ns/releases/3.03/source/particles/HLRender.cpp
tankefugl 54a4ac5469 o Branched from 3.02
git-svn-id: https://unknownworlds.svn.cloudforge.com/ns1@85 67975925-1194-0748-b3d5-c16f83f1a3a1
2005-04-26 15:38:32 +00:00

269 lines
7.4 KiB
C++

//======== (C) Copyright 2002 Charles G. Cleveland All rights reserved. =========
//
// The copyright to the contents herein is the property of Charles G. Cleveland.
// The contents may be used and/or copied only with the written permission of
// Charles G. Cleveland, or in accordance with the terms and conditions stipulated in
// the agreement/contract under which the contents have been supplied.
//
// Purpose:
//
// $Workfile: HLRender.cpp $
// $Date: 2002/08/31 18:04:08 $
//
//-------------------------------------------------------------------------------
// $Log: HLRender.cpp,v $
// Revision 1.4 2002/08/31 18:04:08 Flayra
// - Work at VALVe
//
// Revision 1.3 2002/08/16 02:26:55 Flayra
// - Added document header
//
//===============================================================================
// This file implements the API calls that draw particle groups in Half-life
#include "general.h"
#ifdef WIN32
// This is for something in gl.h.
#include <windows.h>
#endif
//#include <GL/gl.h>
#include "common/triangleapi.h"
#include "cl_dll/wrect.h"
#include "cl_dll/cl_dll.h"
//#include "common/renderingconst.h"
#include "particles/papi.h"
// XXX #include <iostream.h>
// Draw as a splat texture on a quad.
void DrawGroupTriSplat(const pVector &view, const pVector &up,
float size_scale, bool draw_tex,
bool const_size, bool const_color)
{
int cnt = pGetGroupCount();
if(cnt < 1)
return;
pVector *ppos = new pVector[cnt];
float *color = const_color ? NULL : new float[cnt * 4];
pVector *size = const_size ? NULL : new pVector[cnt];
pGetParticles(0, cnt, (float *)ppos, color, NULL, (float *)size);
// Compute the vectors from the particle to the corners of its tri.
// 2
// |\ The particle is at the center of the x.
// |-\ V0, V1, and V2 go from there to the vertices.
// |x|\ The texcoords are (0,0), (2,0), and (0,2) respectively.
// 0-+-1 We clamp the texture so the rest is transparent.
pVector right = view ^ up;
right.normalize();
pVector nup = right ^ view;
right *= size_scale;
nup *= size_scale;
pVector V0 = -(right + nup);
pVector V1 = V0 + right * 4;
pVector V2 = V0 + nup*4 + right*2;
//cerr << "x " << view.x << " " << view.y << " " << view.z << endl;
//cerr << "x " << nup.x << " " << nup.y << " " << nup.z << endl;
//cerr << "x " << right.x << " " << right.y << " " << right.z << endl;
//cerr << "x " << V0.x << " " << V0.y << " " << V0.z << endl;
//glBegin(GL_TRIANGLES);
gEngfuncs.pTriAPI->Begin( TRI_TRIANGLES );
//gEngfuncs.pTriAPI->RenderMode( kRenderTransAlpha );
for(int i = 0; i < cnt; i++)
{
pVector &p = ppos[i];
float* theCurrentColor = &color[i*4];
if(!const_color)
{
//glColor4fv((GLfloat *)&color[i*4]);
gEngfuncs.pTriAPI->Color4f(theCurrentColor[0], theCurrentColor[1], theCurrentColor[2], theCurrentColor[3]);
}
//else
//{
// gEngfuncs.pTriAPI->Color4f(1.0f, 1.0f, 1.0f, .5f);
//}
pVector sV0 = V0;
pVector sV1 = V1;
pVector sV2 = V2;
if(!const_size)
{
sV0 *= size[i].x;
sV1 *= size[i].x;
sV2 *= size[i].x;
}
//if(draw_tex) glTexCoord2f(0,0);
if(draw_tex) gEngfuncs.pTriAPI->TexCoord2f(0,0);
pVector ver = p + sV0;
//glVertex3fv((GLfloat *)&ver);
gEngfuncs.pTriAPI->Vertex3fv((float*)&ver);
//if(draw_tex) glTexCoord2f(2,0);
if(draw_tex) gEngfuncs.pTriAPI->TexCoord2f(1,0);
ver = p + sV1;
//glVertex3fv((GLfloat *)&ver);
gEngfuncs.pTriAPI->Vertex3fv((float*)&ver);
//if(draw_tex) glTexCoord2f(0,2);
if(draw_tex) gEngfuncs.pTriAPI->TexCoord2f(.5,1);
ver = p + sV2;
//glVertex3fv((GLfloat *)&ver);
gEngfuncs.pTriAPI->Vertex3fv((float*)&ver);
}
//glEnd();
gEngfuncs.pTriAPI->End();
delete [] ppos;
if(color) delete [] color;
if(size) delete [] size;
}
// Emit OpenGL calls to draw the particles. These are drawn with
// whatever primitive type the user specified(GL_POINTS, for
// example). The color and radius are set per primitive, by default.
// For GL_LINES, the other vertex of the line is the velocity vector.
// XXX const_size is ignored.
//PARTICLEDLL_API void pDrawGroupp(int primitive, bool const_size, bool const_color)
//{
// _ParticleState &_ps = _GetPState();
//
// // Get a pointer to the particles in gp memory
// ParticleGroup *pg = _ps.pgrp;
//
// if(pg == NULL)
// return; // ERROR
//
// if(pg->p_count < 1)
// return;
//
// if(primitive == GL_POINTS)
// {
// glPushClientAttrib(GL_CLIENT_VERTEX_ARRAY_BIT);
// glEnableClientState(GL_VERTEX_ARRAY);
// if(!const_color)
// {
// glEnableClientState(GL_COLOR_ARRAY);
// glColorPointer(4, GL_FLOAT, sizeof(Particle), &pg->list[0].color);
// }
//
// glVertexPointer(3, GL_FLOAT, sizeof(Particle), &pg->list[0].pos);
// glDrawArrays((GLenum)primitive, 0, pg->p_count);
// glPopClientAttrib();
// // XXX For E&S
// glDisableClientState(GL_COLOR_ARRAY);
// }
// else
// {
// // Assume GL_LINES
// glBegin((GLenum)primitive);
//
// if(!const_color)
// {
// for(int i = 0; i < pg->p_count; i++)
// {
// Particle &m = pg->list[i];
//
// // Warning: this depends on alpha following color in the Particle struct.
// glColor4fv((GLfloat *)&m.color);
// glVertex3fv((GLfloat *)&m.pos);
//
// // For lines, make a tail with the velocity vector's direction and
// // a length of radius.
// pVector tail = m.pos - m.vel;
// glVertex3fv((GLfloat *)&tail);
// }
// }
// else
// {
// for(int i = 0; i < pg->p_count; i++)
// {
// Particle &m = pg->list[i];
// glVertex3fv((GLfloat *)&m.pos);
//
// // For lines, make a tail with the velocity vector's direction and
// // a length of radius.
// pVector tail = m.pos - m.vel;
// glVertex3fv((GLfloat *)&tail);
// }
// }
// glEnd();
// }
//}
//
//PARTICLEDLL_API void pDrawGroupl(int dlist, bool const_size, bool const_color, bool const_rotation)
//{
// _ParticleState &_ps = _GetPState();
//
// // Get a pointer to the particles in gp memory
// ParticleGroup *pg = _ps.pgrp;
// if(pg == NULL)
// return; // ERROR
//
// if(pg->p_count < 1)
// return;
//
// //if(const_color)
// // glColor4fv((GLfloat *)&pg->list[0].color);
//
// for(int i = 0; i < pg->p_count; i++)
// {
// Particle &m = pg->list[i];
//
// glPushMatrix();
// glTranslatef(m.pos.x, m.pos.y, m.pos.z);
//
// if(!const_size)
// glScalef(m.size.x, m.size.y, m.size.z);
// else
// glScalef(pg->list[i].size.x, pg->list[i].size.y, pg->list[i].size.z);
//
// // Expensive! A sqrt, cross prod and acos. Yow.
// if(!const_rotation)
// {
// pVector vN(m.vel);
// vN.normalize();
// pVector voN(m.velB);
// voN.normalize();
//
// pVector biN;
// if(voN.x == vN.x && voN.y == vN.y && voN.z == vN.z)
// biN = pVector(0, 1, 0);
// else
// biN = vN ^ voN;
// biN.normalize();
//
// pVector N(vN ^ biN);
//
// double M[16];
// M[0] = vN.x; M[4] = biN.x; M[8] = N.x; M[12] = 0;
// M[1] = vN.y; M[5] = biN.y; M[9] = N.y; M[13] = 0;
// M[2] = vN.z; M[6] = biN.z; M[10] = N.z; M[14] = 0;
// M[3] = 0; M[7] = 0; M[11] = 0; M[15] = 1;
// glMultMatrixd(M);
// }
//
// // Warning: this depends on alpha following color in the Particle struct.
// if(!const_color)
// glColor4fv((GLfloat *)&m.color);
//
// glCallList(dlist);
//
// glPopMatrix();
// }
//}