ns/dev/performance-3.0.5/source/mod/CollisionUtil.cpp

1214 lines
27 KiB
C++
Raw Normal View History

#include "common/mathlib.h"
#include "common/const.h"
#include "common/com_model.h"
#include "common/vector_util.h"
#include "engine/studio.h"
#include "CollisionUtil.h"
#include <memory.h>
#include <float.h>
#include <math.h>
#include <stdlib.h>
#include <queue>
#include "localassert.h"
#include "engine/progdefs.h"
#ifdef AVH_SERVER
#include "engine/edict.h"
#include "engine/eiface.h"
#include "dlls/enginecallback.h"
#endif
#ifdef AVH_CLIENT
#include "common/cl_entity.h"
#endif
#include "AnimationUtil.h"
#include "pm_defs.h"
const float AVH_INFINITY = -logf(0);
const float AVH_EPSILON = 0.001f;
#define PITCH 0
#define YAW 1
#define ROLL 2
// These definitions are taken from the QuakeWorld source code.
#define SURF_PLANEBACK 2
#define SURF_DRAWSKY 4
#define SURF_DRAWSPRITE 8
#define SURF_DRAWTURB 0x10
#define SURF_DRAWTILED 0x20
#define SURF_DRAWBACKGROUND 0x40
#define SURF_UNDERWATER 0x80
#define SURF_DONTWARP 0x100
#define VERTEXSIZE 7
typedef struct glpoly_s
{
struct glpoly_s *next;
struct glpoly_s *chain;
int numverts;
int flags; // for SURF_UNDERWATER
float verts[4][VERTEXSIZE]; // variable sized (xyz s1t1 s2t2)
} glpoly_t;
typedef struct glmnode_s
{
// common with leaf
int contents; // 0, to differentiate from leafs
int visframe; // node needs to be traversed if current
float minmaxs[6]; // for bounding box culling
struct mnode_s *parent;
// node specific
mplane_t *plane;
struct mnode_s *children[2];
unsigned short firstsurface;
unsigned short numsurfaces;
} glmnode_t;
typedef struct glmleaf_s
{
// common with node
int contents; // wil be a negative contents number
int visframe; // node needs to be traversed if current
float minmaxs[6]; // for bounding box culling
struct mnode_s *parent;
// leaf specific
byte *compressed_vis;
struct efrag_s *efrags;
msurface_t **firstmarksurface;
int nummarksurfaces;
int key; // BSP sequence number for leaf's contents
byte ambient_sound_level[NUM_AMBIENTS];
} glmleaf_t;
typedef struct glmsurface_s
{
int visframe; // should be drawn when node is crossed
mplane_t *plane;
int flags;
int firstedge; // look up in model->surfedges[], negative numbers
int numedges; // are backwards edges
short texturemins[2];
short extents[2];
int light_s, light_t; // gl lightmap coordinates
glpoly_t *polys; // multiple if warped
struct msurface_s *texturechain;
mtexinfo_t *texinfo;
// lighting info
int dlightframe;
int dlightbits;
int lightmaptexturenum;
byte styles[MAXLIGHTMAPS];
int cached_light[MAXLIGHTMAPS]; // values currently used in lightmap
qboolean cached_dlight; // true if dynamic light in cache
// byte *samples; // [numstyles*surfsize]
color24 *samples; // note: this is the actual lightmap data for this surface
decal_t *pdecals;
} glmsurface_t;
#define NODE glmnode_t
#define SURFACE glmsurface_t
/**
* Returns the distance between a point and a plane.
*/
float NS_PointToPlaneDistance(const vec3_t point, const mplane_t* plane)
{
if (plane->type < 3)
{
return point[plane->type] - plane->dist;
}
else
{
return DotProduct(point, plane->normal) - plane->dist;
}
}
/**
* Returns the square of the distance between two points.
*/
float NS_PointToPointDistanceSquared(const vec3_t p1, const vec3_t p2)
{
vec3_t v;
VectorSubtract(p2, p1, v);
return DotProduct(v, v);
}
/**
* Returns the minimum distance from a point to the perimeter of a surface
* of a model.
*/
float NS_PointToSurfaceEdgeDistance(const model_t* model, const SURFACE* surface, const vec3_t point)
{
float minDistance = FLT_MAX;
int lastEdge = surface->firstedge + surface->numedges;
for (int i = surface->firstedge; i < lastEdge; ++i)
{
ASSERT(i >= 0 && i < model->numsurfedges);
int edge = model->surfedges[i];
const mvertex_t* v1;
const mvertex_t* v2;
if (edge >= 0)
{
v1 = &model->vertexes[model->edges[edge].v[0]];
v2 = &model->vertexes[model->edges[edge].v[1]];
}
else
{
v1 = &model->vertexes[model->edges[-edge].v[1]];
v2 = &model->vertexes[model->edges[-edge].v[0]];
}
// Compute the closest point on the line to the point.
vec3_t a;
vec3_t b;
VectorSubtract(point, v1->position, a);
VectorSubtract(v2->position, v1->position, b);
float t = DotProduct(a, b) / DotProduct(b, b);
// Restrict the point to being on the line segment.
if (t < 0) t = 0;
if (t > 1) t = 1;
vec3_t closestPoint;
VectorScale(b, t, closestPoint);
VectorAdd(closestPoint, v1->position, closestPoint);
// Compute the distance.
float distance = NS_PointToPointDistanceSquared(point, closestPoint);
if (distance < minDistance)
{
minDistance = distance;
}
}
return sqrtf(minDistance);
}
/**
* Tests if a point lies on a surface of a model. The point must lie on the
* plane of the surface.
*/
bool NS_PointOnSurface(const model_t* model, const SURFACE* surface, const vec3_t point)
{
int lastEdge = surface->firstedge + surface->numedges;
int x = (surface->plane->type + 1) % 3;
int y = (surface->plane->type + 2) % 3;
int crossings = 0;
for (int i = surface->firstedge; i < lastEdge; ++i)
{
ASSERT(i >= 0 && i < model->numsurfedges);
int edge = model->surfedges[i];
const mvertex_t* v1;
const mvertex_t* v2;
if (edge >= 0)
{
v1 = &model->vertexes[model->edges[edge].v[0]];
v2 = &model->vertexes[model->edges[edge].v[1]];
}
else
{
v1 = &model->vertexes[model->edges[-edge].v[1]];
v2 = &model->vertexes[model->edges[-edge].v[0]];
}
// Check for a crossing.
if ((v1->position[y] - point[y] >= 0) !=
(v2->position[y] - point[y] >= 0))
{
float dx = v1->position[x] - v2->position[x];
float dy = v1->position[y] - v2->position[y];
if (v2->position[x] - (v1->position[y] - point[y]) * dx / dy >= point[x])
{
++crossings;
// For a convex polygon, a straight line can only intersect the
// perimeter a maximum of two times.
if (crossings == 2)
{
return false;
}
}
}
}
return (crossings % 2) == 1;
}
/**
* Computes the area of intersection between a circle and a surface. The
* circle and the surface must intersect.
*/
float NS_CircleSurfaceIntersectionArea(const model_t* model, const SURFACE* surface, const vec3_t point, float radius)
{
float area = 0;
int lastEdge = surface->firstedge + surface->numedges;
int x = (surface->plane->type + 1) % 3;
int y = (surface->plane->type + 2) % 3;
float radiusSquared = radius * radius;
for (int i = surface->firstedge; i < lastEdge; ++i)
{
ASSERT(i >= 0 && i < model->numsurfedges);
int edge = model->surfedges[i];
const mvertex_t* v1;
const mvertex_t* v2;
if (edge >= 0)
{
v1 = &model->vertexes[model->edges[edge].v[0]];
v2 = &model->vertexes[model->edges[edge].v[1]];
}
else
{
v1 = &model->vertexes[model->edges[-edge].v[1]];
v2 = &model->vertexes[model->edges[-edge].v[0]];
}
bool v1Inside = NS_PointToPointDistanceSquared(v1->position, point) < radiusSquared;
bool v2Inside = NS_PointToPointDistanceSquared(v2->position, point) < radiusSquared;
if (v1Inside && v2Inside)
{
// Add the signed area of triangle v1, v2, origin.
}
else if (v1Inside && !v2Inside)
{
// Find the interection of v1, v2 with the circle.
// Add the signed area of triangle v1, intersection, origin
// chordStart = v1
}
else if (!v1Inside && v2Inside)
{
// Find the interection of v1, v2 with the circle.
// Add the signed area of triangle intersection, v2, origin
// Add the area partitioned by the chord chordStart, intersection
}
else if (!v1Inside && !v2Inside)
{
// Check if v1, v2 intersects the circle.
}
}
return area;
}
/**
* Tests if the model structure is a software rendering model structure.
*/
bool NS_IsSoftwareModel(const model_t* model)
{
if (model->nodes[0].parent != NULL)
{
return false;
}
const mnode_t* child = model->nodes[0].children[0];
if (child < model->nodes || child > model->nodes + model->numnodes)
{
return false;
}
if (child->parent != &model->nodes[0])
{
return false;
}
return true;
}
int NS_GetAverageNormalInsideSphere(const model_t* model, const NODE* node, const vec3_t point, float radius, vec3_t normal)
{
// Check for a leaf node.
if (node->contents < 0)
{
return 0;
}
float distance = NS_PointToPlaneDistance(point, node->plane);
int numSurfaces = 0;
if (distance > radius)
{
// The sphere is completely in front of the plane.
numSurfaces = NS_GetAverageNormalInsideSphere(model,
(const NODE*)node->children[0], point, radius, normal);
}
else if (distance < -radius)
{
// The sphere is completely behind the plane.
numSurfaces = NS_GetAverageNormalInsideSphere(model,
(const NODE*)node->children[1], point, radius, normal);
}
else
{
// Compute the projection of the point onto the plane.
vec3_t projection;
VectorScale(node->plane->normal, distance, projection);
VectorAdd(point, projection, projection);
// Test if the sphere intersects any of the surfaces in this node.
unsigned short lastSurface = node->firstsurface + node->numsurfaces;
for (unsigned short i = node->firstsurface; i < lastSurface; ++i)
{
ASSERT(i < model->numsurfaces);
const SURFACE* surface = &((const SURFACE*)model->surfaces)[i];
ASSERT(surface->plane == node->plane);
if (NS_PointOnSurface(model, surface, projection) ||
NS_PointToSurfaceEdgeDistance(model, surface, point) < radius)
{
// Compute a weighting factor for the normal based on the
// intersection area of the sphere and plane.
float weight = radius * radius - distance * distance;
vec3_t surfaceNormal;
if (surface->flags & SURF_PLANEBACK)
{
VectorScale(node->plane->normal, -weight, surfaceNormal);
}
else
{
VectorScale(node->plane->normal, weight, surfaceNormal);
}
VectorAdd(normal, surfaceNormal, normal);
++numSurfaces;
}
}
// Recursively test the child nodes.
numSurfaces += NS_GetAverageNormalInsideSphere(model,
(const NODE*)node->children[0], point, radius, normal);
numSurfaces += NS_GetAverageNormalInsideSphere(model,
(const NODE*)node->children[1], point, radius, normal);
}
return numSurfaces;
}
int NS_GetAverageNormalInsideSphere(const model_t* model, const vec3_t point, float radius, vec3_t normal)
{
ASSERT(!NS_IsSoftwareModel(model));
normal[0] = 0;
normal[1] = 0;
normal[2] = 0;
int numSurfaces = NS_GetAverageNormalInsideSphere(model, (const NODE*)(model->nodes), point, radius, normal);
if (numSurfaces > 0)
{
VectorNormalize(normal);
}
return numSurfaces;
}
int NS_UpdateNodeContent(int old_content, int new_content)
{
if(new_content == CONTENTS_EMPTY)
{
return old_content;
}
if(old_content == CONTENTS_EMPTY)
{
return new_content;
}
return max(old_content,new_content);
}
/**
* Returns world content value in a sphere - solid beats liquid beats empty
*/
int NS_SphereContents(const hull_t *hull, int num, float origin[3], float radius)
{
ASSERT(radius >= 0);
int contents = CONTENTS_EMPTY;
if(hull->firstclipnode <= hull->lastclipnode)
{
float d;
dclipnode_t *node;
mplane_t *plane;
std::queue<int> nodelist; //list of clipnodes to check
nodelist.push(num);
while(!nodelist.empty())
{
ASSERT(num >= hull->firstclipnode && num <= hull->lastclipnode);
num = nodelist.front();
nodelist.pop();
node = hull->clipnodes + num;
plane = hull->planes + node->planenum;
d = NS_PointToPlaneDistance(origin,plane);
if(d < radius)
{
ASSERT(node->children[1] != num);
if(node->children[1] < 0)
{
contents = NS_UpdateNodeContent(contents,node->children[1]);
}
else
{
nodelist.push(node->children[1]);
}
}
if(d > -radius)
{
ASSERT(node->children[0] != num);
if(node->children[0] < 0)
{
contents = NS_UpdateNodeContent(contents,node->children[0]);
}
else
{
nodelist.push(node->children[0]);
}
}
}
}
return contents;
}
/**
* Returns whether a box is in front, behind, or intersecting a plane
*/
int NS_BoxPlaneIntersectionType(float mins[3], float maxs[3], mplane_t* plane)
{
int intersect_type = INTERSECT_NONE;
float orientedMins[3] = {
plane->normal[0] < 0 ? maxs[0] : mins[0],
plane->normal[1] < 0 ? maxs[1] : mins[1],
plane->normal[2] < 0 ? maxs[2] : mins[2]
};
float orientedMaxes[3] = {
plane->normal[0] < 0 ? mins[0] : maxs[0],
plane->normal[1] < 0 ? mins[1] : maxs[1],
plane->normal[2] < 0 ? mins[2] : maxs[2]
};
intersect_type |= (NS_PointToPlaneDistance(orientedMins,plane) < 0) ? INTERSECT_BACK : INTERSECT_FRONT;
intersect_type |= (NS_PointToPlaneDistance(orientedMaxes,plane) < 0) ? INTERSECT_BACK : INTERSECT_FRONT;
return intersect_type;
}
/**
* Returns world content value in a box - solid beats liquid beats empty
*/
int NS_BoxContents(const hull_t *hull, int num, float mins[3], float maxs[3])
{
ASSERT(mins[0] <= maxs[0]);
ASSERT(mins[1] <= maxs[1]);
ASSERT(mins[2] <= maxs[2]);
int contents = CONTENTS_EMPTY;
if(hull->firstclipnode <= hull->lastclipnode)
{
int intersection_type;
dclipnode_t *node;
mplane_t *plane;
std::queue<int> nodelist; //list of clipnodes to check
nodelist.push(num);
while(!nodelist.empty())
{
ASSERT(num >= hull->firstclipnode && num <= hull->lastclipnode);
num = nodelist.front();
nodelist.pop();
node = hull->clipnodes + num;
plane = hull->planes + node->planenum;
intersection_type = NS_BoxPlaneIntersectionType(mins,maxs,plane);
if(intersection_type & INTERSECT_BACK)
{
ASSERT(node->children[1] != num);
if(node->children[1] < 0)
{
contents = NS_UpdateNodeContent(contents,node->children[1]);
}
else
{
nodelist.push(node->children[1]);
}
}
if(intersection_type & INTERSECT_FRONT)
{
ASSERT(node->children[0] != num);
if(node->children[0] < 0)
{
contents = NS_UpdateNodeContent(contents,node->children[0]);
}
else
{
nodelist.push(node->children[0]);
}
}
}
}
return contents;
}
int NS_PointContents(const hull_t *hull, int num, float p[3])
{
float d;
dclipnode_t *node;
mplane_t *plane;
if (hull->firstclipnode > hull->lastclipnode)
{
return CONTENTS_EMPTY;
}
while (num >= 0)
{
ASSERT(num >= hull->firstclipnode && num <= hull->lastclipnode);
node = hull->clipnodes + num;
plane = hull->planes + node->planenum;
if (plane->type < 3)
d = p[plane->type] - plane->dist;
else
d = DotProduct (plane->normal, p) - plane->dist;
if (d < 0)
{
ASSERT(node->children[1] != num);
num = node->children[1];
}
else
{
ASSERT(node->children[0] != num);
num = node->children[0];
}
}
return num;
}
bool NS_TraceLine(const hull_t* hull, int num, float p1f, float p2f, vec3_t p1, vec3_t p2, trace_t* trace)
{
//const float DIST_EPSILON = 0.03125f;
const float DIST_EPSILON = 0.1f;
dclipnode_t *node;
mplane_t *plane;
float t1, t2;
float frac;
int i;
vec3_t mid;
int side;
float midf;
// check for empty
if (num < 0)
{
if (num != CONTENTS_SOLID)
{
trace->allsolid = false;
if (num == CONTENTS_EMPTY)
trace->inopen = true;
else
trace->inwater = true;
}
else
trace->startsolid = true;
return true; // empty
}
ASSERT(num >= hull->firstclipnode && num <= hull->lastclipnode);
//
// find the point distances
//
node = hull->clipnodes + num;
plane = hull->planes + node->planenum;
if (plane->type < 3)
{
t1 = p1[plane->type] - plane->dist;
t2 = p2[plane->type] - plane->dist;
}
else
{
t1 = DotProduct (plane->normal, p1) - plane->dist;
t2 = DotProduct (plane->normal, p2) - plane->dist;
}
if (t1 >= 0 && t2 >= 0)
return NS_TraceLine(hull, node->children[0], p1f, p2f, p1, p2, trace);
if (t1 < 0 && t2 < 0)
return NS_TraceLine(hull, node->children[1], p1f, p2f, p1, p2, trace);
// put the crosspoint DIST_EPSILON pixels on the near side
if (t1 < 0)
frac = (t1 + DIST_EPSILON)/(t1-t2);
else
frac = (t1 - DIST_EPSILON)/(t1-t2);
if (frac < 0)
frac = 0;
if (frac > 1)
frac = 1;
midf = p1f + (p2f - p1f)*frac;
for (i=0 ; i<3 ; i++)
mid[i] = p1[i] + frac*(p2[i] - p1[i]);
side = (t1 < 0);
// move up to the node
if (!NS_TraceLine(hull, node->children[side], p1f, midf, p1, mid, trace) )
return false;
if (NS_PointContents(hull, node->children[side^1], mid) != CONTENTS_SOLID)
// go past the node
return NS_TraceLine(hull, node->children[side^1], midf, p2f, mid, p2, trace);
if (trace->allsolid)
return false; // never got out of the solid area
//==================
// the other side of the node is solid, this is the impact point
//==================
if (!side)
{
VectorCopy (plane->normal, trace->plane.normal);
trace->plane.dist = plane->dist;
}
else
{
VectorSubtract (vec3_origin, plane->normal, trace->plane.normal);
trace->plane.dist = -plane->dist;
}
while (NS_PointContents(hull, hull->firstclipnode, mid) == CONTENTS_SOLID)
{ // shouldn't really happen, but does occasionally
frac -= 0.1f;
if (frac < 0)
{
trace->fraction = midf;
VectorCopy (mid, trace->endpos);
// backup past 0
return false;
}
midf = p1f + (p2f - p1f)*frac;
for (i=0 ; i<3 ; i++)
mid[i] = p1[i] + frac*(p2[i] - p1[i]);
}
trace->fraction = midf;
VectorCopy (mid, trace->endpos);
return false;
}
void NS_TraceLine(const hull_t* hull, vec3_t srcPoint, vec3_t dstPoint, trace_t* trace)
{
memset(trace, 0, sizeof(trace_t));
trace->fraction = 1;
trace->allsolid = true;
VectorCopy(dstPoint, trace->endpos);
if (hull->firstclipnode <= hull->lastclipnode)
{
NS_TraceLine(hull, hull->firstclipnode, 0, 1, srcPoint, dstPoint, trace);
}
if (trace->allsolid)
{
trace->startsolid = true;
}
if (trace->startsolid)
{
trace->fraction = 0;
}
}
void NS_TraceLine(vec3_t min, vec3_t max, vec3_t srcPoint, vec3_t dstPoint, trace_t* trace)
{
memset(trace, 0, sizeof(trace_t));
vec3_t direction;
VectorSubtract(dstPoint, srcPoint, direction);
vec3_t tMax;
tMax[0] = -1;
tMax[1] = -1;
tMax[2] = -1;
vec3_t result;
bool inside = true;
// Find candidate planes.
for (int i = 0; i < 3; ++i)
{
if (srcPoint[i] <= min[i])
{
result[i] = min[i];
inside = false;
// Calculate the distances to the candidate planes.
if (direction[i] != 0)
{
tMax[i] = (min[i] - srcPoint[i]) / direction[i];
}
}
else if (srcPoint[i] >= max[i])
{
result[i] = max[i];
inside = false;
// Calculate the distances to the candidate planes.
if (direction[i] != 0)
{
tMax[i] = (max[i] - srcPoint[i]) / direction[i];
}
}
}
// Check if the trace origin is inside the box.
if (inside)
{
trace->startsolid = true;
trace->fraction = 0;
VectorCopy(srcPoint, trace->endpos);
return;
}
// Get the largest of the tMax's for the final choice of intersection.
int axis = 0;
if (tMax[1] > tMax[axis]) axis = 1;
if (tMax[2] > tMax[axis]) axis = 2;
// Check that the intersection is actually inside the line segment.
trace->fraction = 1;
VectorCopy(dstPoint, trace->endpos);
if (tMax[axis] <= 0 || tMax[axis] > 1)
{
return;
}
for (int j = 0; j < 3; ++j)
{
if (j != axis)
{
result[j] = srcPoint[j] + tMax[axis] * direction[j];
if (result[j] < min[j] || result[j] > max[j])
{
return;
}
}
}
trace->fraction = tMax[axis];
VectorCopy(result, trace->endpos);
}
bool NS_BoxesOverlap(float origin1[3], float size1[3], float origin2[3], float size2[3])
{
for (int i = 0; i < 3; ++i)
{
float distance = (float)fabs(origin2[i] - origin1[i]);
if (distance > size1[i] + size2[i])
{
return false;
}
}
return true;
}
//-----------------------------------------------------------------------------
void NS_GetHitBoxesForEntity(int inEntityIndex, int inMaxNumBoxes, OBBox outBoxes[], int& outNumBoxes, float time)
{
outNumBoxes = 0;
NS_AnimationData theAnimationData;
if (!NS_GetEntityAnimationData(inEntityIndex, theAnimationData))
{
return;
}
studiohdr_t* theModelHeader = theAnimationData.mModelHeader;
if (theAnimationData.mModelHeader == NULL)
{
return;
}
if (theModelHeader->numhitboxes > inMaxNumBoxes)
{
outNumBoxes = inMaxNumBoxes;
}
else
{
outNumBoxes = theModelHeader->numhitboxes;
}
mstudiobbox_t* theHitBoxes = (mstudiobbox_t*)((byte*)theModelHeader + theModelHeader->hitboxindex);
NS_Matrix3x4 theBoneMatrix[MAXSTUDIOBONES];
NS_GetBoneMatrices(theAnimationData, time, theBoneMatrix);
for (int i = 0; i < outNumBoxes; ++i)
{
int theBone = theHitBoxes[i].bone;
for (int r = 0; r < 3; ++r)
{
for (int c = 0; c < 3; ++c)
{
outBoxes[i].mAxis[c][r] = theBoneMatrix[theBone][r][c];
}
}
outBoxes[i].mOrigin[0] = theBoneMatrix[theBone][0][3];
outBoxes[i].mOrigin[1] = theBoneMatrix[theBone][1][3];
outBoxes[i].mOrigin[2] = theBoneMatrix[theBone][2][3];
vec3_t temp;
VectorSubtract(theHitBoxes[i].bbmax, theHitBoxes[i].bbmin, temp);
VectorScale(temp, 0.5, outBoxes[i].mExtents);
VectorAdd(theHitBoxes[i].bbmax, theHitBoxes[i].bbmin, temp);
VectorScale(temp, 0.5, temp);
VectorMA(outBoxes[i].mOrigin, temp[0], outBoxes[i].mAxis[0], outBoxes[i].mOrigin);
VectorMA(outBoxes[i].mOrigin, temp[1], outBoxes[i].mAxis[1], outBoxes[i].mOrigin);
VectorMA(outBoxes[i].mOrigin, temp[2], outBoxes[i].mAxis[2], outBoxes[i].mOrigin);
}
}
//-----------------------------------------------------------------------------
float NS_GetIntersection(const OBBox& inBox, const vec3_t inRayOrigin, const vec3_t inRayDirection)
{
// Ray/Box intersection test from "Real-Time Rendering" by Tomas Moller
// and Eric Haines.
float tMin = -AVH_INFINITY;
float tMax = AVH_INFINITY;
vec3_t p;
VectorSubtract(inBox.mOrigin, inRayOrigin, p);
for (int i = 0; i < 3; i++)
{
float e = DotProduct(inBox.mAxis[i], p);
float f = DotProduct(inBox.mAxis[i], inRayDirection);
// Check that the ray and the slab are not parallel
if (fabs(f) > AVH_EPSILON)
{
float t1 = (e + inBox.mExtents[i]) / f;
float t2 = (e - inBox.mExtents[i]) / f;
if (t1 > t2)
{
std::swap(t1, t2);
}
if (t1 > tMin)
{
tMin = t1;
}
if (t2 < tMax)
{
tMax = t2;
}
if (tMin > tMax)
{
return AVH_INFINITY;
}
if (tMax < 0)
{
return AVH_INFINITY;
}
}
else if (-e - inBox.mExtents[i] > 0 || -e + inBox.mExtents[i] < 0)
{
return AVH_INFINITY;
}
}
if (tMin > 0)
{
return tMin;
}
else
{
return tMax;
}
}
//-----------------------------------------------------------------------------
float NS_TraceLineAgainstEntity(int inEntityIndex, float inTime, const vec3_t inRayOrigin, const vec3_t inRayDirection)
{
/*
// Do an early out test to see if the ray collides with the bounding box.
NS_AnimationData theAnimationData;
if (!NS_GetEntityAnimationData(inEntityIndex, theAnimationData))
{
return AVH_INFINITY;
}
OBBox theBoundingBox;
theBoundingBox.mAxis[0][0] = theAnimationData.mMatrix[0][0];
theBoundingBox.mAxis[0][1] = theAnimationData.mMatrix[1][0];
theBoundingBox.mAxis[0][2] = theAnimationData.mMatrix[2][0];
theBoundingBox.mAxis[1][0] = theAnimationData.mMatrix[0][1];
theBoundingBox.mAxis[1][1] = theAnimationData.mMatrix[1][1];
theBoundingBox.mAxis[1][2] = theAnimationData.mMatrix[2][1];
theBoundingBox.mAxis[2][0] = theAnimationData.mMatrix[0][2];
theBoundingBox.mAxis[2][1] = theAnimationData.mMatrix[1][2];
theBoundingBox.mAxis[2][2] = theAnimationData.mMatrix[2][2];
theBoundingBox.mOrigin[0] = theAnimationData.mMatrix[0][3];
theBoundingBox.mOrigin[1] = theAnimationData.mMatrix[1][3];
theBoundingBox.mOrigin[2] = theAnimationData.mMatrix[2][3];
vec3_t temp;
VectorSubtract(theAnimationData.mMins, theAnimationData.mMaxs, temp);
VectorScale(temp, 0.5, theBoundingBox.mExtents);
VectorAdd(theAnimationData.mMins, theAnimationData.mMaxs, temp);
VectorScale(temp, 0.5, theBoundingBox.mOrigin); // Wrong space, but probably good enough.
if (NS_GetIntersection(theBoundingBox, inRayOrigin, inRayDirection) == AVH_INFINITY)
{
return AVH_INFINITY;
}
*/
// Do the full hit box test.
const int kMaxNumBoxes = 255;
OBBox theBoxes[kMaxNumBoxes];
int theNumBoxes;
NS_GetHitBoxesForEntity(inEntityIndex, kMaxNumBoxes, theBoxes, theNumBoxes, inTime);
float tMin = AVH_INFINITY;
for (int i = 0; i < theNumBoxes; ++i)
{
float t = NS_GetIntersection(theBoxes[i], inRayOrigin, inRayDirection);
if (t < tMin)
{
tMin = t;
}
}
return tMin;
}
//-----------------------------------------------------------------------------
int NS_GetValveHull(int inHull)
{
int theHull = inHull;
switch(inHull)
{
case 0:
theHull = 1;
break;
case 1:
theHull = 3;
break;
case 2:
theHull = 0;
break;
case 3:
theHull = 2;
break;
default:
ASSERT(false);
break;
}
return theHull;
}