mirror of
https://github.com/shawns-valve/halflife.git
synced 2024-11-22 04:21:30 +00:00
223 lines
4.3 KiB
C++
223 lines
4.3 KiB
C++
|
/************ (C) Copyright 2003 Valve, L.L.C. All rights reserved. ***********
|
||
|
**
|
||
|
** The copyright to the contents herein is the property of Valve, L.L.C.
|
||
|
** The contents may be used and/or copied only with the written permission of
|
||
|
** Valve, L.L.C., or in accordance with the terms and conditions stipulated in
|
||
|
** the agreement/contract under which the contents have been supplied.
|
||
|
**
|
||
|
*******************************************************************************
|
||
|
**
|
||
|
** Contents:
|
||
|
**
|
||
|
** interpolation.cpp: implementation of the interpolation class
|
||
|
**
|
||
|
******************************************************************************/
|
||
|
|
||
|
#include "hud.h"
|
||
|
#include "cl_util.h"
|
||
|
#include "interpolation.h"
|
||
|
|
||
|
// = determinant of matrix a,b,c
|
||
|
#define Determinant(a,b,c) ( (a)[2] * ( (b)[0]*(c)[1] - (b)[1]*(c)[0] ) + \
|
||
|
(a)[1] * ( (b)[2]*(c)[0] - (b)[0]*(c)[2] ) + \
|
||
|
(a)[0] * ( (b)[1]*(c)[2] - (b)[2]*(c)[1] ) )
|
||
|
|
||
|
// slove 3 vector linear system of equations v0 = x*v1 + y*v2 + z*v3 (if possible)
|
||
|
bool SolveLSE (vec3_t v0, vec3_t v1, vec3_t v2, vec3_t v3, float * x, float * y, float * z)
|
||
|
{
|
||
|
float d = Determinant(v1,v2,v3);
|
||
|
|
||
|
if (d==0.0f)
|
||
|
return false;
|
||
|
|
||
|
if ( x )
|
||
|
*x = Determinant(v0,v2,v3) / d;
|
||
|
|
||
|
if ( y )
|
||
|
*y= Determinant(v1,v0,v3) / d;
|
||
|
|
||
|
if ( z )
|
||
|
*z= Determinant(v1,v2,v0) / d;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// p = closest point between vector lines a1+x*m1 and a2+x*m2
|
||
|
bool GetPointBetweenLines(vec3_t &p, vec3_t a1, vec3_t m1, vec3_t a2, vec3_t m2 )
|
||
|
{
|
||
|
float x,z;
|
||
|
|
||
|
vec3_t t1 = CrossProduct(m1, m2);
|
||
|
vec3_t t2 = a2 - a1;
|
||
|
|
||
|
if ( !SolveLSE( t2, m1, t1, m2, &x , NULL, &z ) )
|
||
|
return false;
|
||
|
|
||
|
t1 = a1 + x*m1;
|
||
|
t2 = a2 + (-z)*m2;
|
||
|
|
||
|
p = ( t1 + t2 ) / 2.0f;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Bernstein Poynom B(u) with n = 2, i = 0
|
||
|
#define BernsteinPolynom20(u) ((1.0f-u)*(1.0f-u))
|
||
|
#define BernsteinPolynom21(u) (2.0f*u*(1.0f-u))
|
||
|
#define BernsteinPolynom22(u) (u*u)
|
||
|
|
||
|
CInterpolation::CInterpolation()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
CInterpolation::~CInterpolation()
|
||
|
{
|
||
|
m_SmoothStart = m_SmoothEnd = false;
|
||
|
}
|
||
|
|
||
|
void CInterpolation::SetViewAngles( vec3_t start, vec3_t end )
|
||
|
{
|
||
|
m_StartAngle = start;
|
||
|
m_EndAngle = end;
|
||
|
NormalizeAngles( m_StartAngle );
|
||
|
NormalizeAngles( m_EndAngle );
|
||
|
}
|
||
|
|
||
|
void CInterpolation::SetFOVs(float start, float end)
|
||
|
{
|
||
|
m_StartFov = start;
|
||
|
m_EndFov = end;
|
||
|
}
|
||
|
|
||
|
void CInterpolation::SetWaypoints( vec3_t * prev, vec3_t start, vec3_t end, vec3_t * next)
|
||
|
{
|
||
|
m_StartPoint = start;
|
||
|
m_EndPoint = end;
|
||
|
|
||
|
|
||
|
vec3_t a,b,c,d;
|
||
|
|
||
|
if ( !prev && !next )
|
||
|
{
|
||
|
// no direction given, straight linear interpolation
|
||
|
m_Center = (m_StartPoint + m_EndPoint) / 2.0f;
|
||
|
}
|
||
|
else if ( !prev )
|
||
|
{
|
||
|
a = start - end;
|
||
|
float dist = a.Length() / 2.0f;
|
||
|
a = a.Normalize();
|
||
|
b = *next - end;
|
||
|
b = b.Normalize();
|
||
|
c = a - b;
|
||
|
c = c.Normalize();
|
||
|
m_Center = end + c*dist;
|
||
|
|
||
|
}
|
||
|
else if ( !next )
|
||
|
{
|
||
|
a = *prev - start;
|
||
|
a = a.Normalize();
|
||
|
b = end - start;
|
||
|
float dist = b.Length() / 2.0f;
|
||
|
b = b.Normalize();
|
||
|
c = b - a;
|
||
|
c = c.Normalize();
|
||
|
m_Center = start + c*dist;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// we have a previous and a next point, great!
|
||
|
a = *prev - start;
|
||
|
a = a.Normalize();
|
||
|
b = end - start;
|
||
|
b = b.Normalize();
|
||
|
c = b - a;
|
||
|
|
||
|
a = start - end;
|
||
|
a = a.Normalize();
|
||
|
b = *next - end;
|
||
|
b = b.Normalize();
|
||
|
d = a - b;
|
||
|
|
||
|
GetPointBetweenLines( m_Center, start, c, end, d);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void CInterpolation::Interpolate( float t, vec3_t &point, vec3_t &angle, float * fov)
|
||
|
{
|
||
|
|
||
|
if ( m_SmoothStart && m_SmoothEnd )
|
||
|
{
|
||
|
t = (1.0f-t)*(t*t)+t*(1.0f-((t-1.0f)*(t-1.0f)));
|
||
|
}
|
||
|
else if ( m_SmoothStart )
|
||
|
{
|
||
|
t = t*t;
|
||
|
}
|
||
|
else if ( m_SmoothEnd )
|
||
|
{
|
||
|
t = t - 1.0f;
|
||
|
t = -(t*t)+1;
|
||
|
}
|
||
|
|
||
|
if ( point )
|
||
|
{
|
||
|
BezierInterpolatePoint(t, point);
|
||
|
}
|
||
|
|
||
|
if ( angle )
|
||
|
{
|
||
|
InterpolateAngle(t, angle);
|
||
|
}
|
||
|
|
||
|
if ( fov )
|
||
|
{
|
||
|
*fov = m_StartFov + (t * (m_EndFov-m_StartFov));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void CInterpolation::BezierInterpolatePoint( float t, vec3_t &point )
|
||
|
{
|
||
|
point = m_StartPoint * BernsteinPolynom20(t);
|
||
|
point = point + m_Center * BernsteinPolynom21(t);
|
||
|
point = point + m_EndPoint * BernsteinPolynom22(t);
|
||
|
}
|
||
|
|
||
|
void CInterpolation::SetSmoothing(bool start, bool end)
|
||
|
{
|
||
|
m_SmoothStart = start;
|
||
|
m_SmoothEnd = end;
|
||
|
|
||
|
}
|
||
|
|
||
|
void CInterpolation::InterpolateAngle( float t, vec3_t &angle )
|
||
|
{
|
||
|
int i;
|
||
|
float ang1, ang2;
|
||
|
float d;
|
||
|
|
||
|
for ( i = 0 ; i < 3 ; i++ )
|
||
|
{
|
||
|
ang1 = m_StartAngle[i];
|
||
|
ang2 = m_EndAngle[i];
|
||
|
|
||
|
d = ang2 - ang1;
|
||
|
if ( d > 180 )
|
||
|
{
|
||
|
d -= 360;
|
||
|
}
|
||
|
else if ( d < -180 )
|
||
|
{
|
||
|
d += 360;
|
||
|
}
|
||
|
|
||
|
angle[i] = ang1 + d * t;
|
||
|
}
|
||
|
|
||
|
NormalizeAngles( angle );
|
||
|
}
|
||
|
|
||
|
|
||
|
|