rpgxef/code/base_game/q_math.cpp

1460 lines
38 KiB
C++

/*
* Copyright (C) 1999-2000 Id Software, Inc.
*
* q_math.c -- stateless support routines that are included in each code module
*/
#include "q_shared.h"
int32_t nonansicast = 0;
vec3_t vec3_origin = { 0, 0, 0 };
vec3_t axisDefault[3] = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };
vec4_t colorTable[CT_MAX] =
{
{ 0, 0, 0, 0 }, /* CT_NONE */
{ 0, 0, 0, 1 }, /* CT_BLACK */
{ 1, 0, 0, 1 }, /* CT_RED */
{ 0, 1, 0, 1 }, /* CT_GREEN */
{ 0, 0, 1, 1 }, /* CT_BLUE */
{ 1, 1, 0, 1 }, /* CT_YELLOW */
{ 1, 0, 1, 1 }, /* CT_MAGENTA */
{ 0, 1, 1, 1 }, /* CT_CYAN */
{ 0.071f, 0.271f, 0.29f, 1 }, /* CT_TEAL */
{ 0.529f, 0.373f, 0.017f, 1 },/* CT_GOLD */
{ 1, 1, 1, 1 }, /* CT_WHITE */
{ 0.75f, 0.75f, 0.75f, 1 }, /* CT_LTGREY */
{ 0.50f, 0.50f, 0.50f, 1 }, /* CT_MDGREY */
{ 0.25f, 0.25f, 0.25f, 1 }, /* CT_DKGREY */
{ 0.15f, 0.15f, 0.15f, 1 }, /* CT_DKGREY2 */
{ 0.688f, 0.797f, 1, 1 }, /* CT_VLTORANGE -- needs values */
{ 0.688f, 0.797f, 1, 1 }, /* CT_LTORANGE */
{ 0.620f, 0.710f, 0.894f, 1 },/* CT_DKORANGE */
{ 0.463f, 0.525f, 0.671f, 1 },/* CT_VDKORANGE */
{ 0.616f, 0.718f, 0.898f, 1 },/* CT_VLTBLUE1 */
{ 0.286f, 0.506f, 0.898f, 1 },/* CT_LTBLUE1 */
{ 0.082f, 0.388f, 0.898f, 1 },/* CT_DKBLUE1 */
{ 0.063f, 0.278f, 0.514f, 1 },/* CT_VDKBLUE1 */
{ 0.302f, 0.380f, 0.612f, 1 },/* CT_VLTBLUE2 -- needs values */
{ 0.196f, 0.314f, 0.612f, 1 },/* CT_LTBLUE2 */
{ 0.060f, 0.227f, 0.611f, 1 },/* CT_DKBLUE2 */
{ 0.043f, 0.161f, 0.459f, 1 },/* CT_VDKBLUE2 */
{ 0.082f, 0.388f, 0.898f, 1 },/* CT_VLTBROWN1 -- needs values */
{ 0.082f, 0.388f, 0.898f, 1 },/* CT_LTBROWN1 */
{ 0.078f, 0.320f, 0.813f, 1 },/* CT_DKBROWN1 */
{ 0.060f, 0.227f, 0.611f, 1 },/* CT_VDKBROWN1 */
{ 1, 0.784f, 0.365f, 1 }, /* CT_VLTGOLD1 -- needs values */
{ 1, 0.706f, 0.153f, 1 }, /* CT_LTGOLD1 */
{ 0.733f, 0.514f, 0.086f, 1 },/* CT_DKGOLD1 */
{ 0.549f, 0.384f, 0.063f, 1 },/* CT_VDKGOLD1 */
{ 0.688f, 0.797f, 1, 1 }, /* CT_VLTPURPLE1 -- needs values */
{ 0.688f, 0.797f, 1, 1 }, /* CT_LTPURPLE1 */
{ 0.313f, 0.578f, 1, 1 }, /* CT_DKPURPLE1 */
{ 0.031f, 0.110f, 0.341f, 1 },/* CT_VDKPURPLE1 */
{ 0.688f, 0.797f, 1, 1 }, /* CT_VLTPURPLE2 -- needs values */
{ 0.688f, 0.797f, 1, 1 }, /* CT_LTPURPLE2 */
{ 0.688f, 0.797f, 1, 1 }, /* CT_DKPURPLE2 */
{ 0.031f, 0.110f, 0.341f, 1 },/* CT_VDKPURPLE2 */
{ 0.686f, 0.808f, 0.1f, 1 }, /* CT_VLTPURPLE3 */
{ 0.188f, 0.494f, 1, 1 }, /* CT_LTPURPLE3 */
{ 0.094f, 0.471f, 1, 1 }, /* CT_DKPURPLE3 */
{ 0.067f, 0.325f, 0.749f, 1 },/* CT_VDKPURPLE3 */
{ 1, 0.612f, 0.325f, 1 }, /* CT_VLTRED1 */
{ 1, 0.478f, 0.098f, 1 }, /* CT_LTRED1 */
{ 1, 0.438f, 0, 1 }, /* CT_DKRED1 */
{ 0.784f, 0.329f, 0, 1 }, /* CT_VDKRED1 */
};
vec4_t colorBlack = { 0, 0, 0, 1 };
vec4_t colorRed = { 1, 0, 0, 1 };
vec4_t colorGreen = { 0, 1, 0, 1 };
vec4_t colorBlue = { 0, 0, 1, 1 };
vec4_t colorYellow = { 1, 1, 0, 1 };
vec4_t colorMagenta = { 1, 0, 1, 1 };
vec4_t colorCyan = { 0, 1, 1, 1 };
vec4_t colorWhite = { 1, 1, 1, 1 };
vec4_t colorLtGrey = { 0.75, 0.75, 0.75, 1 };
vec4_t colorMdGrey = { 0.5, 0.5, 0.5, 1 };
vec4_t colorDkGrey = { 0.25, 0.25, 0.25, 1 };
vec4_t g_color_table[8] =
{
{ 0.0, 0.0, 0.0, 1.0 },
{ 1.0, 0.0, 0.0, 1.0 },
{ 0.0, 1.0, 0.0, 1.0 },
{ 1.0, 1.0, 0.0, 1.0 },
{ 0.0, 0.0, 1.0, 1.0 },
{ 0.0, 1.0, 1.0, 1.0 },
{ 1.0, 0.0, 1.0, 1.0 },
{ 1.0, 1.0, 1.0, 1.0 },
};
vec3_t bytedirs[NUMVERTEXNORMALS] =
{
{ -0.525731f, 0.000000f, 0.850651f }, { -0.442863f, 0.238856f, 0.864188f },
{ -0.295242f, 0.000000f, 0.955423f }, { -0.309017f, 0.500000f, 0.809017f },
{ -0.162460f, 0.262866f, 0.951056f }, { 0.000000f, 0.000000f, 1.000000f },
{ 0.000000f, 0.850651f, 0.525731f }, { -0.147621f, 0.716567f, 0.681718f },
{ 0.147621f, 0.716567f, 0.681718f }, { 0.000000f, 0.525731f, 0.850651f },
{ 0.309017f, 0.500000f, 0.809017f }, { 0.525731f, 0.000000f, 0.850651f },
{ 0.295242f, 0.000000f, 0.955423f }, { 0.442863f, 0.238856f, 0.864188f },
{ 0.162460f, 0.262866f, 0.951056f }, { -0.681718f, 0.147621f, 0.716567f },
{ -0.809017f, 0.309017f, 0.500000f }, { -0.587785f, 0.425325f, 0.688191f },
{ -0.850651f, 0.525731f, 0.000000f }, { -0.864188f, 0.442863f, 0.238856f },
{ -0.716567f, 0.681718f, 0.147621f }, { -0.688191f, 0.587785f, 0.425325f },
{ -0.500000f, 0.809017f, 0.309017f }, { -0.238856f, 0.864188f, 0.442863f },
{ -0.425325f, 0.688191f, 0.587785f }, { -0.716567f, 0.681718f, -0.147621f },
{ -0.500000f, 0.809017f, -0.309017f }, { -0.525731f, 0.850651f, 0.000000f },
{ 0.000000f, 0.850651f, -0.525731f }, { -0.238856f, 0.864188f, -0.442863f },
{ 0.000000f, 0.955423f, -0.295242f }, { -0.262866f, 0.951056f, -0.162460f },
{ 0.000000f, 1.000000f, 0.000000f }, { 0.000000f, 0.955423f, 0.295242f },
{ -0.262866f, 0.951056f, 0.162460f }, { 0.238856f, 0.864188f, 0.442863f },
{ 0.262866f, 0.951056f, 0.162460f }, { 0.500000f, 0.809017f, 0.309017f },
{ 0.238856f, 0.864188f, -0.442863f }, { 0.262866f, 0.951056f, -0.162460f },
{ 0.500000f, 0.809017f, -0.309017f }, { 0.850651f, 0.525731f, 0.000000f },
{ 0.716567f, 0.681718f, 0.147621f }, { 0.716567f, 0.681718f, -0.147621f },
{ 0.525731f, 0.850651f, 0.000000f }, { 0.425325f, 0.688191f, 0.587785f },
{ 0.864188f, 0.442863f, 0.238856f }, { 0.688191f, 0.587785f, 0.425325f },
{ 0.809017f, 0.309017f, 0.500000f }, { 0.681718f, 0.147621f, 0.716567f },
{ 0.587785f, 0.425325f, 0.688191f }, { 0.955423f, 0.295242f, 0.000000f },
{ 1.000000f, 0.000000f, 0.000000f }, { 0.951056f, 0.162460f, 0.262866f },
{ 0.850651f, -0.525731f, 0.000000f }, { 0.955423f, -0.295242f, 0.000000f },
{ 0.864188f, -0.442863f, 0.238856f }, { 0.951056f, -0.162460f, 0.262866f },
{ 0.809017f, -0.309017f, 0.500000f }, { 0.681718f, -0.147621f, 0.716567f },
{ 0.850651f, 0.000000f, 0.525731f }, { 0.864188f, 0.442863f, -0.238856f },
{ 0.809017f, 0.309017f, -0.500000f }, { 0.951056f, 0.162460f, -0.262866f },
{ 0.525731f, 0.000000f, -0.850651f }, { 0.681718f, 0.147621f, -0.716567f },
{ 0.681718f, -0.147621f, -0.716567f }, { 0.850651f, 0.000000f, -0.525731f },
{ 0.809017f, -0.309017f, -0.500000f }, { 0.864188f, -0.442863f, -0.238856f },
{ 0.951056f, -0.162460f, -0.262866f }, { 0.147621f, 0.716567f, -0.681718f },
{ 0.309017f, 0.500000f, -0.809017f }, { 0.425325f, 0.688191f, -0.587785f },
{ 0.442863f, 0.238856f, -0.864188f }, { 0.587785f, 0.425325f, -0.688191f },
{ 0.688191f, 0.587785f, -0.425325f }, { -0.147621f, 0.716567f, -0.681718f },
{ -0.309017f, 0.500000f, -0.809017f }, { 0.000000f, 0.525731f, -0.850651f },
{ -0.525731f, 0.000000f, -0.850651f }, { -0.442863f, 0.238856f, -0.864188f },
{ -0.295242f, 0.000000f, -0.955423f }, { -0.162460f, 0.262866f, -0.951056f },
{ 0.000000f, 0.000000f, -1.000000f }, { 0.295242f, 0.000000f, -0.955423f },
{ 0.162460f, 0.262866f, -0.951056f }, { -0.442863f, -0.238856f, -0.864188f },
{ -0.309017f, -0.500000f, -0.809017f }, { -0.162460f, -0.262866f, -0.951056f },
{ 0.000000f, -0.850651f, -0.525731f }, { -0.147621f, -0.716567f, -0.681718f },
{ 0.147621f, -0.716567f, -0.681718f }, { 0.000000f, -0.525731f, -0.850651f },
{ 0.309017f, -0.500000f, -0.809017f }, { 0.442863f, -0.238856f, -0.864188f },
{ 0.162460f, -0.262866f, -0.951056f }, { 0.238856f, -0.864188f, -0.442863f },
{ 0.500000f, -0.809017f, -0.309017f }, { 0.425325f, -0.688191f, -0.587785f },
{ 0.716567f, -0.681718f, -0.147621f }, { 0.688191f, -0.587785f, -0.425325f },
{ 0.587785f, -0.425325f, -0.688191f }, { 0.000000f, -0.955423f, -0.295242f },
{ 0.000000f, -1.000000f, 0.000000f }, { 0.262866f, -0.951056f, -0.162460f },
{ 0.000000f, -0.850651f, 0.525731f }, { 0.000000f, -0.955423f, 0.295242f },
{ 0.238856f, -0.864188f, 0.442863f }, { 0.262866f, -0.951056f, 0.162460f },
{ 0.500000f, -0.809017f, 0.309017f }, { 0.716567f, -0.681718f, 0.147621f },
{ 0.525731f, -0.850651f, 0.000000f }, { -0.238856f, -0.864188f, -0.442863f },
{ -0.500000f, -0.809017f, -0.309017f }, { -0.262866f, -0.951056f, -0.162460f },
{ -0.850651f, -0.525731f, 0.000000f }, { -0.716567f, -0.681718f, -0.147621f },
{ -0.716567f, -0.681718f, 0.147621f }, { -0.525731f, -0.850651f, 0.000000f },
{ -0.500000f, -0.809017f, 0.309017f }, { -0.238856f, -0.864188f, 0.442863f },
{ -0.262866f, -0.951056f, 0.162460f }, { -0.864188f, -0.442863f, 0.238856f },
{ -0.809017f, -0.309017f, 0.500000f }, { -0.688191f, -0.587785f, 0.425325f },
{ -0.681718f, -0.147621f, 0.716567f }, { -0.442863f, -0.238856f, 0.864188f },
{ -0.587785f, -0.425325f, 0.688191f }, { -0.309017f, -0.500000f, 0.809017f },
{ -0.147621f, -0.716567f, 0.681718f }, { -0.425325f, -0.688191f, 0.587785f },
{ -0.162460f, -0.262866f, 0.951056f }, { 0.442863f, -0.238856f, 0.864188f },
{ 0.162460f, -0.262866f, 0.951056f }, { 0.309017f, -0.500000f, 0.809017f },
{ 0.147621f, -0.716567f, 0.681718f }, { 0.000000f, -0.525731f, 0.850651f },
{ 0.425325f, -0.688191f, 0.587785f }, { 0.587785f, -0.425325f, 0.688191f },
{ 0.688191f, -0.587785f, 0.425325f }, { -0.955423f, 0.295242f, 0.000000f },
{ -0.951056f, 0.162460f, 0.262866f }, { -1.000000f, 0.000000f, 0.000000f },
{ -0.850651f, 0.000000f, 0.525731f }, { -0.955423f, -0.295242f, 0.000000f },
{ -0.951056f, -0.162460f, 0.262866f }, { -0.864188f, 0.442863f, -0.238856f },
{ -0.951056f, 0.162460f, -0.262866f }, { -0.809017f, 0.309017f, -0.500000f },
{ -0.864188f, -0.442863f, -0.238856f }, { -0.951056f, -0.162460f, -0.262866f },
{ -0.809017f, -0.309017f, -0.500000f }, { -0.681718f, 0.147621f, -0.716567f },
{ -0.681718f, -0.147621f, -0.716567f }, { -0.850651f, 0.000000f, -0.525731f },
{ -0.688191f, 0.587785f, -0.425325f }, { -0.587785f, 0.425325f, -0.688191f },
{ -0.425325f, 0.688191f, -0.587785f }, { -0.425325f, -0.688191f, -0.587785f },
{ -0.587785f, -0.425325f, -0.688191f }, { -0.688191f, -0.587785f, -0.425325f }
};
/*==============================================================*/
int32_t Q_rand(int32_t* seed) {
*seed = (69069 * *seed + 1);
return *seed;
}
float Q_random(int32_t *seed) {
return (Q_rand(seed) & 0xffff) / (float)0x10000;
}
float Q_crandom(int32_t *seed) {
return 2.0 * (Q_random(seed) - 0.5);
}
/*=======================================================*/
signed char ClampChar(int32_t i) {
if (i < -128) {
return -128;
}
if (i > 127) {
return 127;
}
return i;
}
int16_t ClampShort(int32_t i) {
if (i < (short)0x8000) {
return (short)0x8000;
}
if (i > 0x7fff) {
return 0x7fff;
}
return i;
}
/* this isn't a real cheap function to call! */
/**
* Converts a direction vector into a byte
*/
int32_t DirToByte(vec3_t dir) {
int32_t i, best;
float d, bestd;
if (dir == NULL) {
return 0;
}
bestd = 0;
best = 0;
for (i = 0; i<NUMVERTEXNORMALS; i++) {
d = DotProduct(dir, bytedirs[i]);
if (d > bestd) {
bestd = d;
best = i;
}
}
return best;
}
/**
* Converts a byte vector into a direction vector
*/
void ByteToDir(int32_t b, vec3_t dir) {
if (b < 0 || b >= NUMVERTEXNORMALS) {
VectorCopy(vec3_origin, dir);
return;
}
VectorCopy(bytedirs[b], dir);
}
unsigned ColorBytes3(float r, float g, float b) {
unsigned i;
((byte *)&i)[0] = r * 255;
((byte *)&i)[1] = g * 255;
((byte *)&i)[2] = b * 255;
return i;
}
unsigned ColorBytes4(float r, float g, float b, float a) {
unsigned i;
((byte *)&i)[0] = r * 255;
((byte *)&i)[1] = g * 255;
((byte *)&i)[2] = b * 255;
((byte *)&i)[3] = a * 255;
return i;
}
float NormalizeColor(const vec3_t in, vec3_t out) {
float max;
max = in[0];
if (in[1] > max) {
max = in[1];
}
if (in[2] > max) {
max = in[2];
}
if (!max) {
VectorClear(out);
} else {
out[0] = in[0] / max;
out[1] = in[1] / max;
out[2] = in[2] / max;
}
return max;
}
/*============================================================================*/
/*
* \brief Returns false if the triangle is degenrate.
*
* The normal will point out of the clock for clockwise ordered points
*
*/
qboolean PlaneFromPoints(vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c) {
vec3_t d1, d2;
VectorSubtract(b, a, d1);
VectorSubtract(c, a, d2);
CrossProduct(d2, d1, plane);
if (VectorNormalize(plane) == 0) {
return qfalse;
}
plane[3] = DotProduct(a, plane);
return qtrue;
}
/**
* RotatePointAroundVector
*
* This is not implemented very well...
*
*/
void RotatePointAroundVector(vec3_t dst, const vec3_t dir, const vec3_t point,
float degrees) {
float m[3][3];
float im[3][3];
float zrot[3][3];
float tmpmat[3][3];
float rot[3][3];
int32_t i;
vec3_t vr, vup, vf;
float rad;
vf[0] = dir[0];
vf[1] = dir[1];
vf[2] = dir[2];
PerpendicularVector(vr, dir);
CrossProduct(vr, vf, vup);
m[0][0] = vr[0];
m[1][0] = vr[1];
m[2][0] = vr[2];
m[0][1] = vup[0];
m[1][1] = vup[1];
m[2][1] = vup[2];
m[0][2] = vf[0];
m[1][2] = vf[1];
m[2][2] = vf[2];
memcpy(im, m, sizeof(im));
im[0][1] = m[1][0];
im[0][2] = m[2][0];
im[1][0] = m[0][1];
im[1][2] = m[2][1];
im[2][0] = m[0][2];
im[2][1] = m[1][2];
memset(zrot, 0, sizeof(zrot));
zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
rad = DEG2RAD(degrees);
zrot[0][0] = cos(rad);
zrot[0][1] = sin(rad);
zrot[1][0] = -sin(rad);
zrot[1][1] = cos(rad);
MatrixMultiply(m, zrot, tmpmat);
MatrixMultiply(tmpmat, im, rot);
for (i = 0; i < 3; i++) {
dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
}
}
/*
===============
RotateAroundDirection
===============
*/
void RotateAroundDirection(vec3_t axis[3], float yaw) {
/* create an arbitrary axis[1] */
PerpendicularVector(axis[1], axis[0]);
/* rotate it around axis[0] by yaw */
if (yaw) {
vec3_t temp;
VectorCopy(axis[1], temp);
RotatePointAroundVector(axis[1], axis[0], temp, yaw);
}
/* cross to get axis[2] */
CrossProduct(axis[0], axis[1], axis[2]);
}
void vectoangles(const vec3_t value1, vec3_t angles) {
float forward;
float yaw, pitch;
if (value1[1] == 0 && value1[0] == 0) {
yaw = 0;
if (value1[2] > 0) {
pitch = 90;
} else {
pitch = 270;
}
} else {
if (value1[0]) {
yaw = (atan2(value1[1], value1[0]) * 180 / M_PI);
} else if (value1[1] > 0) {
yaw = 90;
} else {
yaw = 270;
}
if (yaw < 0) {
yaw += 360;
}
forward = sqrt(value1[0] * value1[0] + value1[1] * value1[1]);
pitch = (atan2(value1[2], forward) * 180 / M_PI);
if (pitch < 0) {
pitch += 360;
}
}
angles[PITCH] = -pitch;
angles[YAW] = yaw;
angles[ROLL] = 0;
}
/*
=================
AnglesToAxis
=================
*/
void AnglesToAxis(const vec3_t angles, vec3_t axis[3]) {
vec3_t right;
/* angle vectors returns "right" instead of "y axis" */
AngleVectors(angles, axis[0], right, axis[2]);
VectorSubtract(vec3_origin, right, axis[1]);
}
void AxisClear(vec3_t axis[3]) {
axis[0][0] = 1;
axis[0][1] = 0;
axis[0][2] = 0;
axis[1][0] = 0;
axis[1][1] = 1;
axis[1][2] = 0;
axis[2][0] = 0;
axis[2][1] = 0;
axis[2][2] = 1;
}
void AxisCopy(vec3_t in[3], vec3_t out[3]) {
VectorCopy(in[0], out[0]);
VectorCopy(in[1], out[1]);
VectorCopy(in[2], out[2]);
}
void ProjectPointOnPlane(vec3_t dst, const vec3_t p, const vec3_t normal) {
float d;
vec3_t n;
float inv_denom;
inv_denom = 1.0F / DotProduct(normal, normal);
d = DotProduct(normal, p) * inv_denom;
n[0] = normal[0] * inv_denom;
n[1] = normal[1] * inv_denom;
n[2] = normal[2] * inv_denom;
dst[0] = p[0] - d * n[0];
dst[1] = p[1] - d * n[1];
dst[2] = p[2] - d * n[2];
}
/**
*
* Given a normalized forward vector, create two
* other perpendicular vectors
*
*/
void MakeNormalVectors(const vec3_t forward, vec3_t right, vec3_t up) {
float d;
/*
* this rotate and negate guarantees a vector
* not colinear with the original
*/
right[1] = -forward[0];
right[2] = forward[1];
right[0] = forward[2];
d = DotProduct(right, forward);
VectorMA(right, -d, forward, right);
VectorNormalize(right);
CrossProduct(right, forward, up);
}
void VectorRotate(vec3_t in, vec3_t matrix[3], vec3_t out) {
out[0] = DotProduct(in, matrix[0]);
out[1] = DotProduct(in, matrix[1]);
out[2] = DotProduct(in, matrix[2]);
}
/*============================================================================ */
/*
* float q_rsqrt( float number )
*/
/**
* Fast inverse square root.
*
* \param number number to calculate the inverse square root for
* \return inverse square root of number
*/
float Q_rsqrt(float number) {
long i;
float x2, y;
const float threehalfs = 1.5F;
x2 = number * 0.5F;
y = number;
i = *(long *)&y; /* evil floating point bit level hacking */
i = 0x5f3759df - (i >> 1); /* what the fuck? */
y = *(float *)&i;
y = y * (threehalfs - (x2 * y * y)); /* 1st iteration */
// y = y * ( threehalfs - ( x2 * y * y ) ); /* 2nd iteration, this can be removed */
return y;
}
double Q_fabs(double f) {
int32_t tmp = *(int32_t *)&f;
tmp &= 0x7FFFFFFF;
return *(float *)&tmp;
}
//============================================================
/*
===============
LerpAngle
===============
*/
float LerpAngle(float from, float to, float frac) {
float a;
if (to - from > 180) {
to -= 360;
}
if (to - from < -180) {
to += 360;
}
a = from + frac * (to - from);
return a;
}
/**
* AngleSubtract
*
* Always returns a value from -180 to 180
*
*/
float AngleSubtract(float a1, float a2) {
float a;
a = a1 - a2;
while (a > 180) {
a -= 360;
}
while (a < -180) {
a += 360;
}
return a;
}
void AnglesSubtract(vec3_t v1, vec3_t v2, vec3_t v3) {
v3[0] = AngleSubtract(v1[0], v2[0]);
v3[1] = AngleSubtract(v1[1], v2[1]);
v3[2] = AngleSubtract(v1[2], v2[2]);
}
float AngleMod(float a) {
a = (360.0 / 65536) * ((int32_t)(a*(65536 / 360.0)) & 65535);
return a;
}
/**
*
* AngleNormalize360
*
* \param angle angle to normalize
* \return angle normalized to the range [0 <= angle < 360]
*
*/
float AngleNormalize360(float angle) {
return (360.0 / 65536) * ((int32_t)(angle * (65536 / 360.0)) & 65535);
}
/**
*
* AngleNormalize180
*
* \param angle angle to normalize
* \return angle normalized to the range [-180 < angle <= 180]
*
*/
float AngleNormalize180(float angle) {
angle = AngleNormalize360(angle);
if (angle > 180.0) {
angle -= 360.0;
}
return angle;
}
/**
*
* AngleDelta
*
* \param angle1 first angle
* \param angle2 second angle
* \return the normalized delta from angle1 to angle2
*
*/
float AngleDelta(float angle1, float angle2) {
return AngleNormalize180(angle1 - angle2);
}
/*============================================================*/
/*
=================
SetPlaneSignbits
=================
*/
void SetPlaneSignbits(cplane_t *out) {
int32_t bits, j;
/* for fast box on planeside test */
bits = 0;
for (j = 0; j<3; j++) {
if (out->normal[j] < 0) {
bits |= 1 << j;
}
}
out->signbits = bits;
}
/*
==================
BoxOnPlaneSide
Returns 1, 2, or 1 + 2
// this is the slow, general version
int32_t BoxOnPlaneSide2 (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
{
32_t i;
float dist1, dist2;
int32_t sides;
vec3_t corners[2];
for (i=0 ; i<3 ; i++)
{
if (p->normal[i] < 0)
{
corners[0][i] = emins[i];
corners[1][i] = emaxs[i];
}
else
{
corners[1][i] = emins[i];
corners[0][i] = emaxs[i];
}
}
dist1 = DotProduct (p->normal, corners[0]) - p->dist;
dist2 = DotProduct (p->normal, corners[1]) - p->dist;
sides = 0;
if (dist1 >= 0)
sides = 1;
if (dist2 < 0)
sides |= 2;
return sides;
}
==================
*/
#if !(defined __linux__ && defined __i386__ && !defined C_ONLY) || defined (__WIN32__)
#if defined __LCC__ || defined C_ONLY || !id386 || defined (__WIN32__)
int32_t BoxOnPlaneSide(vec3_t emins, vec3_t emaxs, struct cplane_s *p) {
float dist1, dist2;
int32_t sides;
/* fast axial cases */
if (p->type < 3) {
if (p->dist <= emins[p->type])
return 1;
if (p->dist >= emaxs[p->type])
return 2;
return 3;
}
/* general case */
switch (p->signbits) {
case 0:
dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2];
dist2 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2];
break;
case 1:
dist1 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2];
dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2];
break;
case 2:
dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2];
dist2 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2];
break;
case 3:
dist1 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2];
dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2];
break;
case 4:
dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2];
dist2 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2];
break;
case 5:
dist1 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2];
dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2];
break;
case 6:
dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2];
dist2 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2];
break;
case 7:
dist1 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2];
dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2];
break;
default:
dist1 = dist2 = 0; /* shut up compiler */
break;
}
sides = 0;
if (dist1 >= p->dist)
sides = 1;
if (dist2 < p->dist)
sides |= 2;
return sides;
}
#else
#pragma warning( disable: 4035 )
__declspec(naked) int32_t BoxOnPlaneSide(vec3_t emins, vec3_t emaxs, struct cplane_s *p) {
static int32_t bops_initialized;
static int32_t Ljmptab[8];
__asm {
push ebx
cmp bops_initialized, 1
je initialized
mov bops_initialized, 1
mov Ljmptab[0 * 4], offset Lcase0
mov Ljmptab[1 * 4], offset Lcase1
mov Ljmptab[2 * 4], offset Lcase2
mov Ljmptab[3 * 4], offset Lcase3
mov Ljmptab[4 * 4], offset Lcase4
mov Ljmptab[5 * 4], offset Lcase5
mov Ljmptab[6 * 4], offset Lcase6
mov Ljmptab[7 * 4], offset Lcase7
initialized :
mov edx, dword ptr[4 + 12 + esp]
mov ecx, dword ptr[4 + 4 + esp]
xor eax, eax
mov ebx, dword ptr[4 + 8 + esp]
mov al, byte ptr[17 + edx]
cmp al, 8
jge Lerror
fld dword ptr[0 + edx]
fld st(0)
jmp dword ptr[Ljmptab + eax * 4]
Lcase0:
fmul dword ptr[ebx]
fld dword ptr[0 + 4 + edx]
fxch st(2)
fmul dword ptr[ecx]
fxch st(2)
fld st(0)
fmul dword ptr[4 + ebx]
fld dword ptr[0 + 8 + edx]
fxch st(2)
fmul dword ptr[4 + ecx]
fxch st(2)
fld st(0)
fmul dword ptr[8 + ebx]
fxch st(5)
faddp st(3), st(0)
fmul dword ptr[8 + ecx]
fxch st(1)
faddp st(3), st(0)
fxch st(3)
faddp st(2), st(0)
jmp LSetSides
Lcase1 :
fmul dword ptr[ecx]
fld dword ptr[0 + 4 + edx]
fxch st(2)
fmul dword ptr[ebx]
fxch st(2)
fld st(0)
fmul dword ptr[4 + ebx]
fld dword ptr[0 + 8 + edx]
fxch st(2)
fmul dword ptr[4 + ecx]
fxch st(2)
fld st(0)
fmul dword ptr[8 + ebx]
fxch st(5)
faddp st(3), st(0)
fmul dword ptr[8 + ecx]
fxch st(1)
faddp st(3), st(0)
fxch st(3)
faddp st(2), st(0)
jmp LSetSides
Lcase2 :
fmul dword ptr[ebx]
fld dword ptr[0 + 4 + edx]
fxch st(2)
fmul dword ptr[ecx]
fxch st(2)
fld st(0)
fmul dword ptr[4 + ecx]
fld dword ptr[0 + 8 + edx]
fxch st(2)
fmul dword ptr[4 + ebx]
fxch st(2)
fld st(0)
fmul dword ptr[8 + ebx]
fxch st(5)
faddp st(3), st(0)
fmul dword ptr[8 + ecx]
fxch st(1)
faddp st(3), st(0)
fxch st(3)
faddp st(2), st(0)
jmp LSetSides
Lcase3 :
fmul dword ptr[ecx]
fld dword ptr[0 + 4 + edx]
fxch st(2)
fmul dword ptr[ebx]
fxch st(2)
fld st(0)
fmul dword ptr[4 + ecx]
fld dword ptr[0 + 8 + edx]
fxch st(2)
fmul dword ptr[4 + ebx]
fxch st(2)
fld st(0)
fmul dword ptr[8 + ebx]
fxch st(5)
faddp st(3), st(0)
fmul dword ptr[8 + ecx]
fxch st(1)
faddp st(3), st(0)
fxch st(3)
faddp st(2), st(0)
jmp LSetSides
Lcase4 :
fmul dword ptr[ebx]
fld dword ptr[0 + 4 + edx]
fxch st(2)
fmul dword ptr[ecx]
fxch st(2)
fld st(0)
fmul dword ptr[4 + ebx]
fld dword ptr[0 + 8 + edx]
fxch st(2)
fmul dword ptr[4 + ecx]
fxch st(2)
fld st(0)
fmul dword ptr[8 + ecx]
fxch st(5)
faddp st(3), st(0)
fmul dword ptr[8 + ebx]
fxch st(1)
faddp st(3), st(0)
fxch st(3)
faddp st(2), st(0)
jmp LSetSides
Lcase5 :
fmul dword ptr[ecx]
fld dword ptr[0 + 4 + edx]
fxch st(2)
fmul dword ptr[ebx]
fxch st(2)
fld st(0)
fmul dword ptr[4 + ebx]
fld dword ptr[0 + 8 + edx]
fxch st(2)
fmul dword ptr[4 + ecx]
fxch st(2)
fld st(0)
fmul dword ptr[8 + ecx]
fxch st(5)
faddp st(3), st(0)
fmul dword ptr[8 + ebx]
fxch st(1)
faddp st(3), st(0)
fxch st(3)
faddp st(2), st(0)
jmp LSetSides
Lcase6 :
fmul dword ptr[ebx]
fld dword ptr[0 + 4 + edx]
fxch st(2)
fmul dword ptr[ecx]
fxch st(2)
fld st(0)
fmul dword ptr[4 + ecx]
fld dword ptr[0 + 8 + edx]
fxch st(2)
fmul dword ptr[4 + ebx]
fxch st(2)
fld st(0)
fmul dword ptr[8 + ecx]
fxch st(5)
faddp st(3), st(0)
fmul dword ptr[8 + ebx]
fxch st(1)
faddp st(3), st(0)
fxch st(3)
faddp st(2), st(0)
jmp LSetSides
Lcase7 :
fmul dword ptr[ecx]
fld dword ptr[0 + 4 + edx]
fxch st(2)
fmul dword ptr[ebx]
fxch st(2)
fld st(0)
fmul dword ptr[4 + ecx]
fld dword ptr[0 + 8 + edx]
fxch st(2)
fmul dword ptr[4 + ebx]
fxch st(2)
fld st(0)
fmul dword ptr[8 + ecx]
fxch st(5)
faddp st(3), st(0)
fmul dword ptr[8 + ebx]
fxch st(1)
faddp st(3), st(0)
fxch st(3)
faddp st(2), st(0)
LSetSides:
faddp st(2), st(0)
fcomp dword ptr[12 + edx]
xor ecx, ecx
fnstsw ax
fcomp dword ptr[12 + edx]
and ah, 1
xor ah, 1
add cl, ah
fnstsw ax
and ah, 1
add ah, ah
add cl, ah
pop ebx
mov eax, ecx
ret
Lerror :
int 3
}
}
#pragma warning( default: 4035 )
#endif
#endif
/*
=================
RadiusFromBounds
=================
*/
float RadiusFromBounds(const vec3_t mins, const vec3_t maxs) {
int32_t i;
vec3_t corner;
float a, b;
for (i = 0; i<3; i++) {
a = fabs(mins[i]);
b = fabs(maxs[i]);
corner[i] = a > b ? a : b;
}
return VectorLength(corner);
}
void ClearBounds(vec3_t mins, vec3_t maxs) {
mins[0] = mins[1] = mins[2] = 99999;
maxs[0] = maxs[1] = maxs[2] = -99999;
}
void AddPointToBounds(const vec3_t v, vec3_t mins, vec3_t maxs) {
if (v[0] < mins[0]) {
mins[0] = v[0];
}
if (v[0] > maxs[0]) {
maxs[0] = v[0];
}
if (v[1] < mins[1]) {
mins[1] = v[1];
}
if (v[1] > maxs[1]) {
maxs[1] = v[1];
}
if (v[2] < mins[2]) {
mins[2] = v[2];
}
if (v[2] > maxs[2]) {
maxs[2] = v[2];
}
}
int32_t VectorCompare(const vec3_t v1, const vec3_t v2) {
if (v1[0] != v2[0] || v1[1] != v2[1] || v1[2] != v2[2]) {
return 0;
}
return 1;
}
vec_t VectorNormalize(vec3_t v) {
float length, ilength;
length = v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
length = sqrt(length);
if (length) {
ilength = 1 / length;
v[0] *= ilength;
v[1] *= ilength;
v[2] *= ilength;
}
return length;
}
/*
* fast vector normalize routine that does not check to make sure
* that length != 0, nor does it return length
*/
void VectorNormalizeFast(vec3_t v) {
float ilength;
ilength = Q_rsqrt(DotProduct(v, v));
v[0] *= ilength;
v[1] *= ilength;
v[2] *= ilength;
}
vec_t VectorNormalize2(const vec3_t v, vec3_t out) {
float length, ilength;
length = v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
length = sqrt(length);
if (length) {
ilength = 1 / length;
out[0] = v[0] * ilength;
out[1] = v[1] * ilength;
out[2] = v[2] * ilength;
} else {
VectorClear(out);
}
return length;
}
void _VectorMA(const vec3_t veca, float scale, const vec3_t vecb, vec3_t vecc) {
vecc[0] = veca[0] + scale*vecb[0];
vecc[1] = veca[1] + scale*vecb[1];
vecc[2] = veca[2] + scale*vecb[2];
}
vec_t _DotProduct(const vec3_t v1, const vec3_t v2) {
return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
}
void _VectorSubtract(const vec3_t veca, const vec3_t vecb, vec3_t out) {
out[0] = veca[0] - vecb[0];
out[1] = veca[1] - vecb[1];
out[2] = veca[2] - vecb[2];
}
void _VectorAdd(const vec3_t veca, const vec3_t vecb, vec3_t out) {
out[0] = veca[0] + vecb[0];
out[1] = veca[1] + vecb[1];
out[2] = veca[2] + vecb[2];
}
void _VectorCopy(const vec3_t in, vec3_t out) {
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
}
void _VectorScale(const vec3_t in, vec_t scale, vec3_t out) {
out[0] = in[0] * scale;
out[1] = in[1] * scale;
out[2] = in[2] * scale;
}
void CrossProduct(const vec3_t v1, const vec3_t v2, vec3_t cross) {
cross[0] = v1[1] * v2[2] - v1[2] * v2[1];
cross[1] = v1[2] * v2[0] - v1[0] * v2[2];
cross[2] = v1[0] * v2[1] - v1[1] * v2[0];
}
vec_t VectorLength(const vec3_t v) {
return sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
}
vec_t VectorLengthSquared(const vec3_t v) {
return (v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
}
vec_t Distance(const vec3_t p1, const vec3_t p2) {
vec3_t v;
VectorSubtract(p2, p1, v);
return VectorLength(v);
}
vec_t DistanceSquared(const vec3_t p1, const vec3_t p2) {
vec3_t v;
VectorSubtract(p2, p1, v);
return v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
}
void VectorInverse(vec3_t v) {
v[0] = -v[0];
v[1] = -v[1];
v[2] = -v[2];
}
void Vector4Scale(const vec4_t in, vec_t scale, vec4_t out) {
out[0] = in[0] * scale;
out[1] = in[1] * scale;
out[2] = in[2] * scale;
out[3] = in[3] * scale;
}
int32_t Q_log2(int32_t val) {
int32_t answer;
answer = 0;
while ((val >>= 1) != 0) {
answer++;
}
return answer;
}
/*
=================
PlaneTypeForNormal
=================
*/
int32_t PlaneTypeForNormal(vec3_t normal) {
if (normal[0] == 1.0)
return PLANE_X;
if (normal[1] == 1.0)
return PLANE_Y;
if (normal[2] == 1.0)
return PLANE_Z;
return PLANE_NON_AXIAL;
}
/*
================
MatrixMultiply
================
*/
void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) {
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
in1[0][2] * in2[2][0];
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
in1[0][2] * in2[2][1];
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
in1[0][2] * in2[2][2];
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
in1[1][2] * in2[2][0];
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
in1[1][2] * in2[2][1];
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
in1[1][2] * in2[2][2];
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
in1[2][2] * in2[2][0];
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
in1[2][2] * in2[2][1];
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
in1[2][2] * in2[2][2];
}
void AngleVectors(const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) {
float angle;
static float sr, sp, sy, cr, cp, cy;
/* static to help MS compiler fp bugs */
angle = angles[YAW] * (M_PI * 2 / 360);
sy = sin(angle);
cy = cos(angle);
angle = angles[PITCH] * (M_PI * 2 / 360);
sp = sin(angle);
cp = cos(angle);
angle = angles[ROLL] * (M_PI * 2 / 360);
sr = sin(angle);
cr = cos(angle);
if (forward) {
forward[0] = cp*cy;
forward[1] = cp*sy;
forward[2] = -sp;
}
if (right) {
right[0] = (-1 * sr*sp*cy + -1 * cr*-sy);
right[1] = (-1 * sr*sp*sy + -1 * cr*cy);
right[2] = -1 * sr*cp;
}
if (up) {
up[0] = (cr*sp*cy + -sr*-sy);
up[1] = (cr*sp*sy + -sr*cy);
up[2] = cr*cp;
}
}
/*
** assumes "src" is normalized
*/
void PerpendicularVector(vec3_t dst, const vec3_t src) {
int32_t pos;
int32_t i;
float minelem = 1.0F;
vec3_t tempvec;
/*
** find the smallest magnitude axially aligned vector
** bias towards using z instead of x or y
*/
/* for ( pos = 0, i = 0; i < 3; i++ ) */
for (pos = 0, i = 2; i >= 0; i--) {
if (fabs(src[i]) < minelem) {
pos = i;
minelem = fabs(src[i]);
}
}
tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
tempvec[pos] = 1.0F;
/*
** project the point onto the plane defined by src
*/
ProjectPointOnPlane(dst, tempvec, src);
/*
** normalize the result
*/
VectorNormalize(dst);
}
/*
** flrandom
Returns a float min <= x < max (exclusive; will get max - 0.00001; but never max
*/
float flrandom(float min, float max) {
return (((rand() & 0x7FFF) * (max - min)) / 32768.0F) + min;
}
/*
** irandom
Returns an integer min <= x <= max (ie inclusive)
*/
int32_t irandom(int32_t min, int32_t max) {
max++; /* so it can round down */
return (((rand() & 0x7FFF) * (max - min)) >> 15) + min;
}
/* use for networking - normalizes a vector, then multiplies it by 65535.0, then calls snap vector on it
guarantee's a short per vector instead of 4 bytes. */
void VectorShort(vec3_t vect) {
VectorNormalize(vect);
vect[0] *= 8191.0;
vect[1] *= 8191.0;
vect[2] *= 8191.0;
SnapVector(vect);
}
void UnVectorShort(vec3_t vect) {
vect[0] /= 8191.0;
vect[1] /= 8191.0;
vect[2] /= 8191.0;
}
float Q_powf(float x, int32_t y) {
float r = x;
for (y--; y>0; y--)
r = r * r;
return r;
}
/* TiM: Vector-Average. Good for calculating origins from bounding boxes */
void VectorAverage(vec3_t mins, vec3_t maxs, vec3_t result) {
vec3_t temp;
/*int32_t i;
for ( i = 0; i < 3; i++ ) {
result[i] = ( mins[i] + maxs[i] ) * 0.5;
}*/
/* TiM: I 'unno... this way looks l33ter lol */
VectorAdd(mins, maxs, temp);
VectorScale(temp, 0.5, result);
}
/* Rounds the argument to the next integer. Used by SnapVector. */
void init_tonextint(qboolean verbose) {
float decimal = 0.9;
nonansicast = (int32_t)decimal;
if (verbose) {
if (nonansicast)
Com_Printf("Float to int32_t casting behaviour: round to next int\n");
else
Com_Printf("Float to int32_t casting behaviour: ISO compliant\n");
}
}
float tonextint(float x) {
int32_t casted;
float rest;
if (nonansicast)
return (int32_t)x;
casted = (int32_t)x;
rest = x - (float)casted;
if (rest >= 0.5f)
return casted + 1;
else if (rest <= -0.5f)
return casted - 1;
else
return casted;
}
/**************************************
atoul
TiM - the stdlib function 'strtoul' isn't
supported by the Q3 C library.
I was thinking about converting it, but
realised since I was only using a small
part of it's functionality anyway, it'd be
quicker to write my own based off the present
code in Q3.
Based off of the atoi code
**************************************/
unsigned long atoul(const char *string) {
unsigned long value;
int32_t c;
/* skip whitespace */
while (*string <= ' ') {
if (!*string) {
return 0;
}
string++;
}
/* read digits */
value = 0;
do {
c = *string++;
if (c < '0' || c > '9') {
break;
}
c -= '0';
value = value * 10 + c;
} while (1);
/* not handling 10e10 notation... */
return value;
}