );
//globalOutputStream() << "left\n";
}
if ( vector3_dot( planes[2].normal(), corners[0] ) > 0
&& vector3_dot( planes[2].normal(), corners[1] ) > 0
&& vector3_dot( planes[2].normal(), corners[4] ) > 0
&& vector3_dot( planes[2].normal(), corners[5] ) > 0 ) {
Selector_add( selector, m_selectable_front );
selectedPlaneCallback( planes[2] );
//globalOutputStream() << "front\n";
}
if ( vector3_dot( planes[3].normal(), corners[2] ) > 0
&& vector3_dot( planes[3].normal(), corners[3] ) > 0
&& vector3_dot( planes[3].normal(), corners[6] ) > 0
&& vector3_dot( planes[3].normal(), corners[7] ) > 0 ) {
Selector_add( selector, m_selectable_back );
selectedPlaneCallback( planes[3] );
//globalOutputStream() << "back\n";
}
if ( vector3_dot( planes[4].normal(), corners[0] ) > 0
&& vector3_dot( planes[4].normal(), corners[1] ) > 0
&& vector3_dot( planes[4].normal(), corners[2] ) > 0
&& vector3_dot( planes[4].normal(), corners[3] ) > 0 ) {
Selector_add( selector, m_selectable_top );
selectedPlaneCallback( planes[4] );
//globalOutputStream() << "top\n";
}
if ( vector3_dot( planes[5].normal(), corners[4] ) > 0
&& vector3_dot( planes[5].normal(), corners[5] ) > 0
&& vector3_dot( planes[5].normal(), corners[6] ) > 0
&& vector3_dot( planes[5].normal(), corners[7] ) > 0 ) {
Selector_add( selector, m_selectable_bottom );
selectedPlaneCallback( planes[5] );
//globalOutputStream() << "bottom\n";
}
m_bounds = aabb;
}
void selectReversedPlanes( const AABB& aabb, Selector& selector, const SelectedPlanes& selectedPlanes, const Matrix4& rotation = g_matrix4_identity ){
Plane3 planes[6];
aabb_planes_oriented( aabb, rotation, planes );
if ( selectedPlanes.contains( plane3_flipped( planes[0] ) ) ) {
Selector_add( selector, m_selectable_right );
}
if ( selectedPlanes.contains( plane3_flipped( planes[1] ) ) ) {
Selector_add( selector, m_selectable_left );
}
if ( selectedPlanes.contains( plane3_flipped( planes[2] ) ) ) {
Selector_add( selector, m_selectable_front );
}
if ( selectedPlanes.contains( plane3_flipped( planes[3] ) ) ) {
Selector_add( selector, m_selectable_back );
}
if ( selectedPlanes.contains( plane3_flipped( planes[4] ) ) ) {
Selector_add( selector, m_selectable_top );
}
if ( selectedPlanes.contains( plane3_flipped( planes[5] ) ) ) {
Selector_add( selector, m_selectable_bottom );
}
}
AABB evaluateResize( const Vector3& translation ) const {
Vector3 min = m_bounds.origin - m_bounds.extents;
Vector3 max = m_bounds.origin + m_bounds.extents;
if ( m_bounds.extents[0] != 0 ) {
if ( m_selectable_right.isSelected() ) {
max[0] += translation[0];
//globalOutputStream() << "moving right\n";
}
if ( m_selectable_left.isSelected() ) {
min[0] += translation[0];
//globalOutputStream() << "moving left\n";
}
}
if ( m_bounds.extents[1] != 0 ) {
if ( m_selectable_front.isSelected() ) {
max[1] += translation[1];
//globalOutputStream() << "moving front\n";
}
if ( m_selectable_back.isSelected() ) {
min[1] += translation[1];
//globalOutputStream() << "moving back\n";
}
}
if ( m_bounds.extents[2] != 0 ) {
if ( m_selectable_top.isSelected() ) {
max[2] += translation[2];
//globalOutputStream() << "moving top\n";
}
if ( m_selectable_bottom.isSelected() ) {
min[2] += translation[2];
//globalOutputStream() << "moving bottom\n";
}
}
return AABB( vector3_mid( min, max ), vector3_scaled( vector3_subtracted( max, min ), 0.5 ) );
}
AABB evaluateResize( const Vector3& translation, const Matrix4& rotation ) const {
AABB aabb( evaluateResize( translation_to_local( translation, rotation ) ) );
aabb.origin = m_bounds.origin + translation_from_local( aabb.origin - m_bounds.origin, rotation );
return aabb;
}
Matrix4 evaluateTransform( const Vector3& translation ) const {
AABB aabb( evaluateResize( translation ) );
Vector3 scale(
m_bounds.extents[0] != 0 ? aabb.extents[0] / m_bounds.extents[0] : 1,
m_bounds.extents[1] != 0 ? aabb.extents[1] / m_bounds.extents[1] : 1,
m_bounds.extents[2] != 0 ? aabb.extents[2] / m_bounds.extents[2] : 1
);
Matrix4 matrix( matrix4_translation_for_vec3( aabb.origin - m_bounds.origin ) );
matrix4_pivoted_scale_by_vec3( matrix, scale, m_bounds.origin );
return matrix;
}
};
#endif