rpgxef/code/game/q_math.c

1490 lines
34 KiB
C
Raw Normal View History

2013-12-20 21:26:59 +00:00
/*
* Copyright (C) 1999-2000 Id Software, Inc.
*
* q_math.c -- stateless support routines that are included in each code module
*/
#include "q_shared.h"
int32_t nonansicast = 0;
vec3_t vec3_origin = {0,0,0};
vec3_t axisDefault[3] = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };
vec4_t colorTable[CT_MAX] =
{
{0, 0, 0, 0}, /* CT_NONE */
{0, 0, 0, 1}, /* CT_BLACK */
{1, 0, 0, 1}, /* CT_RED */
{0, 1, 0, 1}, /* CT_GREEN */
{0, 0, 1, 1}, /* CT_BLUE */
{1, 1, 0, 1}, /* CT_YELLOW */
{1, 0, 1, 1}, /* CT_MAGENTA */
{0, 1, 1, 1}, /* CT_CYAN */
{0.071, 0.271, 0.29, 1}, /* CT_TEAL */
{0.529, 0.373, 0.017, 1},/* CT_GOLD */
{1, 1, 1, 1}, /* CT_WHITE */
{0.75, 0.75, 0.75, 1}, /* CT_LTGREY */
{0.50, 0.50, 0.50, 1}, /* CT_MDGREY */
{0.25, 0.25, 0.25, 1}, /* CT_DKGREY */
{0.15, 0.15, 0.15, 1}, /* CT_DKGREY2 */
{0.688, 0.797, 1, 1}, /* CT_VLTORANGE -- needs values */
{0.688, 0.797, 1, 1}, /* CT_LTORANGE */
{0.620, 0.710, 0.894, 1},/* CT_DKORANGE */
{0.463, 0.525, 0.671, 1},/* CT_VDKORANGE */
{0.616, 0.718, 0.898, 1},/* CT_VLTBLUE1 */
{0.286, 0.506, 0.898, 1},/* CT_LTBLUE1 */
{0.082, 0.388, 0.898, 1},/* CT_DKBLUE1 */
{0.063, 0.278, 0.514, 1},/* CT_VDKBLUE1 */
{0.302, 0.380, 0.612, 1},/* CT_VLTBLUE2 -- needs values */
{0.196, 0.314, 0.612, 1},/* CT_LTBLUE2 */
{0.060, 0.227, 0.611, 1},/* CT_DKBLUE2 */
{0.043, 0.161, 0.459, 1},/* CT_VDKBLUE2 */
{0.082, 0.388, 0.898, 1},/* CT_VLTBROWN1 -- needs values */
{0.082, 0.388, 0.898, 1},/* CT_LTBROWN1 */
{0.078, 0.320, 0.813, 1},/* CT_DKBROWN1 */
{0.060, 0.227, 0.611, 1},/* CT_VDKBROWN1 */
{1, 0.784, 0.365, 1}, /* CT_VLTGOLD1 -- needs values */
{1, 0.706, 0.153, 1}, /* CT_LTGOLD1 */
{0.733, 0.514, 0.086, 1},/* CT_DKGOLD1 */
{0.549, 0.384, 0.063, 1},/* CT_VDKGOLD1 */
{0.688, 0.797, 1, 1}, /* CT_VLTPURPLE1 -- needs values */
{0.688, 0.797, 1, 1}, /* CT_LTPURPLE1 */
{0.313, 0.578, 1, 1}, /* CT_DKPURPLE1 */
{0.031, 0.110, 0.341, 1},/* CT_VDKPURPLE1 */
{0.688, 0.797, 1, 1}, /* CT_VLTPURPLE2 -- needs values */
{0.688, 0.797, 1, 1}, /* CT_LTPURPLE2 */
{0.688, 0.797, 1, 1}, /* CT_DKPURPLE2 */
{0.031, 0.110, 0.341, 1},/* CT_VDKPURPLE2 */
{0.686, 0.808, 0.1, 1}, /* CT_VLTPURPLE3 */
{0.188, 0.494, 1, 1}, /* CT_LTPURPLE3 */
{0.094, 0.471, 1, 1}, /* CT_DKPURPLE3 */
{0.067, 0.325, 0.749, 1},/* CT_VDKPURPLE3 */
{1, 0.612, 0.325, 1}, /* CT_VLTRED1 */
{1, 0.478, 0.098, 1}, /* CT_LTRED1 */
{1, 0.438, 0, 1}, /* CT_DKRED1 */
{0.784, 0.329, 0, 1}, /* CT_VDKRED1 */
};
vec4_t colorBlack = {0, 0, 0, 1};
vec4_t colorRed = {1, 0, 0, 1};
vec4_t colorGreen = {0, 1, 0, 1};
vec4_t colorBlue = {0, 0, 1, 1};
vec4_t colorYellow = {1, 1, 0, 1};
vec4_t colorMagenta= {1, 0, 1, 1};
vec4_t colorCyan = {0, 1, 1, 1};
vec4_t colorWhite = {1, 1, 1, 1};
vec4_t colorLtGrey = {0.75, 0.75, 0.75, 1};
vec4_t colorMdGrey = {0.5, 0.5, 0.5, 1};
vec4_t colorDkGrey = {0.25, 0.25, 0.25, 1};
vec4_t g_color_table[8] =
{
{0.0, 0.0, 0.0, 1.0},
{1.0, 0.0, 0.0, 1.0},
{0.0, 1.0, 0.0, 1.0},
{1.0, 1.0, 0.0, 1.0},
{0.0, 0.0, 1.0, 1.0},
{0.0, 1.0, 1.0, 1.0},
{1.0, 0.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
};
vec3_t bytedirs[NUMVERTEXNORMALS] =
{
{-0.525731, 0.000000, 0.850651}, {-0.442863, 0.238856, 0.864188},
{-0.295242, 0.000000, 0.955423}, {-0.309017, 0.500000, 0.809017},
{-0.162460, 0.262866, 0.951056}, {0.000000, 0.000000, 1.000000},
{0.000000, 0.850651, 0.525731}, {-0.147621, 0.716567, 0.681718},
{0.147621, 0.716567, 0.681718}, {0.000000, 0.525731, 0.850651},
{0.309017, 0.500000, 0.809017}, {0.525731, 0.000000, 0.850651},
{0.295242, 0.000000, 0.955423}, {0.442863, 0.238856, 0.864188},
{0.162460, 0.262866, 0.951056}, {-0.681718, 0.147621, 0.716567},
{-0.809017, 0.309017, 0.500000},{-0.587785, 0.425325, 0.688191},
{-0.850651, 0.525731, 0.000000},{-0.864188, 0.442863, 0.238856},
{-0.716567, 0.681718, 0.147621},{-0.688191, 0.587785, 0.425325},
{-0.500000, 0.809017, 0.309017}, {-0.238856, 0.864188, 0.442863},
{-0.425325, 0.688191, 0.587785}, {-0.716567, 0.681718, -0.147621},
{-0.500000, 0.809017, -0.309017}, {-0.525731, 0.850651, 0.000000},
{0.000000, 0.850651, -0.525731}, {-0.238856, 0.864188, -0.442863},
{0.000000, 0.955423, -0.295242}, {-0.262866, 0.951056, -0.162460},
{0.000000, 1.000000, 0.000000}, {0.000000, 0.955423, 0.295242},
{-0.262866, 0.951056, 0.162460}, {0.238856, 0.864188, 0.442863},
{0.262866, 0.951056, 0.162460}, {0.500000, 0.809017, 0.309017},
{0.238856, 0.864188, -0.442863},{0.262866, 0.951056, -0.162460},
{0.500000, 0.809017, -0.309017},{0.850651, 0.525731, 0.000000},
{0.716567, 0.681718, 0.147621}, {0.716567, 0.681718, -0.147621},
{0.525731, 0.850651, 0.000000}, {0.425325, 0.688191, 0.587785},
{0.864188, 0.442863, 0.238856}, {0.688191, 0.587785, 0.425325},
{0.809017, 0.309017, 0.500000}, {0.681718, 0.147621, 0.716567},
{0.587785, 0.425325, 0.688191}, {0.955423, 0.295242, 0.000000},
{1.000000, 0.000000, 0.000000}, {0.951056, 0.162460, 0.262866},
{0.850651, -0.525731, 0.000000},{0.955423, -0.295242, 0.000000},
{0.864188, -0.442863, 0.238856}, {0.951056, -0.162460, 0.262866},
{0.809017, -0.309017, 0.500000}, {0.681718, -0.147621, 0.716567},
{0.850651, 0.000000, 0.525731}, {0.864188, 0.442863, -0.238856},
{0.809017, 0.309017, -0.500000}, {0.951056, 0.162460, -0.262866},
{0.525731, 0.000000, -0.850651}, {0.681718, 0.147621, -0.716567},
{0.681718, -0.147621, -0.716567},{0.850651, 0.000000, -0.525731},
{0.809017, -0.309017, -0.500000}, {0.864188, -0.442863, -0.238856},
{0.951056, -0.162460, -0.262866}, {0.147621, 0.716567, -0.681718},
{0.309017, 0.500000, -0.809017}, {0.425325, 0.688191, -0.587785},
{0.442863, 0.238856, -0.864188}, {0.587785, 0.425325, -0.688191},
{0.688191, 0.587785, -0.425325}, {-0.147621, 0.716567, -0.681718},
{-0.309017, 0.500000, -0.809017}, {0.000000, 0.525731, -0.850651},
{-0.525731, 0.000000, -0.850651}, {-0.442863, 0.238856, -0.864188},
{-0.295242, 0.000000, -0.955423}, {-0.162460, 0.262866, -0.951056},
{0.000000, 0.000000, -1.000000}, {0.295242, 0.000000, -0.955423},
{0.162460, 0.262866, -0.951056}, {-0.442863, -0.238856, -0.864188},
{-0.309017, -0.500000, -0.809017}, {-0.162460, -0.262866, -0.951056},
{0.000000, -0.850651, -0.525731}, {-0.147621, -0.716567, -0.681718},
{0.147621, -0.716567, -0.681718}, {0.000000, -0.525731, -0.850651},
{0.309017, -0.500000, -0.809017}, {0.442863, -0.238856, -0.864188},
{0.162460, -0.262866, -0.951056}, {0.238856, -0.864188, -0.442863},
{0.500000, -0.809017, -0.309017}, {0.425325, -0.688191, -0.587785},
{0.716567, -0.681718, -0.147621}, {0.688191, -0.587785, -0.425325},
{0.587785, -0.425325, -0.688191}, {0.000000, -0.955423, -0.295242},
{0.000000, -1.000000, 0.000000}, {0.262866, -0.951056, -0.162460},
{0.000000, -0.850651, 0.525731}, {0.000000, -0.955423, 0.295242},
{0.238856, -0.864188, 0.442863}, {0.262866, -0.951056, 0.162460},
{0.500000, -0.809017, 0.309017}, {0.716567, -0.681718, 0.147621},
{0.525731, -0.850651, 0.000000}, {-0.238856, -0.864188, -0.442863},
{-0.500000, -0.809017, -0.309017}, {-0.262866, -0.951056, -0.162460},
{-0.850651, -0.525731, 0.000000}, {-0.716567, -0.681718, -0.147621},
{-0.716567, -0.681718, 0.147621}, {-0.525731, -0.850651, 0.000000},
{-0.500000, -0.809017, 0.309017}, {-0.238856, -0.864188, 0.442863},
{-0.262866, -0.951056, 0.162460}, {-0.864188, -0.442863, 0.238856},
{-0.809017, -0.309017, 0.500000}, {-0.688191, -0.587785, 0.425325},
{-0.681718, -0.147621, 0.716567}, {-0.442863, -0.238856, 0.864188},
{-0.587785, -0.425325, 0.688191}, {-0.309017, -0.500000, 0.809017},
{-0.147621, -0.716567, 0.681718}, {-0.425325, -0.688191, 0.587785},
{-0.162460, -0.262866, 0.951056}, {0.442863, -0.238856, 0.864188},
{0.162460, -0.262866, 0.951056}, {0.309017, -0.500000, 0.809017},
{0.147621, -0.716567, 0.681718}, {0.000000, -0.525731, 0.850651},
{0.425325, -0.688191, 0.587785}, {0.587785, -0.425325, 0.688191},
{0.688191, -0.587785, 0.425325}, {-0.955423, 0.295242, 0.000000},
{-0.951056, 0.162460, 0.262866}, {-1.000000, 0.000000, 0.000000},
{-0.850651, 0.000000, 0.525731}, {-0.955423, -0.295242, 0.000000},
{-0.951056, -0.162460, 0.262866}, {-0.864188, 0.442863, -0.238856},
{-0.951056, 0.162460, -0.262866}, {-0.809017, 0.309017, -0.500000},
{-0.864188, -0.442863, -0.238856}, {-0.951056, -0.162460, -0.262866},
{-0.809017, -0.309017, -0.500000}, {-0.681718, 0.147621, -0.716567},
{-0.681718, -0.147621, -0.716567}, {-0.850651, 0.000000, -0.525731},
{-0.688191, 0.587785, -0.425325}, {-0.587785, 0.425325, -0.688191},
{-0.425325, 0.688191, -0.587785}, {-0.425325, -0.688191, -0.587785},
{-0.587785, -0.425325, -0.688191}, {-0.688191, -0.587785, -0.425325}
};
/*==============================================================*/
int32_t Q_rand( int32_t* seed ) {
*seed = (69069 * *seed + 1);
return *seed;
}
float Q_random( int32_t *seed ) {
return ( Q_rand( seed ) & 0xffff ) / (float)0x10000;
}
float Q_crandom( int32_t *seed ) {
return 2.0 * ( Q_random( seed ) - 0.5 );
}
/*=======================================================*/
signed char ClampChar( int32_t i ) {
if ( i < -128 ) {
return -128;
}
if ( i > 127 ) {
return 127;
}
return i;
}
int16_t ClampShort( int32_t i ) {
if ( i < (short)0x8000 ) {
return (short)0x8000;
}
if ( i > 0x7fff ) {
return 0x7fff;
}
return i;
}
/* this isn't a real cheap function to call! */
/**
* Converts a direction vector into a byte
*/
int32_t DirToByte( vec3_t dir ) {
int32_t i, best;
float d, bestd;
if ( dir == NULL ) {
return 0;
}
bestd = 0;
best = 0;
for (i=0 ; i<NUMVERTEXNORMALS ; i++)
{
d = DotProduct (dir, bytedirs[i]);
if (d > bestd)
{
bestd = d;
best = i;
}
}
return best;
}
/**
* Converts a byte vector into a direction vector
*/
void ByteToDir( int32_t b, vec3_t dir ) {
if ( b < 0 || b >= NUMVERTEXNORMALS ) {
VectorCopy( vec3_origin, dir );
return;
}
VectorCopy (bytedirs[b], dir);
}
unsigned ColorBytes3 (float r, float g, float b) {
unsigned i;
( (byte *)&i )[0] = r * 255;
( (byte *)&i )[1] = g * 255;
( (byte *)&i )[2] = b * 255;
return i;
}
unsigned ColorBytes4 (float r, float g, float b, float a) {
unsigned i;
( (byte *)&i )[0] = r * 255;
( (byte *)&i )[1] = g * 255;
( (byte *)&i )[2] = b * 255;
( (byte *)&i )[3] = a * 255;
return i;
}
float NormalizeColor( const vec3_t in, vec3_t out ) {
float max;
max = in[0];
if ( in[1] > max ) {
max = in[1];
}
if ( in[2] > max ) {
max = in[2];
}
if ( !max ) {
VectorClear( out );
} else {
out[0] = in[0] / max;
out[1] = in[1] / max;
out[2] = in[2] / max;
}
return max;
}
/*============================================================================*/
/*
* \brief Returns false if the triangle is degenrate.
*
* The normal will point out of the clock for clockwise ordered points
*
*/
qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
vec3_t d1, d2;
VectorSubtract( b, a, d1 );
VectorSubtract( c, a, d2 );
CrossProduct( d2, d1, plane );
if ( VectorNormalize( plane ) == 0 ) {
return qfalse;
}
plane[3] = DotProduct( a, plane );
return qtrue;
}
/**
* RotatePointAroundVector
*
* This is not implemented very well...
*
*/
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point,
float degrees ) {
float m[3][3];
float im[3][3];
float zrot[3][3];
float tmpmat[3][3];
float rot[3][3];
int32_t i;
vec3_t vr, vup, vf;
float rad;
vf[0] = dir[0];
vf[1] = dir[1];
vf[2] = dir[2];
PerpendicularVector( vr, dir );
CrossProduct( vr, vf, vup );
m[0][0] = vr[0];
m[1][0] = vr[1];
m[2][0] = vr[2];
m[0][1] = vup[0];
m[1][1] = vup[1];
m[2][1] = vup[2];
m[0][2] = vf[0];
m[1][2] = vf[1];
m[2][2] = vf[2];
memcpy( im, m, sizeof( im ) );
im[0][1] = m[1][0];
im[0][2] = m[2][0];
im[1][0] = m[0][1];
im[1][2] = m[2][1];
im[2][0] = m[0][2];
im[2][1] = m[1][2];
memset( zrot, 0, sizeof( zrot ) );
zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
rad = DEG2RAD( degrees );
zrot[0][0] = cos( rad );
zrot[0][1] = sin( rad );
zrot[1][0] = -sin( rad );
zrot[1][1] = cos( rad );
MatrixMultiply( m, zrot, tmpmat );
MatrixMultiply( tmpmat, im, rot );
for ( i = 0; i < 3; i++ ) {
dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
}
}
/*
===============
RotateAroundDirection
===============
*/
void RotateAroundDirection( vec3_t axis[3], float yaw ) {
/* create an arbitrary axis[1] */
PerpendicularVector( axis[1], axis[0] );
/* rotate it around axis[0] by yaw */
if ( yaw ) {
vec3_t temp;
VectorCopy( axis[1], temp );
RotatePointAroundVector( axis[1], axis[0], temp, yaw );
}
/* cross to get axis[2] */
CrossProduct( axis[0], axis[1], axis[2] );
}
void vectoangles( const vec3_t value1, vec3_t angles ) {
float forward;
float yaw, pitch;
if ( value1[1] == 0 && value1[0] == 0 ) {
yaw = 0;
if ( value1[2] > 0 ) {
pitch = 90;
}
else {
pitch = 270;
}
}
else {
if ( value1[0] ) {
yaw = ( atan2 ( value1[1], value1[0] ) * 180 / M_PI );
}
else if ( value1[1] > 0 ) {
yaw = 90;
}
else {
yaw = 270;
}
if ( yaw < 0 ) {
yaw += 360;
}
forward = sqrt ( value1[0]*value1[0] + value1[1]*value1[1] );
pitch = ( atan2(value1[2], forward) * 180 / M_PI );
if ( pitch < 0 ) {
pitch += 360;
}
}
angles[PITCH] = -pitch;
angles[YAW] = yaw;
angles[ROLL] = 0;
}
/*
=================
AnglesToAxis
=================
*/
void AnglesToAxis( const vec3_t angles, vec3_t axis[3] ) {
vec3_t right;
/* angle vectors returns "right" instead of "y axis" */
AngleVectors( angles, axis[0], right, axis[2] );
VectorSubtract( vec3_origin, right, axis[1] );
}
void AxisClear( vec3_t axis[3] ) {
axis[0][0] = 1;
axis[0][1] = 0;
axis[0][2] = 0;
axis[1][0] = 0;
axis[1][1] = 1;
axis[1][2] = 0;
axis[2][0] = 0;
axis[2][1] = 0;
axis[2][2] = 1;
}
void AxisCopy( vec3_t in[3], vec3_t out[3] ) {
VectorCopy( in[0], out[0] );
VectorCopy( in[1], out[1] );
VectorCopy( in[2], out[2] );
}
void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
{
float d;
vec3_t n;
float inv_denom;
inv_denom = 1.0F / DotProduct( normal, normal );
d = DotProduct( normal, p ) * inv_denom;
n[0] = normal[0] * inv_denom;
n[1] = normal[1] * inv_denom;
n[2] = normal[2] * inv_denom;
dst[0] = p[0] - d * n[0];
dst[1] = p[1] - d * n[1];
dst[2] = p[2] - d * n[2];
}
/**
*
* Given a normalized forward vector, create two
* other perpendicular vectors
*
*/
void MakeNormalVectors( const vec3_t forward, vec3_t right, vec3_t up) {
float d;
/*
* this rotate and negate guarantees a vector
* not colinear with the original
*/
right[1] = -forward[0];
right[2] = forward[1];
right[0] = forward[2];
d = DotProduct (right, forward);
VectorMA (right, -d, forward, right);
VectorNormalize (right);
CrossProduct (right, forward, up);
}
void VectorRotate( vec3_t in, vec3_t matrix[3], vec3_t out )
{
out[0] = DotProduct( in, matrix[0] );
out[1] = DotProduct( in, matrix[1] );
out[2] = DotProduct( in, matrix[2] );
}
/*============================================================================ */
/*
* float q_rsqrt( float number )
*/
/**
* Fast inverse square root.
*
* \param number number to calculate the inverse square root for
* \return inverse square root of number
*/
float Q_rsqrt( float number )
{
long i;
float x2, y;
const float threehalfs = 1.5F;
x2 = number * 0.5F;
y = number;
i = * ( long * ) &y; /* evil floating point bit level hacking */
i = 0x5f3759df - ( i >> 1 ); /* what the fuck? */
y = * ( float * ) &i;
y = y * ( threehalfs - ( x2 * y * y ) ); /* 1st iteration */
// y = y * ( threehalfs - ( x2 * y * y ) ); /* 2nd iteration, this can be removed */
return y;
}
float Q_fabs( float f ) {
int32_t tmp = * ( int32_t * ) &f;
tmp &= 0x7FFFFFFF;
return * ( float * ) &tmp;
}
//============================================================
/*
===============
LerpAngle
===============
*/
float LerpAngle (float from, float to, float frac) {
float a;
if ( to - from > 180 ) {
to -= 360;
}
if ( to - from < -180 ) {
to += 360;
}
a = from + frac * (to - from);
return a;
}
/**
* AngleSubtract
*
* Always returns a value from -180 to 180
*
*/
float AngleSubtract( float a1, float a2 ) {
float a;
a = a1 - a2;
while ( a > 180 ) {
a -= 360;
}
while ( a < -180 ) {
a += 360;
}
return a;
}
void AnglesSubtract( vec3_t v1, vec3_t v2, vec3_t v3 ) {
v3[0] = AngleSubtract( v1[0], v2[0] );
v3[1] = AngleSubtract( v1[1], v2[1] );
v3[2] = AngleSubtract( v1[2], v2[2] );
}
float AngleMod(float a) {
a = (360.0/65536) * ((int32_t)(a*(65536/360.0)) & 65535);
return a;
}
/**
*
* AngleNormalize360
*
* \param angle angle to normalize
* \return angle normalized to the range [0 <= angle < 360]
*
*/
float AngleNormalize360 ( float angle ) {
return (360.0 / 65536) * ((int32_t)(angle * (65536 / 360.0)) & 65535);
}
/**
*
* AngleNormalize180
*
* \param angle angle to normalize
* \return angle normalized to the range [-180 < angle <= 180]
*
*/
float AngleNormalize180 ( float angle ) {
angle = AngleNormalize360( angle );
if ( angle > 180.0 ) {
angle -= 360.0;
}
return angle;
}
/**
*
* AngleDelta
*
* \param angle1 first angle
* \param angle2 second angle
* \return the normalized delta from angle1 to angle2
*
*/
float AngleDelta ( float angle1, float angle2 ) {
return AngleNormalize180( angle1 - angle2 );
}
/*============================================================*/
/*
=================
SetPlaneSignbits
=================
*/
void SetPlaneSignbits (cplane_t *out) {
int32_t bits, j;
/* for fast box on planeside test */
bits = 0;
for (j=0 ; j<3 ; j++) {
if (out->normal[j] < 0) {
bits |= 1<<j;
}
}
out->signbits = bits;
}
/*
==================
BoxOnPlaneSide
Returns 1, 2, or 1 + 2
// this is the slow, general version
int32_t BoxOnPlaneSide2 (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
{
32_t i;
float dist1, dist2;
int32_t sides;
vec3_t corners[2];
for (i=0 ; i<3 ; i++)
{
if (p->normal[i] < 0)
{
corners[0][i] = emins[i];
corners[1][i] = emaxs[i];
}
else
{
corners[1][i] = emins[i];
corners[0][i] = emaxs[i];
}
}
dist1 = DotProduct (p->normal, corners[0]) - p->dist;
dist2 = DotProduct (p->normal, corners[1]) - p->dist;
sides = 0;
if (dist1 >= 0)
sides = 1;
if (dist2 < 0)
sides |= 2;
return sides;
}
==================
*/
#if !(defined __linux__ && defined __i386__ && !defined C_ONLY) || defined (__WIN32__)
#if defined __LCC__ || defined C_ONLY || !id386 || defined (__WIN32__)
int32_t BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
{
float dist1, dist2;
int32_t sides;
/* fast axial cases */
if (p->type < 3)
{
if (p->dist <= emins[p->type])
return 1;
if (p->dist >= emaxs[p->type])
return 2;
return 3;
}
/* general case */
switch (p->signbits)
{
case 0:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
break;
case 1:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
break;
case 2:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
break;
case 3:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
break;
case 4:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
break;
case 5:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
break;
case 6:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
break;
case 7:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
break;
default:
dist1 = dist2 = 0; /* shut up compiler */
break;
}
sides = 0;
if (dist1 >= p->dist)
sides = 1;
if (dist2 < p->dist)
sides |= 2;
return sides;
}
#else
#pragma warning( disable: 4035 )
__declspec( naked ) int32_t BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
{
static int32_t bops_initialized;
static int32_t Ljmptab[8];
__asm {
push ebx
cmp bops_initialized, 1
je initialized
mov bops_initialized, 1
mov Ljmptab[0*4], offset Lcase0
mov Ljmptab[1*4], offset Lcase1
mov Ljmptab[2*4], offset Lcase2
mov Ljmptab[3*4], offset Lcase3
mov Ljmptab[4*4], offset Lcase4
mov Ljmptab[5*4], offset Lcase5
mov Ljmptab[6*4], offset Lcase6
mov Ljmptab[7*4], offset Lcase7
initialized:
mov edx,dword ptr[4+12+esp]
mov ecx,dword ptr[4+4+esp]
xor eax,eax
mov ebx,dword ptr[4+8+esp]
mov al,byte ptr[17+edx]
cmp al,8
jge Lerror
fld dword ptr[0+edx]
fld st(0)
jmp dword ptr[Ljmptab+eax*4]
Lcase0:
fmul dword ptr[ebx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ecx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ebx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ecx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ebx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ecx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase1:
fmul dword ptr[ecx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ebx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ebx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ecx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ebx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ecx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase2:
fmul dword ptr[ebx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ecx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ecx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ebx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ebx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ecx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase3:
fmul dword ptr[ecx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ebx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ecx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ebx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ebx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ecx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase4:
fmul dword ptr[ebx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ecx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ebx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ecx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ecx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ebx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase5:
fmul dword ptr[ecx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ebx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ebx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ecx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ecx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ebx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase6:
fmul dword ptr[ebx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ecx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ecx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ebx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ecx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ebx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase7:
fmul dword ptr[ecx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ebx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ecx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ebx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ecx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ebx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
LSetSides:
faddp st(2),st(0)
fcomp dword ptr[12+edx]
xor ecx,ecx
fnstsw ax
fcomp dword ptr[12+edx]
and ah,1
xor ah,1
add cl,ah
fnstsw ax
and ah,1
add ah,ah
add cl,ah
pop ebx
mov eax,ecx
ret
Lerror:
int 3
}
}
#pragma warning( default: 4035 )
#endif
#endif
/*
=================
RadiusFromBounds
=================
*/
float RadiusFromBounds( const vec3_t mins, const vec3_t maxs ) {
int32_t i;
vec3_t corner;
float a, b;
for (i=0 ; i<3 ; i++) {
a = fabs( mins[i] );
b = fabs( maxs[i] );
corner[i] = a > b ? a : b;
}
return VectorLength (corner);
}
void ClearBounds( vec3_t mins, vec3_t maxs ) {
mins[0] = mins[1] = mins[2] = 99999;
maxs[0] = maxs[1] = maxs[2] = -99999;
}
void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs ) {
if ( v[0] < mins[0] ) {
mins[0] = v[0];
}
if ( v[0] > maxs[0]) {
maxs[0] = v[0];
}
if ( v[1] < mins[1] ) {
mins[1] = v[1];
}
if ( v[1] > maxs[1]) {
maxs[1] = v[1];
}
if ( v[2] < mins[2] ) {
mins[2] = v[2];
}
if ( v[2] > maxs[2]) {
maxs[2] = v[2];
}
}
int32_t VectorCompare( const vec3_t v1, const vec3_t v2 ) {
if (v1[0] != v2[0] || v1[1] != v2[1] || v1[2] != v2[2]) {
return 0;
}
return 1;
}
vec_t VectorNormalize( vec3_t v ) {
float length, ilength;
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
length = sqrt (length);
if ( length ) {
ilength = 1/length;
v[0] *= ilength;
v[1] *= ilength;
v[2] *= ilength;
}
return length;
}
/*
* fast vector normalize routine that does not check to make sure
* that length != 0, nor does it return length
*/
void VectorNormalizeFast( vec3_t v )
{
float ilength;
ilength = Q_rsqrt( DotProduct( v, v ) );
v[0] *= ilength;
v[1] *= ilength;
v[2] *= ilength;
}
vec_t VectorNormalize2( const vec3_t v, vec3_t out) {
float length, ilength;
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
length = sqrt (length);
if (length)
{
ilength = 1/length;
out[0] = v[0]*ilength;
out[1] = v[1]*ilength;
out[2] = v[2]*ilength;
} else {
VectorClear( out );
}
return length;
}
void _VectorMA( const vec3_t veca, float scale, const vec3_t vecb, vec3_t vecc) {
vecc[0] = veca[0] + scale*vecb[0];
vecc[1] = veca[1] + scale*vecb[1];
vecc[2] = veca[2] + scale*vecb[2];
}
vec_t _DotProduct( const vec3_t v1, const vec3_t v2 ) {
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
void _VectorSubtract( const vec3_t veca, const vec3_t vecb, vec3_t out ) {
out[0] = veca[0]-vecb[0];
out[1] = veca[1]-vecb[1];
out[2] = veca[2]-vecb[2];
}
void _VectorAdd( const vec3_t veca, const vec3_t vecb, vec3_t out ) {
out[0] = veca[0]+vecb[0];
out[1] = veca[1]+vecb[1];
out[2] = veca[2]+vecb[2];
}
void _VectorCopy( const vec3_t in, vec3_t out ) {
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
}
void _VectorScale( const vec3_t in, vec_t scale, vec3_t out ) {
out[0] = in[0]*scale;
out[1] = in[1]*scale;
out[2] = in[2]*scale;
}
void CrossProduct( const vec3_t v1, const vec3_t v2, vec3_t cross ) {
cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
vec_t VectorLength( const vec3_t v ) {
return sqrt (v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
}
vec_t VectorLengthSquared( const vec3_t v ) {
return (v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
}
vec_t Distance( const vec3_t p1, const vec3_t p2 ) {
vec3_t v;
VectorSubtract (p2, p1, v);
return VectorLength( v );
}
vec_t DistanceSquared( const vec3_t p1, const vec3_t p2 ) {
vec3_t v;
VectorSubtract (p2, p1, v);
return v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
}
void VectorInverse( vec3_t v ){
v[0] = -v[0];
v[1] = -v[1];
v[2] = -v[2];
}
void Vector4Scale( const vec4_t in, vec_t scale, vec4_t out ) {
out[0] = in[0]*scale;
out[1] = in[1]*scale;
out[2] = in[2]*scale;
out[3] = in[3]*scale;
}
int32_t Q_log2( int32_t val ) {
int32_t answer;
answer = 0;
while ( ( val>>=1 ) != 0 ) {
answer++;
}
return answer;
}
/*
=================
PlaneTypeForNormal
=================
*/
int32_t PlaneTypeForNormal (vec3_t normal) {
if ( normal[0] == 1.0 )
return PLANE_X;
if ( normal[1] == 1.0 )
return PLANE_Y;
if ( normal[2] == 1.0 )
return PLANE_Z;
return PLANE_NON_AXIAL;
}
/*
================
MatrixMultiply
================
*/
void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) {
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
in1[0][2] * in2[2][0];
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
in1[0][2] * in2[2][1];
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
in1[0][2] * in2[2][2];
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
in1[1][2] * in2[2][0];
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
in1[1][2] * in2[2][1];
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
in1[1][2] * in2[2][2];
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
in1[2][2] * in2[2][0];
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
in1[2][2] * in2[2][1];
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
in1[2][2] * in2[2][2];
}
void AngleVectors( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) {
float angle;
static float sr, sp, sy, cr, cp, cy;
/* static to help MS compiler fp bugs */
angle = angles[YAW] * (M_PI*2 / 360);
sy = sin(angle);
cy = cos(angle);
angle = angles[PITCH] * (M_PI*2 / 360);
sp = sin(angle);
cp = cos(angle);
angle = angles[ROLL] * (M_PI*2 / 360);
sr = sin(angle);
cr = cos(angle);
if (forward)
{
forward[0] = cp*cy;
forward[1] = cp*sy;
forward[2] = -sp;
}
if (right)
{
right[0] = (-1*sr*sp*cy+-1*cr*-sy);
right[1] = (-1*sr*sp*sy+-1*cr*cy);
right[2] = -1*sr*cp;
}
if (up)
{
up[0] = (cr*sp*cy+-sr*-sy);
up[1] = (cr*sp*sy+-sr*cy);
up[2] = cr*cp;
}
}
/*
** assumes "src" is normalized
*/
void PerpendicularVector( vec3_t dst, const vec3_t src )
{
int32_t pos;
int32_t i;
float minelem = 1.0F;
vec3_t tempvec;
/*
** find the smallest magnitude axially aligned vector
** bias towards using z instead of x or y
*/
/* for ( pos = 0, i = 0; i < 3; i++ ) */
for ( pos = 0, i = 2; i >= 0; i-- )
{
if ( fabs( src[i] ) < minelem )
{
pos = i;
minelem = fabs( src[i] );
}
}
tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
tempvec[pos] = 1.0F;
/*
** project the point onto the plane defined by src
*/
ProjectPointOnPlane( dst, tempvec, src );
/*
** normalize the result
*/
VectorNormalize( dst );
}
/*
** flrandom
Returns a float min <= x < max (exclusive; will get max - 0.00001; but never max
*/
float flrandom(float min, float max)
{
return (((rand() & 0x7FFF) * (max - min)) / 32768.0F) + min;
}
/*
** irandom
Returns an integer min <= x <= max (ie inclusive)
*/
int32_t irandom(int32_t min, int32_t max)
{
max++; /* so it can round down */
return (((rand() & 0x7FFF) * (max - min)) >> 15) + min;
}
/* use for networking - normalizes a vector, then multiplies it by 65535.0, then calls snap vector on it
guarantee's a short per vector instead of 4 bytes. */
void VectorShort(vec3_t vect)
{
VectorNormalize(vect);
vect[0] *= 8191.0;
vect[1] *= 8191.0;
vect[2] *= 8191.0;
SnapVector(vect);
}
void UnVectorShort(vec3_t vect)
{
vect[0] /= 8191.0;
vect[1] /= 8191.0;
vect[2] /= 8191.0;
}
float Q_powf( float x, int32_t y )
{
float r = x;
for ( y--; y>0; y-- )
r = r * r;
return r;
}
/* TiM: Vector-Average. Good for calculating origins from bounding boxes */
void VectorAverage( vec3_t mins, vec3_t maxs, vec3_t result ) {
vec3_t temp;
/*int32_t i;
for ( i = 0; i < 3; i++ ) {
result[i] = ( mins[i] + maxs[i] ) * 0.5;
}*/
/* TiM: I 'unno... this way looks l33ter lol */
VectorAdd( mins, maxs, temp );
VectorScale( temp, 0.5, result );
}
/* Rounds the argument to the next integer. Used by SnapVector. */
void init_tonextint(qboolean verbose)
{
float decimal = 0.9;
nonansicast = (int32_t) decimal;
if(verbose)
{
if(nonansicast)
Com_Printf("Float to int32_t casting behaviour: round to next int\n");
else
Com_Printf("Float to int32_t casting behaviour: ISO compliant\n");
}
}
float tonextint(float x)
{
int32_t casted;
float rest;
if(nonansicast)
return (int32_t) x;
casted = (int32_t) x;
rest = x - (float) casted;
if(rest >= 0.5f)
return casted+1;
else if(rest <= -0.5f)
return casted - 1;
else
return casted;
}
/**************************************
atoul
TiM - the stdlib function 'strtoul' isn't
supported by the Q3 C library.
I was thinking about converting it, but
realised since I was only using a small
part of it's functionality anyway, it'd be
quicker to write my own based off the present
code in Q3.
Based off of the atoi code
**************************************/
unsigned long atoul( const char *string )
{
unsigned long value;
int32_t c;
/* skip whitespace */
while ( *string <= ' ' ) {
if ( !*string ) {
return 0;
}
string++;
}
/* read digits */
value = 0;
do {
c = *string++;
if ( c < '0' || c > '9' ) {
break;
}
c -= '0';
value = value * 10 + c;
} while ( 1 );
/* not handling 10e10 notation... */
return value;
}