1195 lines
43 KiB
C
1195 lines
43 KiB
C
|
/*
|
||
|
Copyright (C) 2001-2006, William Joseph.
|
||
|
All Rights Reserved.
|
||
|
|
||
|
This file is part of GtkRadiant.
|
||
|
|
||
|
GtkRadiant is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
GtkRadiant is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with GtkRadiant; if not, write to the Free Software
|
||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*/
|
||
|
|
||
|
#if !defined( INCLUDED_MATH_MATRIX_H )
|
||
|
#define INCLUDED_MATH_MATRIX_H
|
||
|
|
||
|
/// \file
|
||
|
/// \brief Matrix data types and related operations.
|
||
|
|
||
|
#include "math/vector.h"
|
||
|
|
||
|
/// \brief A 4x4 matrix stored in single-precision floating-point.
|
||
|
class Matrix4
|
||
|
{
|
||
|
float m_elements[16];
|
||
|
public:
|
||
|
|
||
|
Matrix4(){
|
||
|
}
|
||
|
Matrix4( float xx_, float xy_, float xz_, float xw_,
|
||
|
float yx_, float yy_, float yz_, float yw_,
|
||
|
float zx_, float zy_, float zz_, float zw_,
|
||
|
float tx_, float ty_, float tz_, float tw_ ){
|
||
|
xx() = xx_;
|
||
|
xy() = xy_;
|
||
|
xz() = xz_;
|
||
|
xw() = xw_;
|
||
|
yx() = yx_;
|
||
|
yy() = yy_;
|
||
|
yz() = yz_;
|
||
|
yw() = yw_;
|
||
|
zx() = zx_;
|
||
|
zy() = zy_;
|
||
|
zz() = zz_;
|
||
|
zw() = zw_;
|
||
|
tx() = tx_;
|
||
|
ty() = ty_;
|
||
|
tz() = tz_;
|
||
|
tw() = tw_;
|
||
|
}
|
||
|
|
||
|
float& xx(){
|
||
|
return m_elements[0];
|
||
|
}
|
||
|
const float& xx() const {
|
||
|
return m_elements[0];
|
||
|
}
|
||
|
float& xy(){
|
||
|
return m_elements[1];
|
||
|
}
|
||
|
const float& xy() const {
|
||
|
return m_elements[1];
|
||
|
}
|
||
|
float& xz(){
|
||
|
return m_elements[2];
|
||
|
}
|
||
|
const float& xz() const {
|
||
|
return m_elements[2];
|
||
|
}
|
||
|
float& xw(){
|
||
|
return m_elements[3];
|
||
|
}
|
||
|
const float& xw() const {
|
||
|
return m_elements[3];
|
||
|
}
|
||
|
float& yx(){
|
||
|
return m_elements[4];
|
||
|
}
|
||
|
const float& yx() const {
|
||
|
return m_elements[4];
|
||
|
}
|
||
|
float& yy(){
|
||
|
return m_elements[5];
|
||
|
}
|
||
|
const float& yy() const {
|
||
|
return m_elements[5];
|
||
|
}
|
||
|
float& yz(){
|
||
|
return m_elements[6];
|
||
|
}
|
||
|
const float& yz() const {
|
||
|
return m_elements[6];
|
||
|
}
|
||
|
float& yw(){
|
||
|
return m_elements[7];
|
||
|
}
|
||
|
const float& yw() const {
|
||
|
return m_elements[7];
|
||
|
}
|
||
|
float& zx(){
|
||
|
return m_elements[8];
|
||
|
}
|
||
|
const float& zx() const {
|
||
|
return m_elements[8];
|
||
|
}
|
||
|
float& zy(){
|
||
|
return m_elements[9];
|
||
|
}
|
||
|
const float& zy() const {
|
||
|
return m_elements[9];
|
||
|
}
|
||
|
float& zz(){
|
||
|
return m_elements[10];
|
||
|
}
|
||
|
const float& zz() const {
|
||
|
return m_elements[10];
|
||
|
}
|
||
|
float& zw(){
|
||
|
return m_elements[11];
|
||
|
}
|
||
|
const float& zw() const {
|
||
|
return m_elements[11];
|
||
|
}
|
||
|
float& tx(){
|
||
|
return m_elements[12];
|
||
|
}
|
||
|
const float& tx() const {
|
||
|
return m_elements[12];
|
||
|
}
|
||
|
float& ty(){
|
||
|
return m_elements[13];
|
||
|
}
|
||
|
const float& ty() const {
|
||
|
return m_elements[13];
|
||
|
}
|
||
|
float& tz(){
|
||
|
return m_elements[14];
|
||
|
}
|
||
|
const float& tz() const {
|
||
|
return m_elements[14];
|
||
|
}
|
||
|
float& tw(){
|
||
|
return m_elements[15];
|
||
|
}
|
||
|
const float& tw() const {
|
||
|
return m_elements[15];
|
||
|
}
|
||
|
|
||
|
Vector4& x(){
|
||
|
return reinterpret_cast<Vector4&>( xx() );
|
||
|
}
|
||
|
const Vector4& x() const {
|
||
|
return reinterpret_cast<const Vector4&>( xx() );
|
||
|
}
|
||
|
Vector4& y(){
|
||
|
return reinterpret_cast<Vector4&>( yx() );
|
||
|
}
|
||
|
const Vector4& y() const {
|
||
|
return reinterpret_cast<const Vector4&>( yx() );
|
||
|
}
|
||
|
Vector4& z(){
|
||
|
return reinterpret_cast<Vector4&>( zx() );
|
||
|
}
|
||
|
const Vector4& z() const {
|
||
|
return reinterpret_cast<const Vector4&>( zx() );
|
||
|
}
|
||
|
Vector4& t(){
|
||
|
return reinterpret_cast<Vector4&>( tx() );
|
||
|
}
|
||
|
const Vector4& t() const {
|
||
|
return reinterpret_cast<const Vector4&>( tx() );
|
||
|
}
|
||
|
|
||
|
const float& index( std::size_t i ) const {
|
||
|
return m_elements[i];
|
||
|
}
|
||
|
float& index( std::size_t i ){
|
||
|
return m_elements[i];
|
||
|
}
|
||
|
const float& operator[]( std::size_t i ) const {
|
||
|
return m_elements[i];
|
||
|
}
|
||
|
float& operator[]( std::size_t i ){
|
||
|
return m_elements[i];
|
||
|
}
|
||
|
const float& index( std::size_t r, std::size_t c ) const {
|
||
|
return m_elements[( r << 2 ) + c];
|
||
|
}
|
||
|
float& index( std::size_t r, std::size_t c ){
|
||
|
return m_elements[( r << 2 ) + c];
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// \brief The 4x4 identity matrix.
|
||
|
const Matrix4 g_matrix4_identity(
|
||
|
1, 0, 0, 0,
|
||
|
0, 1, 0, 0,
|
||
|
0, 0, 1, 0,
|
||
|
0, 0, 0, 1
|
||
|
);
|
||
|
|
||
|
|
||
|
/// \brief Returns true if \p self and \p other are exactly element-wise equal.
|
||
|
inline bool operator==( const Matrix4& self, const Matrix4& other ){
|
||
|
return self.xx() == other.xx() && self.xy() == other.xy() && self.xz() == other.xz() && self.xw() == other.xw()
|
||
|
&& self.yx() == other.yx() && self.yy() == other.yy() && self.yz() == other.yz() && self.yw() == other.yw()
|
||
|
&& self.zx() == other.zx() && self.zy() == other.zy() && self.zz() == other.zz() && self.zw() == other.zw()
|
||
|
&& self.tx() == other.tx() && self.ty() == other.ty() && self.tz() == other.tz() && self.tw() == other.tw();
|
||
|
}
|
||
|
|
||
|
/// \brief Returns true if \p self and \p other are exactly element-wise equal.
|
||
|
inline bool matrix4_equal( const Matrix4& self, const Matrix4& other ){
|
||
|
return self == other;
|
||
|
}
|
||
|
|
||
|
/// \brief Returns true if \p self and \p other are element-wise equal within \p epsilon.
|
||
|
inline bool matrix4_equal_epsilon( const Matrix4& self, const Matrix4& other, float epsilon ){
|
||
|
return float_equal_epsilon( self.xx(), other.xx(), epsilon )
|
||
|
&& float_equal_epsilon( self.xy(), other.xy(), epsilon )
|
||
|
&& float_equal_epsilon( self.xz(), other.xz(), epsilon )
|
||
|
&& float_equal_epsilon( self.xw(), other.xw(), epsilon )
|
||
|
&& float_equal_epsilon( self.yx(), other.yx(), epsilon )
|
||
|
&& float_equal_epsilon( self.yy(), other.yy(), epsilon )
|
||
|
&& float_equal_epsilon( self.yz(), other.yz(), epsilon )
|
||
|
&& float_equal_epsilon( self.yw(), other.yw(), epsilon )
|
||
|
&& float_equal_epsilon( self.zx(), other.zx(), epsilon )
|
||
|
&& float_equal_epsilon( self.zy(), other.zy(), epsilon )
|
||
|
&& float_equal_epsilon( self.zz(), other.zz(), epsilon )
|
||
|
&& float_equal_epsilon( self.zw(), other.zw(), epsilon )
|
||
|
&& float_equal_epsilon( self.tx(), other.tx(), epsilon )
|
||
|
&& float_equal_epsilon( self.ty(), other.ty(), epsilon )
|
||
|
&& float_equal_epsilon( self.tz(), other.tz(), epsilon )
|
||
|
&& float_equal_epsilon( self.tw(), other.tw(), epsilon );
|
||
|
}
|
||
|
|
||
|
/// \brief Returns true if \p self and \p other are exactly element-wise equal.
|
||
|
/// \p self and \p other must be affine.
|
||
|
inline bool matrix4_affine_equal( const Matrix4& self, const Matrix4& other ){
|
||
|
return self[0] == other[0]
|
||
|
&& self[1] == other[1]
|
||
|
&& self[2] == other[2]
|
||
|
&& self[4] == other[4]
|
||
|
&& self[5] == other[5]
|
||
|
&& self[6] == other[6]
|
||
|
&& self[8] == other[8]
|
||
|
&& self[9] == other[9]
|
||
|
&& self[10] == other[10]
|
||
|
&& self[12] == other[12]
|
||
|
&& self[13] == other[13]
|
||
|
&& self[14] == other[14];
|
||
|
}
|
||
|
|
||
|
enum Matrix4Handedness
|
||
|
{
|
||
|
MATRIX4_RIGHTHANDED = 0,
|
||
|
MATRIX4_LEFTHANDED = 1,
|
||
|
};
|
||
|
|
||
|
/// \brief Returns MATRIX4_RIGHTHANDED if \p self is right-handed, else returns MATRIX4_LEFTHANDED.
|
||
|
inline Matrix4Handedness matrix4_handedness( const Matrix4& self ){
|
||
|
return (
|
||
|
vector3_dot(
|
||
|
vector3_cross( vector4_to_vector3( self.x() ), vector4_to_vector3( self.y() ) ),
|
||
|
vector4_to_vector3( self.z() )
|
||
|
)
|
||
|
< 0.0
|
||
|
) ? MATRIX4_LEFTHANDED : MATRIX4_RIGHTHANDED;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
/// \brief Returns \p self post-multiplied by \p other.
|
||
|
inline Matrix4 matrix4_multiplied_by_matrix4( const Matrix4& self, const Matrix4& other ){
|
||
|
return Matrix4(
|
||
|
other[0] * self[0] + other[1] * self[4] + other[2] * self[8] + other[3] * self[12],
|
||
|
other[0] * self[1] + other[1] * self[5] + other[2] * self[9] + other[3] * self[13],
|
||
|
other[0] * self[2] + other[1] * self[6] + other[2] * self[10] + other[3] * self[14],
|
||
|
other[0] * self[3] + other[1] * self[7] + other[2] * self[11] + other[3] * self[15],
|
||
|
other[4] * self[0] + other[5] * self[4] + other[6] * self[8] + other[7] * self[12],
|
||
|
other[4] * self[1] + other[5] * self[5] + other[6] * self[9] + other[7] * self[13],
|
||
|
other[4] * self[2] + other[5] * self[6] + other[6] * self[10] + other[7] * self[14],
|
||
|
other[4] * self[3] + other[5] * self[7] + other[6] * self[11] + other[7] * self[15],
|
||
|
other[8] * self[0] + other[9] * self[4] + other[10] * self[8] + other[11] * self[12],
|
||
|
other[8] * self[1] + other[9] * self[5] + other[10] * self[9] + other[11] * self[13],
|
||
|
other[8] * self[2] + other[9] * self[6] + other[10] * self[10] + other[11] * self[14],
|
||
|
other[8] * self[3] + other[9] * self[7] + other[10] * self[11] + other[11] * self[15],
|
||
|
other[12] * self[0] + other[13] * self[4] + other[14] * self[8] + other[15] * self[12],
|
||
|
other[12] * self[1] + other[13] * self[5] + other[14] * self[9] + other[15] * self[13],
|
||
|
other[12] * self[2] + other[13] * self[6] + other[14] * self[10] + other[15] * self[14],
|
||
|
other[12] * self[3] + other[13] * self[7] + other[14] * self[11] + other[15] * self[15]
|
||
|
);
|
||
|
}
|
||
|
|
||
|
/// \brief Post-multiplies \p self by \p other in-place.
|
||
|
inline void matrix4_multiply_by_matrix4( Matrix4& self, const Matrix4& other ){
|
||
|
self = matrix4_multiplied_by_matrix4( self, other );
|
||
|
}
|
||
|
|
||
|
|
||
|
/// \brief Returns \p self pre-multiplied by \p other.
|
||
|
inline Matrix4 matrix4_premultiplied_by_matrix4( const Matrix4& self, const Matrix4& other ){
|
||
|
#if 1
|
||
|
return matrix4_multiplied_by_matrix4( other, self );
|
||
|
#else
|
||
|
return Matrix4(
|
||
|
self[0] * other[0] + self[1] * other[4] + self[2] * other[8] + self[3] * other[12],
|
||
|
self[0] * other[1] + self[1] * other[5] + self[2] * other[9] + self[3] * other[13],
|
||
|
self[0] * other[2] + self[1] * other[6] + self[2] * other[10] + self[3] * other[14],
|
||
|
self[0] * other[3] + self[1] * other[7] + self[2] * other[11] + self[3] * other[15],
|
||
|
self[4] * other[0] + self[5] * other[4] + self[6] * other[8] + self[7] * other[12],
|
||
|
self[4] * other[1] + self[5] * other[5] + self[6] * other[9] + self[7] * other[13],
|
||
|
self[4] * other[2] + self[5] * other[6] + self[6] * other[10] + self[7] * other[14],
|
||
|
self[4] * other[3] + self[5] * other[7] + self[6] * other[11] + self[7] * other[15],
|
||
|
self[8] * other[0] + self[9] * other[4] + self[10] * other[8] + self[11] * other[12],
|
||
|
self[8] * other[1] + self[9] * other[5] + self[10] * other[9] + self[11] * other[13],
|
||
|
self[8] * other[2] + self[9] * other[6] + self[10] * other[10] + self[11] * other[14],
|
||
|
self[8] * other[3] + self[9] * other[7] + self[10] * other[11] + self[11] * other[15],
|
||
|
self[12] * other[0] + self[13] * other[4] + self[14] * other[8] + self[15] * other[12],
|
||
|
self[12] * other[1] + self[13] * other[5] + self[14] * other[9] + self[15] * other[13],
|
||
|
self[12] * other[2] + self[13] * other[6] + self[14] * other[10] + self[15] * other[14],
|
||
|
self[12] * other[3] + self[13] * other[7] + self[14] * other[11] + self[15] * other[15]
|
||
|
);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/// \brief Pre-multiplies \p self by \p other in-place.
|
||
|
inline void matrix4_premultiply_by_matrix4( Matrix4& self, const Matrix4& other ){
|
||
|
self = matrix4_premultiplied_by_matrix4( self, other );
|
||
|
}
|
||
|
|
||
|
/// \brief returns true if \p transform is affine.
|
||
|
inline bool matrix4_is_affine( const Matrix4& transform ){
|
||
|
return transform[3] == 0 && transform[7] == 0 && transform[11] == 0 && transform[15] == 1;
|
||
|
}
|
||
|
|
||
|
/// \brief Returns \p self post-multiplied by \p other.
|
||
|
/// \p self and \p other must be affine.
|
||
|
inline Matrix4 matrix4_affine_multiplied_by_matrix4( const Matrix4& self, const Matrix4& other ){
|
||
|
return Matrix4(
|
||
|
other[0] * self[0] + other[1] * self[4] + other[2] * self[8],
|
||
|
other[0] * self[1] + other[1] * self[5] + other[2] * self[9],
|
||
|
other[0] * self[2] + other[1] * self[6] + other[2] * self[10],
|
||
|
0,
|
||
|
other[4] * self[0] + other[5] * self[4] + other[6] * self[8],
|
||
|
other[4] * self[1] + other[5] * self[5] + other[6] * self[9],
|
||
|
other[4] * self[2] + other[5] * self[6] + other[6] * self[10],
|
||
|
0,
|
||
|
other[8] * self[0] + other[9] * self[4] + other[10] * self[8],
|
||
|
other[8] * self[1] + other[9] * self[5] + other[10] * self[9],
|
||
|
other[8] * self[2] + other[9] * self[6] + other[10] * self[10],
|
||
|
0,
|
||
|
other[12] * self[0] + other[13] * self[4] + other[14] * self[8] + self[12],
|
||
|
other[12] * self[1] + other[13] * self[5] + other[14] * self[9] + self[13],
|
||
|
other[12] * self[2] + other[13] * self[6] + other[14] * self[10] + self[14],
|
||
|
1
|
||
|
);
|
||
|
}
|
||
|
|
||
|
/// \brief Post-multiplies \p self by \p other in-place.
|
||
|
/// \p self and \p other must be affine.
|
||
|
inline void matrix4_affine_multiply_by_matrix4( Matrix4& self, const Matrix4& other ){
|
||
|
self = matrix4_affine_multiplied_by_matrix4( self, other );
|
||
|
}
|
||
|
|
||
|
/// \brief Returns \p self pre-multiplied by \p other.
|
||
|
/// \p self and \p other must be affine.
|
||
|
inline Matrix4 matrix4_affine_premultiplied_by_matrix4( const Matrix4& self, const Matrix4& other ){
|
||
|
#if 1
|
||
|
return matrix4_affine_multiplied_by_matrix4( other, self );
|
||
|
#else
|
||
|
return Matrix4(
|
||
|
self[0] * other[0] + self[1] * other[4] + self[2] * other[8],
|
||
|
self[0] * other[1] + self[1] * other[5] + self[2] * other[9],
|
||
|
self[0] * other[2] + self[1] * other[6] + self[2] * other[10],
|
||
|
0,
|
||
|
self[4] * other[0] + self[5] * other[4] + self[6] * other[8],
|
||
|
self[4] * other[1] + self[5] * other[5] + self[6] * other[9],
|
||
|
self[4] * other[2] + self[5] * other[6] + self[6] * other[10],
|
||
|
0,
|
||
|
self[8] * other[0] + self[9] * other[4] + self[10] * other[8],
|
||
|
self[8] * other[1] + self[9] * other[5] + self[10] * other[9],
|
||
|
self[8] * other[2] + self[9] * other[6] + self[10] * other[10],
|
||
|
0,
|
||
|
self[12] * other[0] + self[13] * other[4] + self[14] * other[8] + other[12],
|
||
|
self[12] * other[1] + self[13] * other[5] + self[14] * other[9] + other[13],
|
||
|
self[12] * other[2] + self[13] * other[6] + self[14] * other[10] + other[14],
|
||
|
1
|
||
|
)
|
||
|
);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/// \brief Pre-multiplies \p self by \p other in-place.
|
||
|
/// \p self and \p other must be affine.
|
||
|
inline void matrix4_affine_premultiply_by_matrix4( Matrix4& self, const Matrix4& other ){
|
||
|
self = matrix4_affine_premultiplied_by_matrix4( self, other );
|
||
|
}
|
||
|
|
||
|
/// \brief Returns \p point transformed by \p self.
|
||
|
template<typename Element>
|
||
|
inline BasicVector3<Element> matrix4_transformed_point( const Matrix4& self, const BasicVector3<Element>& point ){
|
||
|
return BasicVector3<Element>(
|
||
|
static_cast<Element>( self[0] * point[0] + self[4] * point[1] + self[8] * point[2] + self[12] ),
|
||
|
static_cast<Element>( self[1] * point[0] + self[5] * point[1] + self[9] * point[2] + self[13] ),
|
||
|
static_cast<Element>( self[2] * point[0] + self[6] * point[1] + self[10] * point[2] + self[14] )
|
||
|
);
|
||
|
}
|
||
|
|
||
|
/// \brief Transforms \p point by \p self in-place.
|
||
|
template<typename Element>
|
||
|
inline void matrix4_transform_point( const Matrix4& self, BasicVector3<Element>& point ){
|
||
|
point = matrix4_transformed_point( self, point );
|
||
|
}
|
||
|
|
||
|
/// \brief Returns \p direction transformed by \p self.
|
||
|
template<typename Element>
|
||
|
inline BasicVector3<Element> matrix4_transformed_direction( const Matrix4& self, const BasicVector3<Element>& direction ){
|
||
|
return BasicVector3<Element>(
|
||
|
static_cast<Element>( self[0] * direction[0] + self[4] * direction[1] + self[8] * direction[2] ),
|
||
|
static_cast<Element>( self[1] * direction[0] + self[5] * direction[1] + self[9] * direction[2] ),
|
||
|
static_cast<Element>( self[2] * direction[0] + self[6] * direction[1] + self[10] * direction[2] )
|
||
|
);
|
||
|
}
|
||
|
|
||
|
/// \brief Transforms \p direction by \p self in-place.
|
||
|
template<typename Element>
|
||
|
inline void matrix4_transform_direction( const Matrix4& self, BasicVector3<Element>& normal ){
|
||
|
normal = matrix4_transformed_direction( self, normal );
|
||
|
}
|
||
|
|
||
|
/// \brief Returns \p vector4 transformed by \p self.
|
||
|
inline Vector4 matrix4_transformed_vector4( const Matrix4& self, const Vector4& vector4 ){
|
||
|
return Vector4(
|
||
|
self[0] * vector4[0] + self[4] * vector4[1] + self[8] * vector4[2] + self[12] * vector4[3],
|
||
|
self[1] * vector4[0] + self[5] * vector4[1] + self[9] * vector4[2] + self[13] * vector4[3],
|
||
|
self[2] * vector4[0] + self[6] * vector4[1] + self[10] * vector4[2] + self[14] * vector4[3],
|
||
|
self[3] * vector4[0] + self[7] * vector4[1] + self[11] * vector4[2] + self[15] * vector4[3]
|
||
|
);
|
||
|
}
|
||
|
|
||
|
/// \brief Transforms \p vector4 by \p self in-place.
|
||
|
inline void matrix4_transform_vector4( const Matrix4& self, Vector4& vector4 ){
|
||
|
vector4 = matrix4_transformed_vector4( self, vector4 );
|
||
|
}
|
||
|
|
||
|
|
||
|
/// \brief Transposes \p self in-place.
|
||
|
inline void matrix4_transpose( Matrix4& self ){
|
||
|
std::swap( self.xy(), self.yx() );
|
||
|
std::swap( self.xz(), self.zx() );
|
||
|
std::swap( self.xw(), self.tx() );
|
||
|
std::swap( self.yz(), self.zy() );
|
||
|
std::swap( self.yw(), self.ty() );
|
||
|
std::swap( self.zw(), self.tz() );
|
||
|
}
|
||
|
|
||
|
/// \brief Returns \p self transposed.
|
||
|
inline Matrix4 matrix4_transposed( const Matrix4& self ){
|
||
|
return Matrix4(
|
||
|
self.xx(),
|
||
|
self.yx(),
|
||
|
self.zx(),
|
||
|
self.tx(),
|
||
|
self.xy(),
|
||
|
self.yy(),
|
||
|
self.zy(),
|
||
|
self.ty(),
|
||
|
self.xz(),
|
||
|
self.yz(),
|
||
|
self.zz(),
|
||
|
self.tz(),
|
||
|
self.xw(),
|
||
|
self.yw(),
|
||
|
self.zw(),
|
||
|
self.tw()
|
||
|
);
|
||
|
}
|
||
|
|
||
|
|
||
|
/// \brief Inverts an affine transform in-place.
|
||
|
/// Adapted from Graphics Gems 2.
|
||
|
inline Matrix4 matrix4_affine_inverse( const Matrix4& self ){
|
||
|
Matrix4 result;
|
||
|
|
||
|
// determinant of rotation submatrix
|
||
|
double det
|
||
|
= self[0] * ( self[5] * self[10] - self[9] * self[6] )
|
||
|
- self[1] * ( self[4] * self[10] - self[8] * self[6] )
|
||
|
+ self[2] * ( self[4] * self[9] - self[8] * self[5] );
|
||
|
|
||
|
// throw exception here if (det*det < 1e-25)
|
||
|
|
||
|
// invert rotation submatrix
|
||
|
det = 1.0 / det;
|
||
|
|
||
|
result[0] = static_cast<float>( ( self[5] * self[10] - self[6] * self[9] ) * det );
|
||
|
result[1] = static_cast<float>( -( self[1] * self[10] - self[2] * self[9] ) * det );
|
||
|
result[2] = static_cast<float>( ( self[1] * self[6] - self[2] * self[5] ) * det );
|
||
|
result[3] = 0;
|
||
|
result[4] = static_cast<float>( -( self[4] * self[10] - self[6] * self[8] ) * det );
|
||
|
result[5] = static_cast<float>( ( self[0] * self[10] - self[2] * self[8] ) * det );
|
||
|
result[6] = static_cast<float>( -( self[0] * self[6] - self[2] * self[4] ) * det );
|
||
|
result[7] = 0;
|
||
|
result[8] = static_cast<float>( ( self[4] * self[9] - self[5] * self[8] ) * det );
|
||
|
result[9] = static_cast<float>( -( self[0] * self[9] - self[1] * self[8] ) * det );
|
||
|
result[10] = static_cast<float>( ( self[0] * self[5] - self[1] * self[4] ) * det );
|
||
|
result[11] = 0;
|
||
|
|
||
|
// multiply translation part by rotation
|
||
|
result[12] = -( self[12] * result[0] +
|
||
|
self[13] * result[4] +
|
||
|
self[14] * result[8] );
|
||
|
result[13] = -( self[12] * result[1] +
|
||
|
self[13] * result[5] +
|
||
|
self[14] * result[9] );
|
||
|
result[14] = -( self[12] * result[2] +
|
||
|
self[13] * result[6] +
|
||
|
self[14] * result[10] );
|
||
|
result[15] = 1;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
inline void matrix4_affine_invert( Matrix4& self ){
|
||
|
self = matrix4_affine_inverse( self );
|
||
|
}
|
||
|
|
||
|
/// \brief A compile-time-constant integer.
|
||
|
template<int VALUE_>
|
||
|
struct IntegralConstant
|
||
|
{
|
||
|
enum unnamed_ { VALUE = VALUE_ };
|
||
|
};
|
||
|
|
||
|
/// \brief A compile-time-constant row/column index into a 4x4 matrix.
|
||
|
template<typename Row, typename Col>
|
||
|
class Matrix4Index
|
||
|
{
|
||
|
public:
|
||
|
typedef IntegralConstant<Row::VALUE> r;
|
||
|
typedef IntegralConstant<Col::VALUE> c;
|
||
|
typedef IntegralConstant<( r::VALUE * 4 ) + c::VALUE> i;
|
||
|
};
|
||
|
|
||
|
/// \brief A functor which returns the cofactor of a 3x3 submatrix obtained by ignoring a given row and column of a 4x4 matrix.
|
||
|
/// \param Row Defines the compile-time-constant integers x, y and z with values corresponding to the indices of the three rows to use.
|
||
|
/// \param Col Defines the compile-time-constant integers x, y and z with values corresponding to the indices of the three columns to use.
|
||
|
template<typename Row, typename Col>
|
||
|
class Matrix4Cofactor
|
||
|
{
|
||
|
public:
|
||
|
typedef typename Matrix4Index<typename Row::x, typename Col::x>::i xx;
|
||
|
typedef typename Matrix4Index<typename Row::x, typename Col::y>::i xy;
|
||
|
typedef typename Matrix4Index<typename Row::x, typename Col::z>::i xz;
|
||
|
typedef typename Matrix4Index<typename Row::y, typename Col::x>::i yx;
|
||
|
typedef typename Matrix4Index<typename Row::y, typename Col::y>::i yy;
|
||
|
typedef typename Matrix4Index<typename Row::y, typename Col::z>::i yz;
|
||
|
typedef typename Matrix4Index<typename Row::z, typename Col::x>::i zx;
|
||
|
typedef typename Matrix4Index<typename Row::z, typename Col::y>::i zy;
|
||
|
typedef typename Matrix4Index<typename Row::z, typename Col::z>::i zz;
|
||
|
static double apply( const Matrix4& self ){
|
||
|
return self[xx::VALUE] * ( self[yy::VALUE] * self[zz::VALUE] - self[zy::VALUE] * self[yz::VALUE] )
|
||
|
- self[xy::VALUE] * ( self[yx::VALUE] * self[zz::VALUE] - self[zx::VALUE] * self[yz::VALUE] )
|
||
|
+ self[xz::VALUE] * ( self[yx::VALUE] * self[zy::VALUE] - self[zx::VALUE] * self[yy::VALUE] );
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// \brief The cofactor element indices for a 4x4 matrix row or column.
|
||
|
/// \param Element The index of the element to ignore.
|
||
|
template<int Element>
|
||
|
class Cofactor4
|
||
|
{
|
||
|
public:
|
||
|
typedef IntegralConstant<( Element <= 0 ) ? 1 : 0> x;
|
||
|
typedef IntegralConstant<( Element <= 1 ) ? 2 : 1> y;
|
||
|
typedef IntegralConstant<( Element <= 2 ) ? 3 : 2> z;
|
||
|
};
|
||
|
|
||
|
/// \brief Returns the determinant of \p self.
|
||
|
inline double matrix4_determinant( const Matrix4& self ){
|
||
|
return self.xx() * Matrix4Cofactor< Cofactor4<0>, Cofactor4<0> >::apply( self )
|
||
|
- self.xy() * Matrix4Cofactor< Cofactor4<0>, Cofactor4<1> >::apply( self )
|
||
|
+ self.xz() * Matrix4Cofactor< Cofactor4<0>, Cofactor4<2> >::apply( self )
|
||
|
- self.xw() * Matrix4Cofactor< Cofactor4<0>, Cofactor4<3> >::apply( self );
|
||
|
}
|
||
|
|
||
|
/// \brief Returns the inverse of \p self using the Adjoint method.
|
||
|
/// \todo Throw an exception if the determinant is zero.
|
||
|
inline Matrix4 matrix4_full_inverse( const Matrix4& self ){
|
||
|
double determinant = 1.0 / matrix4_determinant( self );
|
||
|
|
||
|
return Matrix4(
|
||
|
static_cast<float>( Matrix4Cofactor< Cofactor4<0>, Cofactor4<0> >::apply( self ) * determinant ),
|
||
|
static_cast<float>( -Matrix4Cofactor< Cofactor4<1>, Cofactor4<0> >::apply( self ) * determinant ),
|
||
|
static_cast<float>( Matrix4Cofactor< Cofactor4<2>, Cofactor4<0> >::apply( self ) * determinant ),
|
||
|
static_cast<float>( -Matrix4Cofactor< Cofactor4<3>, Cofactor4<0> >::apply( self ) * determinant ),
|
||
|
static_cast<float>( -Matrix4Cofactor< Cofactor4<0>, Cofactor4<1> >::apply( self ) * determinant ),
|
||
|
static_cast<float>( Matrix4Cofactor< Cofactor4<1>, Cofactor4<1> >::apply( self ) * determinant ),
|
||
|
static_cast<float>( -Matrix4Cofactor< Cofactor4<2>, Cofactor4<1> >::apply( self ) * determinant ),
|
||
|
static_cast<float>( Matrix4Cofactor< Cofactor4<3>, Cofactor4<1> >::apply( self ) * determinant ),
|
||
|
static_cast<float>( Matrix4Cofactor< Cofactor4<0>, Cofactor4<2> >::apply( self ) * determinant ),
|
||
|
static_cast<float>( -Matrix4Cofactor< Cofactor4<1>, Cofactor4<2> >::apply( self ) * determinant ),
|
||
|
static_cast<float>( Matrix4Cofactor< Cofactor4<2>, Cofactor4<2> >::apply( self ) * determinant ),
|
||
|
static_cast<float>( -Matrix4Cofactor< Cofactor4<3>, Cofactor4<2> >::apply( self ) * determinant ),
|
||
|
static_cast<float>( -Matrix4Cofactor< Cofactor4<0>, Cofactor4<3> >::apply( self ) * determinant ),
|
||
|
static_cast<float>( Matrix4Cofactor< Cofactor4<1>, Cofactor4<3> >::apply( self ) * determinant ),
|
||
|
static_cast<float>( -Matrix4Cofactor< Cofactor4<2>, Cofactor4<3> >::apply( self ) * determinant ),
|
||
|
static_cast<float>( Matrix4Cofactor< Cofactor4<3>, Cofactor4<3> >::apply( self ) * determinant )
|
||
|
);
|
||
|
}
|
||
|
|
||
|
/// \brief Inverts \p self in-place using the Adjoint method.
|
||
|
inline void matrix4_full_invert( Matrix4& self ){
|
||
|
self = matrix4_full_inverse( self );
|
||
|
}
|
||
|
|
||
|
|
||
|
/// \brief Constructs a pure-translation matrix from \p translation.
|
||
|
inline Matrix4 matrix4_translation_for_vec3( const Vector3& translation ){
|
||
|
return Matrix4(
|
||
|
1, 0, 0, 0,
|
||
|
0, 1, 0, 0,
|
||
|
0, 0, 1, 0,
|
||
|
translation[0], translation[1], translation[2], 1
|
||
|
);
|
||
|
}
|
||
|
|
||
|
/// \brief Returns the translation part of \p self.
|
||
|
inline Vector3 matrix4_get_translation_vec3( const Matrix4& self ){
|
||
|
return vector4_to_vector3( self.t() );
|
||
|
}
|
||
|
|
||
|
/// \brief Concatenates \p self with \p translation.
|
||
|
/// The concatenated \p translation occurs before \p self.
|
||
|
inline void matrix4_translate_by_vec3( Matrix4& self, const Vector3& translation ){
|
||
|
matrix4_multiply_by_matrix4( self, matrix4_translation_for_vec3( translation ) );
|
||
|
}
|
||
|
|
||
|
/// \brief Returns \p self Concatenated with \p translation.
|
||
|
/// The concatenated translation occurs before \p self.
|
||
|
inline Matrix4 matrix4_translated_by_vec3( const Matrix4& self, const Vector3& translation ){
|
||
|
return matrix4_multiplied_by_matrix4( self, matrix4_translation_for_vec3( translation ) );
|
||
|
}
|
||
|
|
||
|
|
||
|
#include "math/pi.h"
|
||
|
|
||
|
/// \brief Returns \p angle modulated by the range [0, 360).
|
||
|
/// \p angle must be in the range [-360, 360).
|
||
|
inline float angle_modulate_degrees_range( float angle ){
|
||
|
return static_cast<float>( float_mod_range( angle, 360.0 ) );
|
||
|
}
|
||
|
|
||
|
/// \brief Returns \p euler angles converted from radians to degrees.
|
||
|
inline Vector3 euler_radians_to_degrees( const Vector3& euler ){
|
||
|
return Vector3(
|
||
|
static_cast<float>( radians_to_degrees( euler.x() ) ),
|
||
|
static_cast<float>( radians_to_degrees( euler.y() ) ),
|
||
|
static_cast<float>( radians_to_degrees( euler.z() ) )
|
||
|
);
|
||
|
}
|
||
|
|
||
|
/// \brief Returns \p euler angles converted from degrees to radians.
|
||
|
inline Vector3 euler_degrees_to_radians( const Vector3& euler ){
|
||
|
return Vector3(
|
||
|
static_cast<float>( degrees_to_radians( euler.x() ) ),
|
||
|
static_cast<float>( degrees_to_radians( euler.y() ) ),
|
||
|
static_cast<float>( degrees_to_radians( euler.z() ) )
|
||
|
);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/// \brief Constructs a pure-rotation matrix about the x axis from sin \p s and cosine \p c of an angle.
|
||
|
inline Matrix4 matrix4_rotation_for_sincos_x( float s, float c ){
|
||
|
return Matrix4(
|
||
|
1, 0, 0, 0,
|
||
|
0, c, s, 0,
|
||
|
0,-s, c, 0,
|
||
|
0, 0, 0, 1
|
||
|
);
|
||
|
}
|
||
|
|
||
|
/// \brief Constructs a pure-rotation matrix about the x axis from an angle in radians.
|
||
|
inline Matrix4 matrix4_rotation_for_x( double x ){
|
||
|
return matrix4_rotation_for_sincos_x( static_cast<float>( sin( x ) ), static_cast<float>( cos( x ) ) );
|
||
|
}
|
||
|
|
||
|
/// \brief Constructs a pure-rotation matrix about the x axis from an angle in degrees.
|
||
|
inline Matrix4 matrix4_rotation_for_x_degrees( float x ){
|
||
|
return matrix4_rotation_for_x( degrees_to_radians( x ) );
|
||
|
}
|
||
|
|
||
|
/// \brief Constructs a pure-rotation matrix about the y axis from sin \p s and cosine \p c of an angle.
|
||
|
inline Matrix4 matrix4_rotation_for_sincos_y( float s, float c ){
|
||
|
return Matrix4(
|
||
|
c, 0,-s, 0,
|
||
|
0, 1, 0, 0,
|
||
|
s, 0, c, 0,
|
||
|
0, 0, 0, 1
|
||
|
);
|
||
|
}
|
||
|
|
||
|
/// \brief Constructs a pure-rotation matrix about the y axis from an angle in radians.
|
||
|
inline Matrix4 matrix4_rotation_for_y( double y ){
|
||
|
return matrix4_rotation_for_sincos_y( static_cast<float>( sin( y ) ), static_cast<float>( cos( y ) ) );
|
||
|
}
|
||
|
|
||
|
/// \brief Constructs a pure-rotation matrix about the y axis from an angle in degrees.
|
||
|
inline Matrix4 matrix4_rotation_for_y_degrees( float y ){
|
||
|
return matrix4_rotation_for_y( degrees_to_radians( y ) );
|
||
|
}
|
||
|
|
||
|
/// \brief Constructs a pure-rotation matrix about the z axis from sin \p s and cosine \p c of an angle.
|
||
|
inline Matrix4 matrix4_rotation_for_sincos_z( float s, float c ){
|
||
|
return Matrix4(
|
||
|
c, s, 0, 0,
|
||
|
-s, c, 0, 0,
|
||
|
0, 0, 1, 0,
|
||
|
0, 0, 0, 1
|
||
|
);
|
||
|
}
|
||
|
|
||
|
/// \brief Constructs a pure-rotation matrix about the z axis from an angle in radians.
|
||
|
inline Matrix4 matrix4_rotation_for_z( double z ){
|
||
|
return matrix4_rotation_for_sincos_z( static_cast<float>( sin( z ) ), static_cast<float>( cos( z ) ) );
|
||
|
}
|
||
|
|
||
|
/// \brief Constructs a pure-rotation matrix about the z axis from an angle in degrees.
|
||
|
inline Matrix4 matrix4_rotation_for_z_degrees( float z ){
|
||
|
return matrix4_rotation_for_z( degrees_to_radians( z ) );
|
||
|
}
|
||
|
|
||
|
/// \brief Constructs a pure-rotation matrix from a set of euler angles (radians) in the order (x, y, z).
|
||
|
/*! \verbatim
|
||
|
clockwise rotation around X, Y, Z, facing along axis
|
||
|
1 0 0 cy 0 -sy cz sz 0
|
||
|
0 cx sx 0 1 0 -sz cz 0
|
||
|
0 -sx cx sy 0 cy 0 0 1
|
||
|
|
||
|
rows of Z by cols of Y
|
||
|
cy*cz -sy*cz+sz -sy*sz+cz
|
||
|
-sz*cy -sz*sy+cz
|
||
|
|
||
|
.. or something like that..
|
||
|
|
||
|
final rotation is Z * Y * X
|
||
|
cy*cz -sx*-sy*cz+cx*sz cx*-sy*sz+sx*cz
|
||
|
-cy*sz sx*sy*sz+cx*cz -cx*-sy*sz+sx*cz
|
||
|
sy -sx*cy cx*cy
|
||
|
|
||
|
transposed
|
||
|
cy.cz + 0.sz + sy.0 cy.-sz + 0 .cz + sy.0 cy.0 + 0 .0 + sy.1 |
|
||
|
sx.sy.cz + cx.sz + -sx.cy.0 sx.sy.-sz + cx.cz + -sx.cy.0 sx.sy.0 + cx.0 + -sx.cy.1 |
|
||
|
-cx.sy.cz + sx.sz + cx.cy.0 -cx.sy.-sz + sx.cz + cx.cy.0 -cx.sy.0 + 0 .0 + cx.cy.1 |
|
||
|
\endverbatim */
|
||
|
inline Matrix4 matrix4_rotation_for_euler_xyz( const Vector3& euler ){
|
||
|
#if 1
|
||
|
|
||
|
double cx = cos( euler[0] );
|
||
|
double sx = sin( euler[0] );
|
||
|
double cy = cos( euler[1] );
|
||
|
double sy = sin( euler[1] );
|
||
|
double cz = cos( euler[2] );
|
||
|
double sz = sin( euler[2] );
|
||
|
|
||
|
return Matrix4(
|
||
|
static_cast<float>( cy * cz ),
|
||
|
static_cast<float>( cy * sz ),
|
||
|
static_cast<float>( -sy ),
|
||
|
0,
|
||
|
static_cast<float>( sx * sy * cz + cx * -sz ),
|
||
|
static_cast<float>( sx * sy * sz + cx * cz ),
|
||
|
static_cast<float>( sx * cy ),
|
||
|
0,
|
||
|
static_cast<float>( cx * sy * cz + sx * sz ),
|
||
|
static_cast<float>( cx * sy * sz + -sx * cz ),
|
||
|
static_cast<float>( cx * cy ),
|
||
|
0,
|
||
|
0,
|
||
|
0,
|
||
|
0,
|
||
|
1
|
||
|
);
|
||
|
|
||
|
#else
|
||
|
|
||
|
return matrix4_premultiply_by_matrix4(
|
||
|
matrix4_premultiply_by_matrix4(
|
||
|
matrix4_rotation_for_x( euler[0] ),
|
||
|
matrix4_rotation_for_y( euler[1] )
|
||
|
),
|
||
|
matrix4_rotation_for_z( euler[2] )
|
||
|
);
|
||
|
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/// \brief Constructs a pure-rotation matrix from a set of euler angles (degrees) in the order (x, y, z).
|
||
|
inline Matrix4 matrix4_rotation_for_euler_xyz_degrees( const Vector3& euler ){
|
||
|
return matrix4_rotation_for_euler_xyz( euler_degrees_to_radians( euler ) );
|
||
|
}
|
||
|
|
||
|
/// \brief Concatenates \p self with the rotation transform produced by \p euler angles (degrees) in the order (x, y, z).
|
||
|
/// The concatenated rotation occurs before \p self.
|
||
|
inline void matrix4_rotate_by_euler_xyz_degrees( Matrix4& self, const Vector3& euler ){
|
||
|
matrix4_multiply_by_matrix4( self, matrix4_rotation_for_euler_xyz_degrees( euler ) );
|
||
|
}
|
||
|
|
||
|
|
||
|
/// \brief Constructs a pure-rotation matrix from a set of euler angles (radians) in the order (y, z, x).
|
||
|
inline Matrix4 matrix4_rotation_for_euler_yzx( const Vector3& euler ){
|
||
|
return matrix4_premultiplied_by_matrix4(
|
||
|
matrix4_premultiplied_by_matrix4(
|
||
|
matrix4_rotation_for_y( euler[1] ),
|
||
|
matrix4_rotation_for_z( euler[2] )
|
||
|
),
|
||
|
matrix4_rotation_for_x( euler[0] )
|
||
|
);
|
||
|
}
|
||
|
|
||
|
/// \brief Constructs a pure-rotation matrix from a set of euler angles (degrees) in the order (y, z, x).
|
||
|
inline Matrix4 matrix4_rotation_for_euler_yzx_degrees( const Vector3& euler ){
|
||
|
return matrix4_rotation_for_euler_yzx( euler_degrees_to_radians( euler ) );
|
||
|
}
|
||
|
|
||
|
/// \brief Constructs a pure-rotation matrix from a set of euler angles (radians) in the order (x, z, y).
|
||
|
inline Matrix4 matrix4_rotation_for_euler_xzy( const Vector3& euler ){
|
||
|
return matrix4_premultiplied_by_matrix4(
|
||
|
matrix4_premultiplied_by_matrix4(
|
||
|
matrix4_rotation_for_x( euler[0] ),
|
||
|
matrix4_rotation_for_z( euler[2] )
|
||
|
),
|
||
|
matrix4_rotation_for_y( euler[1] )
|
||
|
);
|
||
|
}
|
||
|
|
||
|
/// \brief Constructs a pure-rotation matrix from a set of euler angles (degrees) in the order (x, z, y).
|
||
|
inline Matrix4 matrix4_rotation_for_euler_xzy_degrees( const Vector3& euler ){
|
||
|
return matrix4_rotation_for_euler_xzy( euler_degrees_to_radians( euler ) );
|
||
|
}
|
||
|
|
||
|
/// \brief Constructs a pure-rotation matrix from a set of euler angles (radians) in the order (y, x, z).
|
||
|
/*! \verbatim
|
||
|
| cy.cz + sx.sy.-sz + -cx.sy.0 0.cz + cx.-sz + sx.0 sy.cz + -sx.cy.-sz + cx.cy.0 |
|
||
|
| cy.sz + sx.sy.cz + -cx.sy.0 0.sz + cx.cz + sx.0 sy.sz + -sx.cy.cz + cx.cy.0 |
|
||
|
| cy.0 + sx.sy.0 + -cx.sy.1 0.0 + cx.0 + sx.1 sy.0 + -sx.cy.0 + cx.cy.1 |
|
||
|
\endverbatim */
|
||
|
inline Matrix4 matrix4_rotation_for_euler_yxz( const Vector3& euler ){
|
||
|
#if 1
|
||
|
|
||
|
double cx = cos( euler[0] );
|
||
|
double sx = sin( euler[0] );
|
||
|
double cy = cos( euler[1] );
|
||
|
double sy = sin( euler[1] );
|
||
|
double cz = cos( euler[2] );
|
||
|
double sz = sin( euler[2] );
|
||
|
|
||
|
return Matrix4(
|
||
|
static_cast<float>( cy * cz + sx * sy * -sz ),
|
||
|
static_cast<float>( cy * sz + sx * sy * cz ),
|
||
|
static_cast<float>( -cx * sy ),
|
||
|
0,
|
||
|
static_cast<float>( cx * -sz ),
|
||
|
static_cast<float>( cx * cz ),
|
||
|
static_cast<float>( sx ),
|
||
|
0,
|
||
|
static_cast<float>( sy * cz + -sx * cy * -sz ),
|
||
|
static_cast<float>( sy * sz + -sx * cy * cz ),
|
||
|
static_cast<float>( cx * cy ),
|
||
|
0,
|
||
|
0,
|
||
|
0,
|
||
|
0,
|
||
|
1
|
||
|
);
|
||
|
|
||
|
#else
|
||
|
|
||
|
return matrix4_premultiply_by_matrix4(
|
||
|
matrix4_premultiply_by_matrix4(
|
||
|
matrix4_rotation_for_y( euler[1] ),
|
||
|
matrix4_rotation_for_x( euler[0] )
|
||
|
),
|
||
|
matrix4_rotation_for_z( euler[2] )
|
||
|
);
|
||
|
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/// \brief Constructs a pure-rotation matrix from a set of euler angles (degrees) in the order (y, x, z).
|
||
|
inline Matrix4 matrix4_rotation_for_euler_yxz_degrees( const Vector3& euler ){
|
||
|
return matrix4_rotation_for_euler_yxz( euler_degrees_to_radians( euler ) );
|
||
|
}
|
||
|
|
||
|
/// \brief Returns \p self concatenated with the rotation transform produced by \p euler angles (degrees) in the order (y, x, z).
|
||
|
/// The concatenated rotation occurs before \p self.
|
||
|
inline Matrix4 matrix4_rotated_by_euler_yxz_degrees( const Matrix4& self, const Vector3& euler ){
|
||
|
return matrix4_multiplied_by_matrix4( self, matrix4_rotation_for_euler_yxz_degrees( euler ) );
|
||
|
}
|
||
|
|
||
|
/// \brief Concatenates \p self with the rotation transform produced by \p euler angles (degrees) in the order (y, x, z).
|
||
|
/// The concatenated rotation occurs before \p self.
|
||
|
inline void matrix4_rotate_by_euler_yxz_degrees( Matrix4& self, const Vector3& euler ){
|
||
|
self = matrix4_rotated_by_euler_yxz_degrees( self, euler );
|
||
|
}
|
||
|
|
||
|
/// \brief Constructs a pure-rotation matrix from a set of euler angles (radians) in the order (z, x, y).
|
||
|
inline Matrix4 matrix4_rotation_for_euler_zxy( const Vector3& euler ){
|
||
|
#if 1
|
||
|
return matrix4_premultiplied_by_matrix4(
|
||
|
matrix4_premultiplied_by_matrix4(
|
||
|
matrix4_rotation_for_z( euler[2] ),
|
||
|
matrix4_rotation_for_x( euler[0] )
|
||
|
),
|
||
|
matrix4_rotation_for_y( euler[1] )
|
||
|
);
|
||
|
#else
|
||
|
double cx = cos( euler[0] );
|
||
|
double sx = sin( euler[0] );
|
||
|
double cy = cos( euler[1] );
|
||
|
double sy = sin( euler[1] );
|
||
|
double cz = cos( euler[2] );
|
||
|
double sz = sin( euler[2] );
|
||
|
|
||
|
return Matrix4(
|
||
|
static_cast<float>( cz * cy + sz * sx * sy ),
|
||
|
static_cast<float>( sz * cx ),
|
||
|
static_cast<float>( cz * -sy + sz * sx * cy ),
|
||
|
0,
|
||
|
static_cast<float>( -sz * cy + cz * sx * sy ),
|
||
|
static_cast<float>( cz * cx ),
|
||
|
static_cast<float>( -sz * -sy + cz * cx * cy ),
|
||
|
0,
|
||
|
static_cast<float>( cx * sy ),
|
||
|
static_cast<float>( -sx ),
|
||
|
static_cast<float>( cx * cy ),
|
||
|
0,
|
||
|
0,
|
||
|
0,
|
||
|
0,
|
||
|
1
|
||
|
);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/// \brief Constructs a pure-rotation matrix from a set of euler angles (degres=es) in the order (z, x, y).
|
||
|
inline Matrix4 matrix4_rotation_for_euler_zxy_degrees( const Vector3& euler ){
|
||
|
return matrix4_rotation_for_euler_zxy( euler_degrees_to_radians( euler ) );
|
||
|
}
|
||
|
|
||
|
/// \brief Returns \p self concatenated with the rotation transform produced by \p euler angles (degrees) in the order (z, x, y).
|
||
|
/// The concatenated rotation occurs before \p self.
|
||
|
inline Matrix4 matrix4_rotated_by_euler_zxy_degrees( const Matrix4& self, const Vector3& euler ){
|
||
|
return matrix4_multiplied_by_matrix4( self, matrix4_rotation_for_euler_zxy_degrees( euler ) );
|
||
|
}
|
||
|
|
||
|
/// \brief Concatenates \p self with the rotation transform produced by \p euler angles (degrees) in the order (z, x, y).
|
||
|
/// The concatenated rotation occurs before \p self.
|
||
|
inline void matrix4_rotate_by_euler_zxy_degrees( Matrix4& self, const Vector3& euler ){
|
||
|
self = matrix4_rotated_by_euler_zxy_degrees( self, euler );
|
||
|
}
|
||
|
|
||
|
/// \brief Constructs a pure-rotation matrix from a set of euler angles (radians) in the order (z, y, x).
|
||
|
inline Matrix4 matrix4_rotation_for_euler_zyx( const Vector3& euler ){
|
||
|
#if 1
|
||
|
|
||
|
double cx = cos( euler[0] );
|
||
|
double sx = sin( euler[0] );
|
||
|
double cy = cos( euler[1] );
|
||
|
double sy = sin( euler[1] );
|
||
|
double cz = cos( euler[2] );
|
||
|
double sz = sin( euler[2] );
|
||
|
|
||
|
return Matrix4(
|
||
|
static_cast<float>( cy * cz ),
|
||
|
static_cast<float>( sx * sy * cz + cx * sz ),
|
||
|
static_cast<float>( cx * -sy * cz + sx * sz ),
|
||
|
0,
|
||
|
static_cast<float>( cy * -sz ),
|
||
|
static_cast<float>( sx * sy * -sz + cx * cz ),
|
||
|
static_cast<float>( cx * -sy * -sz + sx * cz ),
|
||
|
0,
|
||
|
static_cast<float>( sy ),
|
||
|
static_cast<float>( -sx * cy ),
|
||
|
static_cast<float>( cx * cy ),
|
||
|
0,
|
||
|
0,
|
||
|
0,
|
||
|
0,
|
||
|
1
|
||
|
);
|
||
|
|
||
|
#else
|
||
|
|
||
|
return matrix4_premultiply_by_matrix4(
|
||
|
matrix4_premultiply_by_matrix4(
|
||
|
matrix4_rotation_for_z( euler[2] ),
|
||
|
matrix4_rotation_for_y( euler[1] )
|
||
|
),
|
||
|
matrix4_rotation_for_x( euler[0] )
|
||
|
);
|
||
|
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/// \brief Constructs a pure-rotation matrix from a set of euler angles (degrees) in the order (z, y, x).
|
||
|
inline Matrix4 matrix4_rotation_for_euler_zyx_degrees( const Vector3& euler ){
|
||
|
return matrix4_rotation_for_euler_zyx( euler_degrees_to_radians( euler ) );
|
||
|
}
|
||
|
|
||
|
|
||
|
/// \brief Calculates and returns a set of euler angles that produce the rotation component of \p self when applied in the order (x, y, z).
|
||
|
/// \p self must be affine and orthonormal (unscaled) to produce a meaningful result.
|
||
|
inline Vector3 matrix4_get_rotation_euler_xyz( const Matrix4& self ){
|
||
|
double a = asin( -self[2] );
|
||
|
double ca = cos( a );
|
||
|
|
||
|
if ( fabs( ca ) > 0.005 ) { // Gimbal lock?
|
||
|
return Vector3(
|
||
|
static_cast<float>( atan2( self[6] / ca, self[10] / ca ) ),
|
||
|
static_cast<float>( a ),
|
||
|
static_cast<float>( atan2( self[1] / ca, self[0] / ca ) )
|
||
|
);
|
||
|
}
|
||
|
else // Gimbal lock has occurred
|
||
|
{
|
||
|
return Vector3(
|
||
|
static_cast<float>( atan2( -self[9], self[5] ) ),
|
||
|
static_cast<float>( a ),
|
||
|
0
|
||
|
);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// \brief \copydoc matrix4_get_rotation_euler_xyz(const Matrix4&)
|
||
|
inline Vector3 matrix4_get_rotation_euler_xyz_degrees( const Matrix4& self ){
|
||
|
return euler_radians_to_degrees( matrix4_get_rotation_euler_xyz( self ) );
|
||
|
}
|
||
|
|
||
|
/// \brief Calculates and returns a set of euler angles that produce the rotation component of \p self when applied in the order (y, x, z).
|
||
|
/// \p self must be affine and orthonormal (unscaled) to produce a meaningful result.
|
||
|
inline Vector3 matrix4_get_rotation_euler_yxz( const Matrix4& self ){
|
||
|
double a = asin( self[6] );
|
||
|
double ca = cos( a );
|
||
|
|
||
|
if ( fabs( ca ) > 0.005 ) { // Gimbal lock?
|
||
|
return Vector3(
|
||
|
static_cast<float>( a ),
|
||
|
static_cast<float>( atan2( -self[2] / ca, self[10] / ca ) ),
|
||
|
static_cast<float>( atan2( -self[4] / ca, self[5] / ca ) )
|
||
|
);
|
||
|
}
|
||
|
else // Gimbal lock has occurred
|
||
|
{
|
||
|
return Vector3(
|
||
|
static_cast<float>( a ),
|
||
|
static_cast<float>( atan2( self[8], self[0] ) ),
|
||
|
0
|
||
|
);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// \brief \copydoc matrix4_get_rotation_euler_yxz(const Matrix4&)
|
||
|
inline Vector3 matrix4_get_rotation_euler_yxz_degrees( const Matrix4& self ){
|
||
|
return euler_radians_to_degrees( matrix4_get_rotation_euler_yxz( self ) );
|
||
|
}
|
||
|
|
||
|
/// \brief Calculates and returns a set of euler angles that produce the rotation component of \p self when applied in the order (z, x, y).
|
||
|
/// \p self must be affine and orthonormal (unscaled) to produce a meaningful result.
|
||
|
inline Vector3 matrix4_get_rotation_euler_zxy( const Matrix4& self ){
|
||
|
double a = asin( -self[9] );
|
||
|
double ca = cos( a );
|
||
|
|
||
|
if ( fabs( ca ) > 0.005 ) { // Gimbal lock?
|
||
|
return Vector3(
|
||
|
static_cast<float>( a ),
|
||
|
static_cast<float>( atan2( self[8] / ca, self[10] / ca ) ),
|
||
|
static_cast<float>( atan2( self[1] / ca, self[5] / ca ) )
|
||
|
);
|
||
|
}
|
||
|
else // Gimbal lock has occurred
|
||
|
{
|
||
|
return Vector3(
|
||
|
static_cast<float>( a ),
|
||
|
0,
|
||
|
static_cast<float>( atan2( -self[4], self[0] ) )
|
||
|
);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// \brief \copydoc matrix4_get_rotation_euler_zxy(const Matrix4&)
|
||
|
inline Vector3 matrix4_get_rotation_euler_zxy_degrees( const Matrix4& self ){
|
||
|
return euler_radians_to_degrees( matrix4_get_rotation_euler_zxy( self ) );
|
||
|
}
|
||
|
|
||
|
/// \brief Calculates and returns a set of euler angles that produce the rotation component of \p self when applied in the order (z, y, x).
|
||
|
/// \p self must be affine and orthonormal (unscaled) to produce a meaningful result.
|
||
|
inline Vector3 matrix4_get_rotation_euler_zyx( const Matrix4& self ){
|
||
|
double a = asin( self[8] );
|
||
|
double ca = cos( a );
|
||
|
|
||
|
if ( fabs( ca ) > 0.005 ) { // Gimbal lock?
|
||
|
return Vector3(
|
||
|
static_cast<float>( atan2( -self[9] / ca, self[10] / ca ) ),
|
||
|
static_cast<float>( a ),
|
||
|
static_cast<float>( atan2( -self[4] / ca, self[0] / ca ) )
|
||
|
);
|
||
|
}
|
||
|
else // Gimbal lock has occurred
|
||
|
{
|
||
|
return Vector3(
|
||
|
0,
|
||
|
static_cast<float>( a ),
|
||
|
static_cast<float>( atan2( self[1], self[5] ) )
|
||
|
);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// \brief \copydoc matrix4_get_rotation_euler_zyx(const Matrix4&)
|
||
|
inline Vector3 matrix4_get_rotation_euler_zyx_degrees( const Matrix4& self ){
|
||
|
return euler_radians_to_degrees( matrix4_get_rotation_euler_zyx( self ) );
|
||
|
}
|
||
|
|
||
|
|
||
|
/// \brief Rotate \p self by \p euler angles (degrees) applied in the order (x, y, z), using \p pivotpoint.
|
||
|
inline void matrix4_pivoted_rotate_by_euler_xyz_degrees( Matrix4& self, const Vector3& euler, const Vector3& pivotpoint ){
|
||
|
matrix4_translate_by_vec3( self, pivotpoint );
|
||
|
matrix4_rotate_by_euler_xyz_degrees( self, euler );
|
||
|
matrix4_translate_by_vec3( self, vector3_negated( pivotpoint ) );
|
||
|
}
|
||
|
|
||
|
|
||
|
/// \brief Constructs a pure-scale matrix from \p scale.
|
||
|
inline Matrix4 matrix4_scale_for_vec3( const Vector3& scale ){
|
||
|
return Matrix4(
|
||
|
scale[0], 0, 0, 0,
|
||
|
0, scale[1], 0, 0,
|
||
|
0, 0, scale[2], 0,
|
||
|
0, 0, 0, 1
|
||
|
);
|
||
|
}
|
||
|
|
||
|
/// \brief Calculates and returns the (x, y, z) scale values that produce the scale component of \p self.
|
||
|
/// \p self must be affine and orthogonal to produce a meaningful result.
|
||
|
inline Vector3 matrix4_get_scale_vec3( const Matrix4& self ){
|
||
|
return Vector3(
|
||
|
static_cast<float>( vector3_length( vector4_to_vector3( self.x() ) ) ),
|
||
|
static_cast<float>( vector3_length( vector4_to_vector3( self.y() ) ) ),
|
||
|
static_cast<float>( vector3_length( vector4_to_vector3( self.z() ) ) )
|
||
|
);
|
||
|
}
|
||
|
|
||
|
/// \brief Scales \p self by \p scale.
|
||
|
inline void matrix4_scale_by_vec3( Matrix4& self, const Vector3& scale ){
|
||
|
matrix4_multiply_by_matrix4( self, matrix4_scale_for_vec3( scale ) );
|
||
|
}
|
||
|
|
||
|
/// \brief Scales \p self by \p scale, using \p pivotpoint.
|
||
|
inline void matrix4_pivoted_scale_by_vec3( Matrix4& self, const Vector3& scale, const Vector3& pivotpoint ){
|
||
|
matrix4_translate_by_vec3( self, pivotpoint );
|
||
|
matrix4_scale_by_vec3( self, scale );
|
||
|
matrix4_translate_by_vec3( self, vector3_negated( pivotpoint ) );
|
||
|
}
|
||
|
|
||
|
|
||
|
/// \brief Transforms \p self by \p translation, \p euler and \p scale.
|
||
|
/// The transforms are combined in the order: scale, rotate-z, rotate-y, rotate-x, translate.
|
||
|
inline void matrix4_transform_by_euler_xyz_degrees( Matrix4& self, const Vector3& translation, const Vector3& euler, const Vector3& scale ){
|
||
|
matrix4_translate_by_vec3( self, translation );
|
||
|
matrix4_rotate_by_euler_xyz_degrees( self, euler );
|
||
|
matrix4_scale_by_vec3( self, scale );
|
||
|
}
|
||
|
|
||
|
/// \brief Transforms \p self by \p translation, \p euler and \p scale, using \p pivotpoint.
|
||
|
inline void matrix4_pivoted_transform_by_euler_xyz_degrees( Matrix4& self, const Vector3& translation, const Vector3& euler, const Vector3& scale, const Vector3& pivotpoint ){
|
||
|
matrix4_translate_by_vec3( self, pivotpoint + translation );
|
||
|
matrix4_rotate_by_euler_xyz_degrees( self, euler );
|
||
|
matrix4_scale_by_vec3( self, scale );
|
||
|
matrix4_translate_by_vec3( self, vector3_negated( pivotpoint ) );
|
||
|
}
|
||
|
|
||
|
|
||
|
#endif
|